X9251 Single Supply/Low Power/256-Tap/SPI Bus, Quad Digitally-Controlled (XDCP™) Potentiometer FN8166 Rev 6.00 December 3, 2014 The X9251 integrates four digitally controlled potentiometers (XDCP) on a monolithic CMOS integrated circuit. The digitally controlled potentiometers are implemented with a combination of resistor elements and CMOS switches. The position of the wipers are controlled by the user through the SPI bus interface. Each potentiometer has associated with it a volatile Wiper Counter Register (WCR) and four nonvolatile Data Registers that can be directly written to and read by the user. The content of the WCR controls the position of the wiper. At power-up, the device recalls the content of the default Data Registers of each DCP (DR00, DR10, DR20, and DR30) to the corresponding WCR. The XDCP can be used as a three terminal potentiometer or as a two terminal variable resistor in a wide variety of applications including control, parameter adjustments, and signal processing. # **Features** - · Four potentiometers in one package - 256 resistor taps-0.4% resolution - SPI serial interface for write, read, and transfer operations of the potentiometer - Wiper resistance: 100Ω typical at V_{CC} = 5V - · 4 Nonvolatile data registers for each potentiometer - · Nonvolatile storage of multiple wiper positions - Standby current <5µA max - V_{CC}: 2.7V to 5.5V operation - 50kΩ version of total resistance - 100 year data retention - · Single supply version of X9250 - Endurance: 100,000 data changes per bit per register - 24 Ld SOIC, 24 Ld TSSOP - · Low power CMOS - · Pb-free (RoHS compliant) FIGURE 1. FUNCTIONAL DIAGRAM # **Circuit Level Applications** - · Vary the gain of a voltage amplifier - Provide programmable DC reference voltages for comparators and detectors - · Control the volume in audio circuits - · Trim out the offset voltage error in a voltage amplifier circuit - · Set the output voltage of a voltage regulator - . Trim the resistance in Wheatstone bridge circuits - Control the gain, characteristic frequency and Q-factor in filter circuits - Set the scale factor and zero point in sensor signal conditioning circuits - · Vary the frequency and duty cycle of timer ICs - · Vary the DC biasing of a pin diode attenuator in RF circuits - Provide a control variable (I, V, or R) in feedback circuits # **System Level Applications** - · Adjust the contrast in LCD displays - Control the power level of LED transmitters in communication systems - Set and regulate the DC biasing point in an RF power amplifier in wireless systems - · Control the gain in audio and home entertainment systems - · Provide the variable DC bias for tuners in RF wireless systems - Set the operating points in temperature control systems - · Control the operating point for sensors in industrial systems - Trim offset and gain errors in artificial intelligent systems # **Ordering Information** | PART NUMBER (Notes 2, 3) | PART
MARKING | V _{CC} LIMITS
(V) | POTENTIOMETER ORGANIZATION (kΩ) | TEMP RANGE (°C) | PACKAGE
(Pb-Free) | PKG.
DWG.# | |-----------------------------------|-----------------|-------------------------------|---------------------------------|-----------------|----------------------|---------------| | X9251US24Z (Note 1) | X9251US Z | 5 ±10% | 50 | 0 to +70 | 24 Ld SOIC (300 mil) | M24.3 | | X9251US24IZ (<u>Note 1</u>) | X9251US ZI | | | -40 to +85 | 24 Ld SOIC (300 mil) | M24.3 | | X9251UV24Z | X9251UV Z | | | 0 to +70 | 24 Ld TSSOP (4.4mm) | M24.173 | | X9251UV24IZ | X9251UV ZI | | | -40 to +85 | 24 Ld TSSOP (4.4mm) | M24.173 | | X9251US24IZ-2.7 (Note 1) | X9251US ZG | 2.7 to 5.5 | | -40 to +85 | 24 Ld SOIC (300 mil) | M24.3 | | X9251US24Z-2.7 (Note 1) | X9251US ZG | | | 0 to +70 | 24 Ld SOIC (300 mil) | M24.3 | | X9251UV24Z-2.7 | X9251UV ZF | | | 0 to +70 | 24 Ld TSSOP (4.4mm) | M24.173 | | X9251UV24IZ-2.7 (<u>Note 1</u>) | X9251UV ZG | | | -40 to +85 | 24 Ld TSSOP (4.4mm) | M24.173 | #### NOTES: - 1. Add "T1" suffix for tape and reel. - 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. - 3. For Moisture Sensitivity Level (MSL), please see product information page for X9251. For more information on MSL, please see tech brief TB363 # **Pin Configuration** X9251 (24 LD SOIC/TSSOP) TOP VIEW # **Pin Descriptions** | PIN
(SOIC) | SYMBOL | FUNCTION | |---------------|-----------------|--| | 1 | S0 | Serial Data Output for SPI bus | | 2 | A0 | Device Address for SPI bus (see Note 4) | | 3 | R _{W3} | Wiper Terminal of DCP3 | | 4 | R _{H3} | High Terminal of DCP3 | | 5 | R _{L3} | Low Terminal of DCP3 | | 7 | v _{cc} | System Supply Voltage | | 8 | R _{LO} | Low Terminal of DCP0 | | 9 | R _{HO} | High Terminal of DCP0 | | 10 | R _{WO} | Wiper Terminal of DCP0 | | 11 | CS | SPI bus. Chip Select active low input | | 12 | WP | Hardware Write Protect - active low | | 13 | SI | Serial Data Input for SPI bus | | 14 | A1 | Device Address for SPI bus (see Note 4) | | 15 | R _{L1} | Low Terminal of DCP1 | | 16 | R _{H1} | High Terminal of DCP1 | | 17 | R _{W1} | Wiper Terminal of DCP1 | | 18 | V _{SS} | System Ground | | 20 | R _{W2} | Wiper Terminal of DCP2 | | 21 | R _{H2} | High Terminal of DCP2 | | 22 | R _{L2} | Low Terminal of DCP2 | | 23 | SCK | Serial Clock for SPI bus | | 24 | HOLD | Device select. Pauses the SPI serial bus | | 6, 19 | NC | No Connect | #### NOTE: 4. A0 and A1 device address pins must be tied to a logic level. # **Functional Pin Descriptions** #### **Bus Interface Pins** #### **SERIAL OUTPUT (SO)** SO is a serial data output pin. During a read cycle, data is shifted out on this pin. Data is clocked out by the falling edge of the serial clock. #### **SERIAL INPUT (SI)** SI is the serial data input pin. All opcodes, byte addresses and data to be written to the device registers are input on this pin. Data is latched by the rising edge of the serial clock. #### **SERIAL CLOCK (SCK)** The SCK input is used to clock data into and out of the X9251. ### **HOLD (HOLD)** HOLD is used in conjunction with the $\overline{\text{CS}}$ pin to select the device. Once the part is selected and a serial sequence is underway, $\overline{\text{HOLD}}$ may be used to pause the serial communication with the controller without resetting the serial sequence. To pause, $\overline{\text{HOLD}}$ must be brought LOW while SCK is LOW. To resume communication, $\overline{\text{HOLD}}$ is brought HIGH, again while SCK is LOW. If the pause feature is not used, $\overline{\text{HOLD}}$ should be held HIGH at all times. #### **DEVICE ADDRESS (A1 AND A0)** The address inputs are used to set the two least significant bits of the slave address. A match in the slave address serial data stream must be made with the address input in order to initiate communication with the X9251. Device pins A1 and A0 must be tied to a logic level which specifies the internal address of the device, see Figures 3, 4, 5, 6 and 7. #### CHIP SELECT (CS) When $\overline{\text{CS}}$ is HIGH, the X9251 is deselected and the SO pin is at high impedance, and (unless an internal write cycle is underway) the device is in the standby state. $\overline{\text{CS}}$ LOW enables the X9251, placing it in the active power mode. It should be noted that after a power-up, a HIGH to LOW transition on $\overline{\text{CS}}$ is required prior to the start of any operation. #### **Potentiometer Pins** #### R_H, R_L The R $_{H}$ and R $_{L}$ pins are equivalent to the terminal connections on a mechanical potentiometer. Since there are 4 potentiometers, there are 4 sets of R $_{H}$ and R $_{L}$ such that R $_{H0}$ and R $_{L0}$ are the terminals of DCPO and so on. ### R_W The wiper pins are equivalent to the wiper terminal of a mechanical potentiometer. Since there are 4 potentiometers, there are 4 sets of R_W such that R_{W0} is the terminals of DCP0 and so on. ### Supply Pins # SYSTEM SUPPLY VOLTAGE (V_{CC}) AND SUPPLY GROUND (V_{SS}) The V_{CC} pin is the system supply voltage. The V_{SS} pin is the system ground. ## **Other Pins** #### **NO CONNECT** No connect pins should be left floating. These pins are used for Intersil manufacturing and testing purposes. #### HARDWARE WRITE PROTECT INPUT (WP) The $\overline{\text{WP}}$ pin, when LOW, prevents nonvolatile writes to the Data Registers. # **Principles of Operation** The X9251 is an integrated circuit incorporating four DCPs and their associated registers and counters, and a serial interface providing direct communication between a host and the potentiometers. ### **DCP Description** Each DCP is implemented with a combination of resistor elements and CMOS switches. The physical ends of each DCP are equivalent to the fixed terminals of a mechanical potentiometer (R_H and R_L pins). The RW pin is an intermediate node, equivalent to the wiper terminal of a mechanical potentiometer. The position of the wiper terminal within the DCP is controlled by an 8-bit volatile Wiper Counter Register (WCR). #### **One of Four Potentiometers** FIGURE 2. DETAILED POTENTIOMETER BLOCK DIAGRAM ### **Power-Up and Down Recommendations** There are no restrictions on the power-up or power-down conditions of V_{CC} and the voltages applied to the potentiometer pins provided that V_{CC} is always more positive than or equal to $V_H,\,V_L,\,$ and V_W (i.e., $V_{CC} \geq V_H,\,V_L,\,V_W$). The V_{CC} ramp rate specification is always in effect. #### **Wiper Counter Register (WCR)** The X9251 contains four Wiper Counter Registers, one for each potentiometer. The Wiper Counter Register can be envisioned as a 8-bit parallel and serial load counter with its outputs decoded to select one of 256 wiper positions along its resistor array. The contents of the WCR can be altered in four ways: it may be written directly by the host via the Write Wiper Counter Register instruction (serial load); it may be written indirectly by transferring the contents of one of four associated data registers via the XFR Data Register instruction (parallel load); it can be modified one step at a time by the Increment/Decrement instruction (see "Instruction Format" on page 10 for more details). Finally, it is loaded with the contents of its Data Register zero (DR#0) upon power-up (see Figure 2). The wiper counter register is a volatile register; that is, its contents are lost when the X9251 is powered down. Although the register is automatically loaded with the value in DR#0 upon power-up, this may be different from the value present at power-down. Power-up guidelines are recommended to ensure proper loadings of the DR#0 value into the WCR#. ### **Data Registers (DR)** Each of the four DCPs has four 8-bit nonvolatile Data Registers. These can be read or written directly by the host. Data can also be transferred between any of the four Data Registers and the associated Wiper Counter Register. All operations changing data in one of the Data Registers is a nonvolatile operation and takes a maximum of 10ms. If the application does not require storage of multiple settings for the potentiometer, the Data Registers can be used as regular memory locations for system parameters or user preference data. Bits [7:0] are used to store one of the 256 wiper positions or data $(0 \sim 255)$. #### **Status Register (SR)** This 1-bit Status Register is used to store the system status. WIP: Write In Progress status bit, read only. - WIP = 1, indicates that high-voltage write cycle is in progress. - WIP = 0, indicates that no high-voltage write cycle is in progress. TABLE 1. WIPER COUNTER REGISTER, WCR (8-BIT), WCR[7:0]: USED TO STORE THE CURRENT WIPER POSITION (VOLATILE) | WCR7 | WCR6 | WCR5 | WCR4 | WCR3 | WCR2 | WCR1 | WCRO | |-------|------|------|------|------|------|------|-------| | (MSB) | | | | | | | (LSB) | TABLE 2. DATA REGISTER, DR (8-BIT), DR[7:0]: USED TO STORE WIPER POSITIONS OR DATA (NONVOLATILE) | BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT O | |-------|-------|-------|-------|-------|-------|-------|-------| | (MSB) | | | | | | | (LSB) | # **Serial Interface** The X9251 supports the SPI interface hardware conventions. The device is accessed via the SI input with data clocked in, on the rising SCK. $\overline{\text{CS}}$ must be LOW and the $\overline{\text{HOLD}}$ and $\overline{\text{WP}}$ pins must be HIGH during the entire operation. The SO and SI pins can be connected together, since they have three-state outputs. This can help to reduce system pin count. ## **Identification Byte** The first byte sent to the X9251 from the host, following a $\overline{\text{CS}}$ going HIGH to LOW, is called the Identification Byte. The most significant four bits of the Identification Byte are a Device Type Identifier, ID[3:0]. For the X9251, this is fixed as 0101 (refer to Table 3). The least significant four bits of the Identification Byte are the Slave Address bits, AD[3:0]. For the X9251, A3 is 0, A2 is 0, A1 is the logic value at the input pin A1, and A0 is the logic value at the input pin A0. Only the device which Slave Address matches the incoming bits sent by the master executes the instruction. The A1 and A0 inputs can be actively driven by CMOS input signals or tied to V_{CC} or V_{SS} . ### **Instruction Byte** The next byte sent to the X9251 contains the instruction and register pointer information. The four most significant bits are used to provide the instruction opcode (I[3:0]). The RB and RA bits point to one of the four Data Registers of each associated XDCP. The least two significant bits point to one of four Wiper Counter Registers or DCPs. The format is shown below in Table 4. **TABLE 3. IDENTIFICATION BYTE FORMAT** | | DEVICE TYPE | E IDENTIFIER | | | SLAVE | ADDRESS | | |-------|-------------|--------------|-----|----|-------|-----------------------|-----------------------| | ID3 | ID2 | ID1 | ID0 | А3 | A2 | A1 | AO | | 0 | 1 | 0 | 1 | 0 | 0 | Pin A1
Logic Value | Pin A0
Logic Value | | (MSB) | | | | | | | (LSB) | **TABLE 4. INSTRUCTION BYTE FORMAT** | | INSTRUCTIO | ON OPCODE | | REGISTER | SELECTION | DCP SELECTION
(WCR SELECTION) | | | | | | |-------|------------|-----------|----|----------|-----------|----------------------------------|-------|--|--|--|--| | 13 | 12 | 11 | 10 | RB | RA | P1 | PO | | | | | | (MSB) | MSB) | | | | | | (LSB) | | | | | ### **Data Register Selection** | REGISTER | RB | RA | |----------|----|----| | DR#0 | 0 | 0 | | DR#1 | 0 | 1 | | DR#2 | 1 | 0 | | DR#3 | 1 | 1 | #: 0, 1, 2, or 3 #### **TABLE 5. INSTRUCTION SET** | | | | ı | INSTRU | ICTION | SET | | | | |--|----|----|----|--------|--------|-----|-----|-----|---| | INSTRUCTION | 13 | 12 | 11 | 10 | RB | RA | P1 | P0 | OPERATION | | Read Wiper Counter Register | 1 | 0 | 0 | 1 | 0 | 0 | 1/0 | 1/0 | Read the contents of the Wiper Counter Register pointed to by P1, P0 | | Write Wiper Counter Register | 1 | 0 | 1 | 0 | 0 | 0 | 1/0 | 1/0 | Write new value to the Wiper Counter Register pointed to by P1, P0 | | Read Data Register | 1 | 0 | 1 | 1 | 1/0 | 1/0 | 1/0 | 1/0 | Read the contents of the Data Register pointed to by P1, P0 and RB, RA | | Write Data Register | 1 | 1 | 0 | 0 | 1/0 | 1/0 | 1/0 | 1/0 | Write new value to the Data Register pointed to by P1, P0 and RB, RA | | XFR Data Register to
Wiper Counter Register | 1 | 1 | 0 | 1 | 1/0 | 1/0 | 1/0 | 1/0 | Transfer the contents of the Data Register pointed to by P1, P0 and RB, RA to its associated Wiper Counter Register | **TABLE 5. INSTRUCTION SET (Continued)** | | | | ı | INSTRU | CTION | SET | | | | |---|----|----|----|--------|-------|-----|-----|-----|--| | INSTRUCTION | 13 | 12 | 11 | 10 | RB | RA | P1 | PO | OPERATION | | XFR Wiper Counter
Register to Data Register | 1 | 1 | 1 | 0 | 1/0 | 1/0 | 1/0 | 1/0 | Transfer the contents of the Wiper Counter Register pointed to by P1, P0 to the Data Register pointed to by RB, RA | | Global XFR Data Registers to Wiper
Counter Registers | 0 | 0 | 0 | 1 | 1/0 | 1/0 | 0 | 0 | Transfer the contents of the Data Registers pointed to by RB, RA of all four pots to their respective Wiper Counter Registers | | Global XFR Wiper Counter Registers
to Data Register | 1 | 0 | 0 | 0 | 1/0 | 1/0 | 0 | 0 | Transfer the contents of both Wiper Counter Registers to their respective data Registers pointed to by RB, RA of all four pots | | Increment/Decrement
Wiper Counter Register | 0 | 0 | 1 | 0 | 0 | 0 | 1/0 | 1/0 | Enable Increment/decrement of the Control Latch pointed to by P1, P0 | NOTE: 1/0 = data is one or zero #### Instructions Four of the nine instructions are three bytes in length. These instructions are: - Read Wiper Counter Register read the current wiper position of the selected potentiometer - Write Wiper Counter Register change current wiper position of the selected potentiometer - Read Data Register read the contents of the selected Data Register - Write Data Register write a new value to the selected Data Register - Read Status this command returns the contents of the WIP bit which indicates if the internal write cycle is in progress The basic sequence of the three-byte instructions is illustrated in Figure 4. These three-byte instructions exchange data between the WCR and one of the Data Registers. A transfer from a Data Register to a WCR is essentially a write to a static RAM, with the static RAM controlling the wiper position. The response of the wiper to this action is delayed by t_{WRL} . A transfer from the WCR (current wiper position), to a Data Register is a write to nonvolatile memory and takes a minimum of t_{WR} to complete. The transfer can occur between one of the four potentiometer's WCR, and one of its associated registers, DRs; or it may occur globally, where the transfer occurs between all potentiometers and one associated register. The Read Status Register instruction is the only unique format (see Figure 6). Four instructions require a two-byte sequence to complete. These instructions transfer data between the host and the X9251; either between the host and one of the data registers or directly between the host and the Wiper Counter Register. These instructions are: - XFR Data Register to Wiper Counter Register This transfers the contents of one specified Data Register to the associated Wiper Counter Register. - XFR Wiper Counter Register to Data Register This transfers the contents of the specified Wiper Counter Register to the specified associated Data Register. - Global XFR Data Register to Wiper Counter Register This transfers the contents of all specified Data Registers to the associated Wiper Counter Registers. - Global XFR Wiper Counter Register to Data Register – This transfers the contents of all Wiper Counter Registers to the specified associated Data Registers. # **Increment/Decrement Command** The final command is Increment/Decrement (see Figures 7 and 8). The Increment/Decrement command is different from the other commands. Once the command is issued and the X9251 has responded with an Acknowledge, the master can clock the selected wiper up and/or down in one segment steps, thereby providing a fine tuning capability to the host. For each SCK clock pulse (t_{HIGH}) while SI is HIGH, the selected wiper moves one wiper position towards the R_H terminal. Similarly, for each SCK clock pulse while SI is LOW, the selected wiper moves one wiper position towards the R_L terminal. A detailed illustration of the sequence and timing for this operation are shown. See "Instruction Format" on page 10 for more details. FIGURE 3. TWO-BYTE INSTRUCTION SEQUENCE FIGURE 4. THREE-BYTE INSTRUCTION SEQUENCE SPI INTERFACE; WRITE CASE FIGURE 5. THREE-BYTE INSTRUCTION SEQUENCE SPI INTERFACE, READ CASE FIGURE 6. THREE-BYTE INSTRUCTION SEQUENCE (READ STATUS REGISTER) FIGURE 7. INCREMENT/DECREMENT INSTRUCTION SEQUENCE FIGURE 8. INCREMENT/DECREMENT TIMING SPEC # **Instruction Format** # **Read Wiper Counter Register (WCR)** | CS
FALLING | _ | EVICI
DENT | | _ | , | | VICE
RESSI | ES | INSTRUCTION
OPCODE | | | | A | | CR
ESSE | s | | | | ER F | | | | | CS
RISING | |---------------|---------|---------------|--|---|-----------|--|---------------|----|-----------------------|--|--|---------|---|--|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------------| | EDGE | 0 1 0 1 | | | 1 | 0 0 A1 A0 | | | | 1 0 0 1 | | | 0 0 0 0 | | | 0 | W
C o
M | EDGE | R
7 | R
6 | R
5 | R
4 | R
3 | R
2 | R
1 | R
0 | | # **Write Wiper Counter Register (WCR)** | CS
FALLING | | | E TYF | | , | | VICE
RESSI | INSTRUCTION
OPCODE | | | | А | | CR
ESSE | S | | (SI | | | BYT
IOST | | SI) | | CS
RISING | | |---------------|---|---|-------|---|---|---|---------------|-----------------------|---|---|---|---|---|------------|---|---|------------------|------------------|------------------|------------------|------------------|------------------|-------------|--------------|------| | EDGE | 0 | 1 | 0 | 1 | 0 | 0 | A1 | AO | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | W
C
R
7 | W
C
R
6 | W
C
R
5 | W
C
R
4 | W
C
R
3 | W
C
R
2 | W
C
R | W C R O | EDGE | ## **Read Data Register (DR)** | CS
FALLING | DEVICE TYPE DEVICE ADDRESSES | | | | | | | INSTRUCTION OPCODE | | | | _ | OR AN
ADDR | | - | | (SEI | _ | | BYT
9271 | _ | SO) | | CS
RISING | | |---------------|------------------------------|---|---|---|---|---|----|--------------------|---|---|---|---|---------------|----|----|----|--------|--------|--------|-------------|--------|--------|--------|--------------|------| | EDGE | 0 | 1 | 0 | 1 | 0 | 0 | A1 | AO | 1 | 0 | 1 | 1 | RB | RA | P1 | P0 | D
7 | D
6 | D
5 | D
4 | D
3 | D
2 | D
1 | D
0 | EDGE | # **Write Data Register (DR)** | CS
FALLING | | EVIC
DEN | | | , | | EVICE
RESS | | | STRI
OPC | | | _ | DR AN
ADDR | | - | | (SI | D
ENT I | ATA
BY H | | _ | SI) | | CS
RISING | HIGH-VOLTAGE
WRITE CYCLE | | |---------------|---|-------------|---|---|---|---|---------------|----|---|-------------|---|---|----|---------------|----|----|--------|--------|------------|-------------|--------|--------|--------|--------|--------------|-----------------------------|--| | EDGE | 0 | 1 | 0 | 1 | 0 | 0 | A1 | AO | 1 | 1 | 0 | 0 | RB | RA | P1 | PO | D
7 | D
6 | D
5 | D
4 | D
3 | D
2 | D
1 | D
0 | EDGE | | | # **Global Transfer Data Register (DR) to Wiper Counter Register (WCR)** | CS FALLING
EDGE | l | | E TYPE
CIFIER | _ | | | EVICE
RESSES | | I | | JCTIOI
ODE | N | , | DR
Addres | SES | | CS RISING
EDGE | |--------------------|---|---|------------------|---|---|---|-----------------|----|---|---|---------------|---|----|--------------|-----|---|-------------------| | | 0 | 1 | 0 | 1 | 0 | 0 | A1 | A0 | 0 | 0 | 0 | 1 | RB | RA | 0 | 0 | | # **Global Transfer Wiper Counter Register (WCR) to Data Register (DR)** | CS
FALLING | _ | EVICI
DENT | | _ | | | EVICE
RESSI | ES | IN | STRI
OPC | | ON | Al | DR
DDRES | SSES | | CS
RISING | HIGH-VOLTAGE
WRITE CYCLE | |---------------|---|---------------|---|---|---|---|----------------|----|----|-------------|---|----|----|-------------|------|---|--------------|-----------------------------| | EDGE | 0 | 1 | 0 | 1 | 0 | 0 | A1 | A0 | 1 | 0 | 0 | 0 | RB | RA | 0 | 0 | EDGE | | # **Transfer Wiper Counter Register (WCR) to Data Register (DR)** | CS
FALLING | _ | EVICI
DEN | | _ | , | | EVICE
RESSI | :s | IN | STRI
OPC | | | _ | R AND | | | CS
RISING | HIGH-VOLTAGE
WRITE CYCLE | |---------------|---|--------------|---|---|---|---|----------------|----|----|-------------|---|---|----|-------|---|---|--------------|-----------------------------| | EDGE | 0 | 1 | 0 | 1 | 0 | 0 | A1 | AO | 1 | 1 | 1 | 0 | RB | RA | 0 | 0 | EDGE | | # **Transfer Data Register (DR) to Wiper Counter Register (WCR)** | CS FALLING
EDGE | I | DEVICI
IDEN | E TYPE
TIFIER | _ | | _ | EVICE
PRESSE | S | II | NSTRI
OPC | UCTIO
ODE | N | | DR AND
ADDRES | | | CS RISING
EDGE | |--------------------|---|----------------|------------------|---|---|---|-----------------|----|----|--------------|--------------|---|----|------------------|---|---|-------------------| | | 0 | 1 | 0 | 1 | 0 | 0 | A1 | AO | 1 | 1 | 0 | 1 | RB | RA | 0 | 0 | | # **Increment/Decrement Wiper Counter Register (WCR)** | CS
FALLING | | | E TYI
TIFIE | _ | A | | VICE
RESSI | ES | | STRU
OPC | | | ΑI | W
DDR | | ES | | INCR
(SEN | , | | | | CS
RISING | |---------------|---|---|----------------|---|---|---|---------------|----|---|-------------|---|---|----|----------|---|----|-----|--------------|---|--|-----|-----|--------------| | EDGE | 0 | 1 | 0 | 1 | 0 | 0 | A1 | AO | 0 | 0 | 1 | 0 | Χ | Χ | 0 | 0 | I/D | I/D | | | I/D | I/D | EDGE | ## **Read Status Register (SR)** | CS
FALLIN | | | E TYI
TIFIE | _ | , | | EVICE
RESS | | | STRI
OPC | | | ΑĽ | W
DDR | | ES | | (S | ENT | | TA B'
X92! | | N SC |)) | CS
RISING | |--------------|---|---|----------------|---|---|---|---------------|----|---|-------------|---|---|----|----------|---|----|---|----|-----|---|---------------|---|------|------------|--------------| | G EDGE | 0 | 1 | 0 | 1 | 0 | 0 | A1 | AO | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | WIP | EDGE | #### NOTES: - 5. "A1 ~ A0": stands for the device addresses sent by the master. - 6. WPx refers to wiper position data in the Counter Register - 7. "I": stands for the increment operation, SI held HIGH during active SCK phase (high). - 8. "D": stands for the decrement operation, SI held LOW during active SCK phase (high). ## **Absolute Maximum Ratings** ### # **Recommended Operating Conditions** | Commercial Temperature Range | 0°C to +70°C | |--|------------------| | Industrial Temperature Range | 40°C to +85°C | | Supply Voltage (V _{CC}) Limits (Note 12) | | | X9251 | 5V ±10% | | X9251-2.7 | 2.7V to 5.5V | | Pb-Free Reflow Profile | see <u>TB493</u> | | | | CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. ### Analog Characteristics Over the recommended operating conditions unless otherwise specified. | SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNITS | |--|---|---|-----------------|----------|-----------------|--------------------------| | R _{TOTAL} | End to End Resistance | U version | | 50 | | kΩ | | | End to End Resistance Tolerance | | | | ±20 | % | | R _W | Wiper Resistance | $I_{W} = \frac{V(V_{CC})}{R_{TOTAL}} \text{ at } V_{CC} = 3V$ | | | 300 | Ω | | | | $I_{W} = \frac{V(V_{CC})}{R_{TOTAL}} \text{ at } V_{CC} = 5V$ | | | 220 | Ω | | V _{TERM} | Voltage on any R _H or R _L Pin | V _{SS} = 0V | V _{SS} | | V _{CC} | V | | | Noise (Note 14) | Ref: 1V | | -120 | | dBV/√Hz | | | Resolution | | | 0.4 | | % | | | Absolute Linearity (Note 9) | $R_{w(n)(actual)} - R_{w(n)(expected)} $ (Note 13) | -1 | | +1 | MI
(<u>Note 11</u>) | | | Relative Linearity (Note 10) | $R_{W(n+1)} - [R_{W(n)+MI}] $ (Note 13) | -0.6 | | +0.6 | MI
(<u>Note 11</u>) | | | Temperature Coefficient of R _{TOTAL} | (<u>Note 14</u>) | | ±300 | | ppm/°C | | | Ratiometric Temp. Coefficient | (<u>Note 14</u>) | | ±20 | | ppm/°C | | C _H /C _L /C _W | Potentiometer Capacitances | See macromodel on page 13, (Note 14) | | 10/10/25 | | pF | # **DC Operating Characteristics** Over the recommended operating conditions unless otherwise specified. | SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNITS | |------------------|---|--|-----------------------|-----|-----------------------|-------| | l _{CC1} | V _{CC} Supply Current (Active) | f _{SCK} = 2.5MHz, SO = Open, V _{CC} = 6V
Other Inputs = V _{SS} | | | 400 | μА | | I _{CC2} | V _{CC} Supply Current
(Nonvolatile Write) | f _{SCK} = 2.5MHz, SO = Open, V _{CC} = 6V
Other Inputs = V _{SS} | | 1 | 5 | mA | | I _{SB} | V _{CC} Current (Standby) | $\frac{\text{SCK} = \text{SI} = \text{V}_{\text{SS}}, \text{Addr.} = \text{V}_{\text{SS}},}{\text{CS}} = \text{V}_{\text{CC}} = 6\text{V}$ | | | 3 | μА | | ILI | Input Leakage Current | $V_{IN} = V_{SS}$ to V_{CC} | | | 10 | μΑ | | I _{LO} | Output Leakage Current | V _{OUT} = V _{SS} to V _{CC} | | | 10 | μΑ | | v_{IH} | Input HIGH Voltage | | V _{CC} x 0.7 | | | V | | v_{IL} | Input LOW Voltage | | | | V _{CC} x 0.3 | V | | V_{OL} | Output LOW Voltage | I _{OL} = 3mA | | | 0.4 | V | | V _{OH} | Output HIGH Voltage | I _{OH} = -1mA, V _{CC} ≥ +3V | V _{CC} - 0.8 | | | V | | V _{OH} | Output HIGH Voltage | I _{OH} = -0.4mA, V _{CC} ≤ +3V | V _{CC} - 0.4 | | | V | #### **Endurance and Data Retention** | PARAMETER | MIN | UNITS | |-------------------|---------|-----------------------------------| | Minimum endurance | 100,000 | Data changes per bit per register | | Data retention | 100 | years | ## **Capacitance** | SYMBOL | TEST | TEST CONDITIONS | TYP | UNITS | |------------------------------------|--|-----------------------|-----|-------| | C _{IN/OUT} (Note 14) | Input/Output capacitance (SI) | V _{OUT} = 0V | 8 | pF | | C _{OUT} (Note 14) | Output capacitance (SO) | V _{OUT} = 0V | 8 | pF | | C _{IN} (<u>Note 14</u>) | Input capacitance (A0, A1, $\overline{\text{CS}}$, $\overline{\text{WP}}$, $\overline{\text{HOLD}}$, and SCK) | V _{IN} = 0V | 6 | pF | # **Power-Up Timing** | SYMBOL | PARAMETER | MIN | MAX | UNITS | |--|---|-----|-----|-------| | t _r V _{CC} (Note 14) | V _{CC} Power-up Rate | 0.2 | | V/ms | | t _{PUR} (Note 15) | Power-up to Initiation of Read Operation | | 1 | ms | | t _{PUW} (Note 15) | Power-up to Initiation of Write Operation | | 50 | ms | ### **AC Test Conditions** | Input Pulse Levels | V _{CC} x 0.1 to V _{CC} x 0.9 | |-------------------------------|--| | Input Rise and Fall Times | 10ns | | Input and Output Timing Level | V _{CC} x 0.5 | #### NOTES: - 9. Absolute linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a potentiometer. - 10. Relative linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a potentiometer. It is a measure of the error in step size. - 11. MI = RTOT/255 or $(R_H R_L)/255$, single pot. - 12. During power up $V_{CC} > V_H$, V_L , and V_W . - 13. n = 0, 1, 2, ..., 255; m = 0, 1, 2, ..., 254. - 14. This parameter is not 100% tested - 15. tpuR and tpuW are the delays required from the time the (last) power supply (V_{CC}-) is stable until the specific instruction can be issued. These parameters are periodically sampled and not 100% tested. RENESAS # **Equivalent AC Load Circuit** # **AC TIMING** | SYMBOL | PARAMETER | MIN | MAX | UNITS | | |------------------------------------|--|-----|--------|-------|--| | fsck | SPI clock frequency | | 2 | MHz | | | tcyc | SPI Clock Cycle Time | 500 | 500 ns | | | | t _{WH} | SPI Clock High Time 200 | | | ns | | | t _{WL} | SPI Clock Low Time | 200 | | ns | | | t _{LEAD} | Lead Time | 250 | | ns | | | t _{LAG} | Lag Time | 250 | | ns | | | t _{SU} | SI, SCK, HOLD and CS Input Setup Time | 50 | | ns | | | t _H | SI, SCK, HOLD and CS Input Hold Time | 50 | | ns | | | t _{RI} | SI, SCK, HOLD and CS Input Rise Time | | 2 | μs | | | t _{Fl} | SI, SCK, HOLD and CS Input Fall Time | | 2 | μs | | | t _{DIS} | SO Output Disable Time | 0 | 250 | ns | | | t _V | SO Output Valid Time | | 200 | ns | | | t _{HO} | SO Output Hold Time | 0 | | ns | | | t _{RO} (Note 14) | SO Output Rise Time | | 100 | ns | | | t _{FO} (<u>Note 14</u>) | SO Output Fall Time | | 100 | ns | | | tHOLD | HOLD Time | 400 | | ns | | | t _{HSU} | HOLD Setup Time | 100 | | ns | | | t _{HH} | HOLD Hold Time | 100 | | ns | | | t _{HZ} | HOLD Low to Output in High Z | | 100 | ns | | | t _{LZ} | HOLD High to Output in Low Z | | 100 | ns | | | TĮ | Noise Suppression Time Constant at SI, SCK, HOLD and CS Inputs | | 10 | ns | | | t _{CS} | CS Deselect Time | 2 | | μs | | | twpasu | WP, AO Setup Time | 0 | | ns | | | t _{WPAH} | WP, AO Hold Time | 0 | | ns | | # **High-Voltage Write Cycle Timing** | SYMBOL | PARAMETER | TYP | MAX | UNITS | |-----------------|--|-----|-----|-------| | t _{WR} | High-voltage write cycle time (store instructions) | 5 | 10 | ms | # **XDCP Timing** | SYMBOL | PARAMETER | MIN | MAX | UNITS | |----------------------------|--|-----|-----|-------| | t _{WRPO} (Note 14 | Wiper response time after the third (last) power supply is stable | 5 | 10 | μs | | t _{WRL} (Note 14 | Wiper response time after instruction issued (all load instructions) | 5 | 10 | μs | # **Symbol Table** | INPUTS | OUTPUTS | |-----------------------------------|---| | Must be steady | Will be
steady | | May change
from Low to
High | Will change
from Low to
High | | May change
from High to
Low | Will change
from High to
Low | | Don't Care:
Changes
Allowed | Changing:
State Not
Known | | N/A | Center Line
is High
Impedance | | | Must be steady May change from Low to High May change from High to Low Don't Care: Changes Allowed | # **Timing Diagrams** # **Input Timing** # **Output Timing** # **Hold Timing** # **XDCP Timing (for All Load Instructions)** # **Write Protect and Device Address Pins Timing** # **Applications information** # **Basic Configurations of Electronic Potentiometers** Three terminal Potentiometer; Variable voltage divider Two terminal Variable Resistor; Variable current # **Application Circuits** #### **NON INVERTING AMPLIFIER** $V_0 = (1 + R_2/R_1)V_S$ #### **VOLTAGE REGULATOR** V_0 (REG) = 1.25V (1 + R_2/R_1) + I_{adj} R_2 #### **OFFSET VOLTAGE ADJUSTMENT** #### **COMPARATOR WITH HYSTERESIS** $V_{UL} = \{R_1/(R_1 + R_2)\} V_0(max)$ $RL_L = \{R_1/(R_1 + R_2)\} V_0(min)$ # **Application Circuits (continued)** #### **ATTENUATOR** $$V_0 = G V_S$$ -1/2 $\leq G \leq$ +1/2 **FILTER** $G_0 = 1 + R_2/R_1$ $fc = 1/(2\pi RC)$ #### **INVERTING AMPLIFIER** $V_0 = G V_S$ $G = -R_2/R_1$ #### **EQUIVALENT L-R CIRCUIT** $Z_{IN} = R_2 + s R_2 (R_1 + R_3) C_1 = R_2 + s Leq$ $(R_1 + R_3) >> R_2$ #### **FUNCTION GENERATOR** $\textbf{FREQUENCY} \propto \textbf{R_1}, \textbf{R_2}, \textbf{C}$ $\textbf{AMPLITUDE} \propto \textbf{R}_{\textbf{A}}, \textbf{R}_{\textbf{B}}$ # **Revision History** The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision. | DATE | REVISION | CHANGE | |------------------|----------|--| | December 3, 2014 | FN8166.6 | Updated to Intersil new standards. Updated Ordering Information Table on page 3, by removing obsoleted parts and 100kΩ referenced parts, adding Note 3 and changed TSSOP POD references from "MDP0044" to "M24.173". Added Revision History and About Intersil verbiage. Updated M24.3 POD to the latest revision. -"Updated to new POD standard by removing table listing dimensions and putting dimensions on drawing. Added Land Pattern." Replaced MDP0044 POD with M24.173 POD to update to new format and only show 24 Ld version. | # **About Intersil** Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets. For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask. Reliability reports are also available from our website at www.intersil.com/support © Copyright Intersil Americas LLC 2005-2014. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners. For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com # **Package Outline Drawing** #### M24.3 24 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE (SOIC) Rev 2, 3/11 #### NOTES: - 1. Dimensioning and tolerancing per ANSI Y14.5M-1982. - Package length does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. - 3. Package width does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. - 4. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. - 5. Terminal numbers are shown for reference only. - The lead width as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch). - 7. Controlling dimension: MILLIMETER. Converted inch dimensions in () are not necessarily exact. - 8. This outline conforms to JEDEC publication MS-013-AD ISSUE C. # **Package Outline Drawing** ### M24.173 24 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) Rev 1, 5/10 SIDE VIEW #### NOTES: 1. Dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side. **DETAIL "X"** - 2. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side. - 3. Dimensions are measured at datum plane H. - 4. Dimensioning and tolerancing per ASME Y14.5M-1994. - 5. Dimension does not include dambar protrusion. Allowable protrusion shall be 0.08mm total in excess of dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm. - 6. Dimension in () are for reference only. - 7. Conforms to JEDEC MO-153. # **ПОСТАВКА** ЭЛЕКТРОННЫХ КОМПОНЕНТОВ Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107 # Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip. Для оперативного оформления запроса Вам необходимо перейти по данной ссылке: ## http://moschip.ru/get-element Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора. В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов. Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair. Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки. На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров. Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009 ## Офис по работе с юридическими лицами: 105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский» Телефон: +7 495 668-12-70 (многоканальный) Факс: +7 495 668-12-70 (доб.304) E-mail: info@moschip.ru Skype отдела продаж: moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9