

High Power GaAs SPDT Switch DC - 7.0 GHz

Rev. V1

Features

- Ideal for high power SPDT switch applications including WiMAX, WLAN, Mesh Networks, and **Fixed Wireless Access**
- Broadband Performance: DC 7.0 GHz
- Low Insertion Loss:

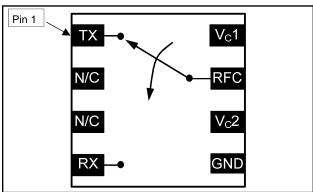
 $0.65 \text{ dB} @ 3.5 \text{ GHz}, RFC \text{ to } T_X$ 0.70 dB @ 3.5 GHz, RCF to R_X

- High P0.1dB Compression:
 - 40 dBm @ 3V, 3.5 GHz, RFC to T_X
- Fast Settling for Low Gate Lag requirements
- Lead-Free 2 mm 8-Lead PDFN Package
- 100% Matte Tin Plating over Copper
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant and 260°C Reflow Compatible
- Asymmetrical Design for optimized performance

Description

M/A-COM's MASW-007921 is a broadband GaAs pHEMT MMIC SPDT switch available in a lead-free 2 mm 8-lead PDFN package. The MASW-007921 is ideally suited for applications where very small size and high linearity are required.

Typical applications include WiMAX, WLAN, Mesh networks, fixed wireless access, and other higher power systems. This switch has a very high initial compression point, ideal for complex modulations such as OFDM, with large peak average power levels.


The MASW-007921 is fabricated using a 0.5 micron gate length GaAs pHEMT process. The process features full passivation for performance and reliability.

Ordering Information 1,2

Part Number	Package
MASW-007921-TR3000	3000 piece reel
MASW-007921-001SMB	Sample Board 2.0 - 6.0 GHz Tuning
MASW-007921-002SMB	Sample Board 0.05 - 2.0 GHz Tuning

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 5 loose parts.

Functional Schematic

Pin Configuration³

Pin No.	Pin Name	Description		
1	T _X	RF Output 1		
2	N/C	No Connection		
3	N/C	No Connection		
4	R_X	RF Output 2		
5	GND	RF and DC Ground		
6	V _C 2	Voltage Control 2		
7	RFC	RF Common		
8	V _C 1	Voltage Control 1		
9	Paddle ⁴	RF and DC Ground		

- 3. M/A-COM recommends connecting unused pins to ground.
- 4. The exposed pad centered on the package bottom must be connected to RF and DC ground.

Absolute Maximum Ratings 5,6,7

ximum		
m		
+40 dBm		
lts		
-40°C to +85°C		
-65°C to +150°C		

- 5. Exceeding any one or combination of these limits may cause permanent damage to this device.
- M/A-COM does not recommend sustained operation near these survivability limits.
- 7. Maximum Input Power applies for 0.5 to 7.0 GHz range.

North America Tel: 800.366.2266 / Fax: 978.366.2266

Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

MASW-007921

High Power GaAs SPDT Switch DC - 7.0 GHz

Rev. V1

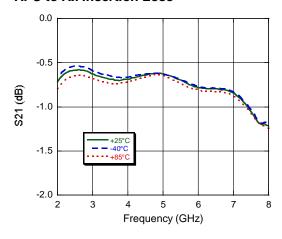
Electrical Specifications: $T_A = 25^{\circ}C$, $Z_0 = 50 \Omega$, $V_C = 0 V / 3 V$, 4.7 pF Capacitor ^{8,9}

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss RFC to R _X	0.05 - 2 GHz ¹⁰ 2.4 GHz 3.5 GHz 5.8 GHz	dB dB dB dB	_ _ _ _	0.5 0.6 0.70 0.8	0.85 — —
Insertion Loss RFC to T _X	0.05 - 2 GHz ¹⁰ 2.4 GHz 3.5 GHz 5.8 GHz	dB dB dB dB	_ _ _	0.5 0.65 0.65 1.2	0.85 — —
Isolation	0.05 - 2 GHz ¹⁰ 2.4 GHz 3.5 GHz 5.8 GHz	dB dB dB dB	21 —	27 25 26 30	_ _ _
Return Loss	DC - 6.0 GHz	dB	_	15	_
Input IP2 R _X	10 MHz Spacing, +20 dBm 2.4 GHz 3.5 GHz 5.8 GHz	dBm dBm dBm		102 99 84	
Input IP2 T _X	10 MHz Spacing, +20 dBm 2.4 GHz 3.5 GHz 5.8 GHz	dBm dBm dBm		104 101 88	_
Input IP3 R _X	10 MHz Spacing, +20 dBm 2.4 GHz 3.5 GHz 5.8 GHz	dBm dBm dBm		59 57 51	
Input IP3 T _X	10 MHz Spacing, +20 dBm 2.4 GHz 3.5 GHz 5.8 GHz	dBm dBm dBm		62 58 52	
Input P0.1dB R _X	2.4 GHz 3.5 GHz 5.8 GHz	dBm dBm dBm	_ _ _	38 37 39	_ _ _
Input P0.1dB T _X	2.4 GHz 3.5 GHz 5.8 GHz	dBm dBm dBm		38 40 39	_ _ _
Trise, Tfall	10% to 90% RF 90% to10% RF	nS nS	_	21 18	_
Ton, Toff	50% control to 90% and 50% control to 10% RF	nS	_	40	_
Transients		mV		100	_
Control Current		μA	_	2.0	10.0

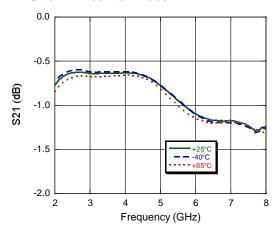
^{8.} For positive voltage control, external DC blocking capacitors are required on all RF ports.

^{9.} Performance can be optimized by varying the DC blocking capacitor value. See application schematic for details.

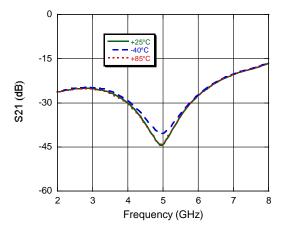
^{10. 0.05 - 2.0} GHz specifications apply with 1000 pF blocking capacitors. See applications section for typical data.

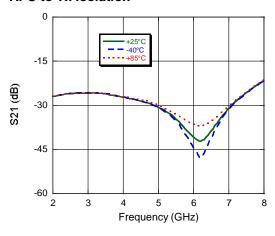


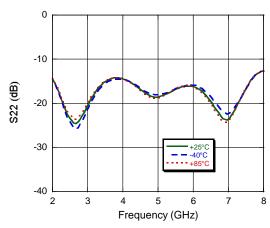
High Power GaAs SPDT Switch DC - 7.0 GHz

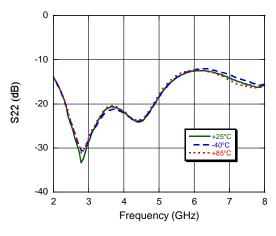

Rev. V1

Typical Performance Curves Over Temp.: $Z_0 = 50 \Omega$, 4.7 pF Blocking Caps on all RF Ports


RFC to Rx Insertion Loss


RFC to Tx Insertion Loss

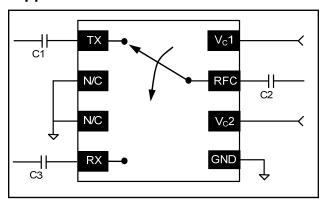

RFC to Rx Isolation


RFC to Tx Isolation

Rx Return Loss

Tx Return Loss

typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.


North America Tel: 800.366.2266 / Fax: 978.366.2266 Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

High Power GaAs SPDT Switch DC - 7.0 GHz

Rev. V1

Application Schematic ¹¹

Frequency	Recommended Value C1 - C3		
0.05 - 2.0 GHz	1000 pF		
2.4 - 2.5 GHz	8 pF		
2.0 - 6.0 GHz	4.7 pF		
4.9 - 7.0 GHz	1.5 pF		

M/A-COM recommends connecting unused package pins (N/C) to ground as shown.

Truth Table ^{12,13}

Control V _c 1	Control V _C 2	RFC - TX	RFC - RX
1	0	On	Off
0	1	Off	On

- 12. Differential voltage, V (state 1) V (state 0), must be +2.7 V minimum and must not exceed 8.0 V.
- 13. Positive Control: 1 = +2.9 V to +8 V, 0 = 0 V \pm 0.2 V. Negative Control: 1 = 0 V \pm 0.2 V, 0 = -2.9V to -8.0 V.

Qualification

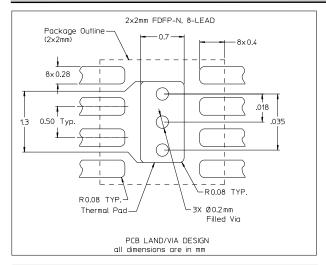
Qualified to M/A-COM specification REL-201, Process Flow –1.

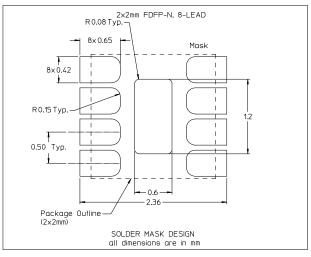
Handling Procedures

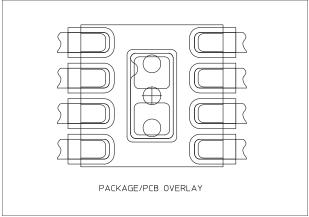
Please observe the following precautions to avoid damage:

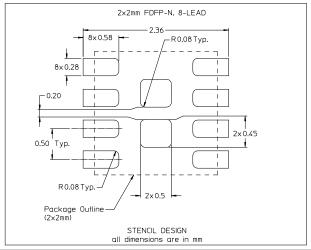
Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

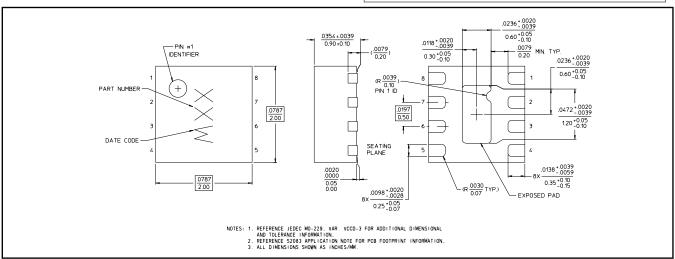

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300


Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.




High Power GaAs SPDT Switch DC - 7.0 GHz

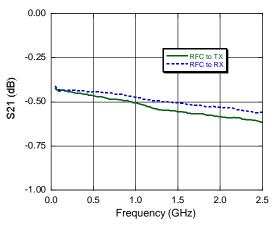
Rev. V1



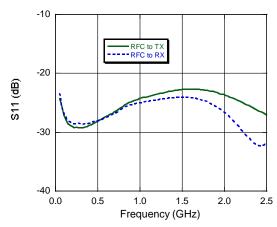
Lead Free 2 mm 8-lead PDFN [†]

[†] Reference Application Note M538 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements.

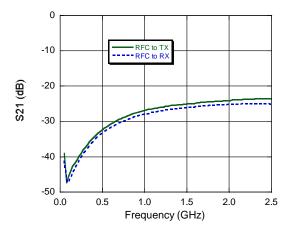
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

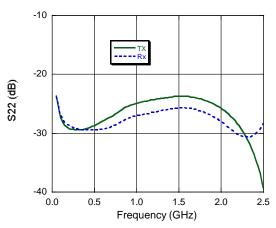

High Power GaAs SPDT Switch DC - 7.0 GHz

Rev. V1


Applications Section

Typical Low Frequency Performance Curves: T_A = 25°C, Z_0 = 50 Ω , 1000 pF Blocking Caps on all RF Ports


Insertion Loss


RFC Return Loss

Isolation

Tx and Rx Return Loss

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9