SN74F125 QUADRUPLE BUS BUFFER GATE WITH 3-STATE OUTPUTS

SDFS016B - JANUARY 1989 - REVISED JULY 2002

3-State Outputs Drive Bus Lines or Buffer Memory Address Registers

description/ordering information

The SN74F125 features independent line drivers with 3-state outputs. Each output is disabled when the associated output-enable (\overline{OE}) input is high.

1OE 1 14 V _{CC} 1A 2 13 4OE 1Y 3 12 4A 2OE 4 11 4Y 2A 5 10 3OE 2Y 6 9 3A GND 7 8 3Y	D, DB, N, OR NS PACKAGE (TOP VIEW)										
	1A [1Y [2OE [2A [2Y [3 4 5 6	13 12 11 10	40E 4A 4Y 30E 3A							

	TA	PACK	AGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING							
		PDIP – N Tube		SN74F125N	SN74F125N							
		SOIC – D	Tube	SN74F125D	E105							
	0°C to 70°C	3010 - D	Tape and reel	SN74F125DR	F125							
		SOP – NS	Tape and reel	SN74F125NSR	74F125							
		SSOP – DB	Tape and reel	SN74F125DBR	F125							

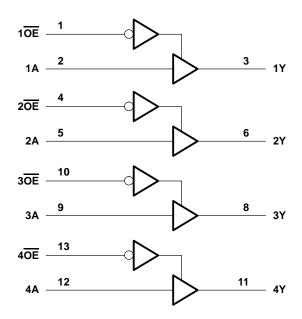
ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE (each buffer)									
INPUTS OUTPUT									
OE	Α	Y							
L	Н	Н							
L	L	L							
н	Х	Z							

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 2002, Texas Instruments Incorporated

SN74F125 QUADRUPLE BUS BUFFER GATE WITH 3-STATE OUTPUTS

SDFS016B – JANUARY 1989 – REVISED JULY 2002

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, V _I (see Note 1) Input current range Voltage range applied to any output in the disable Voltage range applied to any output in the high st Current into any output in the low state Package thermal impedance, θ_{JA} (see Note 2): D	-0.5 V to 7 V -1.2 V to 7 V -30 mA to 5 mA ed or power-off state0.5 V to 5.5 V tate
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input voltage ratings may be exceeded provided the input current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	2			V
VIL	Low-level input voltage			0.8	V
Iк	Input clamp current			-18	mA
ЮН	High-level output current			- 15	mA
IOL	Low-level output current			64	mA
Т _А	Operating free-air temperature	0		70	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

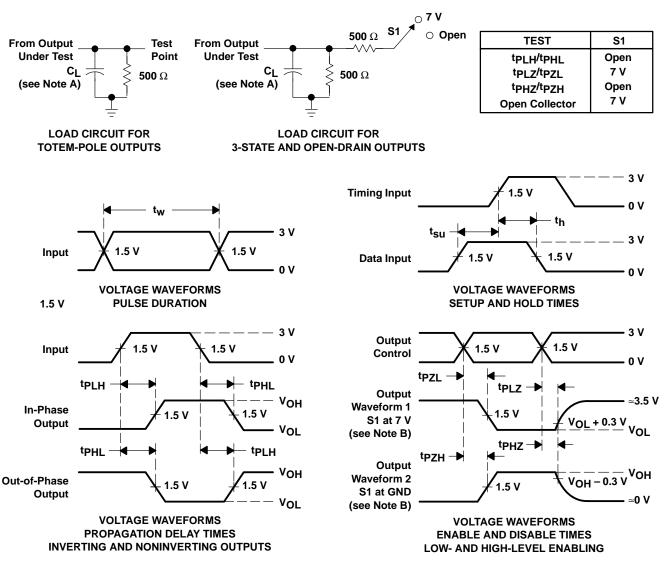
SN74F125 QUADRUPLE BUS BUFFER GATE WITH 3-STATE OUTPUTS SDFS016B – JANUARY 1989 – REVISED JULY 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	-	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
VIK	V _{CC} = 4.5 V,	lı = – 18 mA			-1.2	V
	V _{CC} = 4.5 V	I _{OH} = – 3 mA	2.4	3.3		
VOH	VCC = 4.5 V	I _{OH} = – 15 mA	2	3.1		V
	V _{CC} = 4.75 V,	I _{OH} = – 3 mA	2.7			
V _{OL}	V _{CC} = 4.5 V,	I _{OL} = 64 mA		0.4	0.55	V
lı	$V_{CC} = 0,$	V _I = 7 V			0.1	mA
Чн	V _{CC} = 5.5 V,	V _I = 2.7 V			20	μΑ
IIL	V _{CC} = 5.5 V,	V _I = 0.5 V			-20	μΑ
IOZH	V _{CC} = 5.5 V,	V _O = 2.7 V			50	μΑ
IOZL	V _{CC} = 5.5 V,	$V_{O} = 0.5 V$			-50	μΑ
los‡	V _{CC} = 5.5 V,	VO = 0	-100		-225	mA
ІССН	V _{CC} = 5.5 V,	Outputs open		17	24	mA
ICCL	V _{CC} = 5.5 V,	Outputs open		28	40	mA
ICCZ	V _{CC} = 5.5 V,	Outputs open		25	35	mA

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.
[‡] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

switching characteristics (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	CI RI	CC = 5 V _ = 50 pl _ = 500 s _ = 25°C	F, Ω,	V _{CC} = 4.5 C _L = 50 pF R _L = 500 G T _A = MIN t	; 2,	UNIT
			MIN	TYP	MAX	MIN	MAX	
^t PLH	А	V	1.2	3.6	6	1.2	6.5	ns
^t PHL	A	Ŷ	2.2	5.1	7.5	2.2	8	115
^t PZH	ŌĒ	V	2.7	5.1	7.5	2.7	8.5	ns
^t PZL	UE	ř	3.2	5.6	8	3.2	9	115
^t PHZ	ŌĒ	V	1	3.1	5	1	6	
^t PLZ	UL UL	1	1	3.1	5.5	1	6	ns

§ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

SN74F125 QUADRUPLE BUS BUFFER GATE WITH 3-STATE OUTPUTS

SDFS016B – JANUARY 1989 – REVISED JULY 2002

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns, duty cycle = 50%.
 - D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74F125D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74F125DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74F125DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74F125DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74F125DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74F125DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74F125N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74F125NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74F125NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74F125NSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

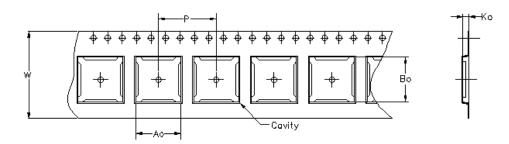
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

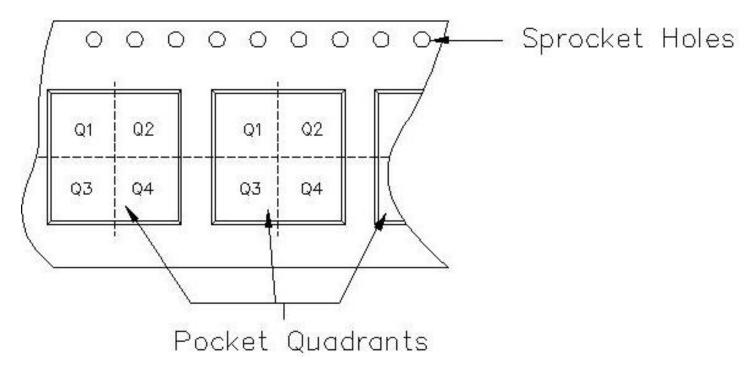
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

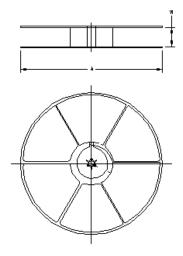
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



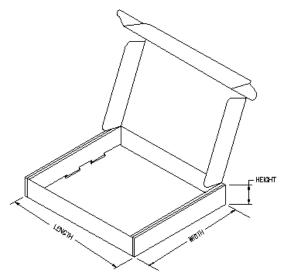
19-May-2007

Carrier tape design is defined largely by the component lentgh, width, and thickness.

Ao =	Dimension	designed	to	accommodate	the	component	width.		
Bo =	Dimension	designed	to	accommodate	the	component	length.		
Ko =	Dímension	designed	to	accommodate	the	component	thickness.		
W = 1	Overall widt	h of the	car	rier tape.					
P = f	P = Pitch between successive cavity centers.								

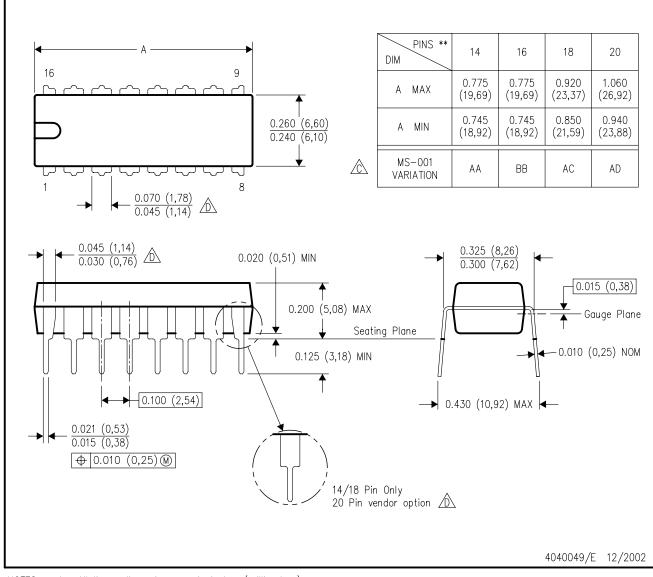

TAPE AND REEL INFORMATION

PACKAGE MATERIALS INFORMATION


19-May-2007

Device	Package	Pins	Site	Reel Diameter (mm)	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74F125DR	D	14	MLA	330	16	6.5	9.0	2.1	8	16	Q1
SN74F125NSR	NS	14	MLA	330	16	8.2	10.5	2.5	12	16	Q1

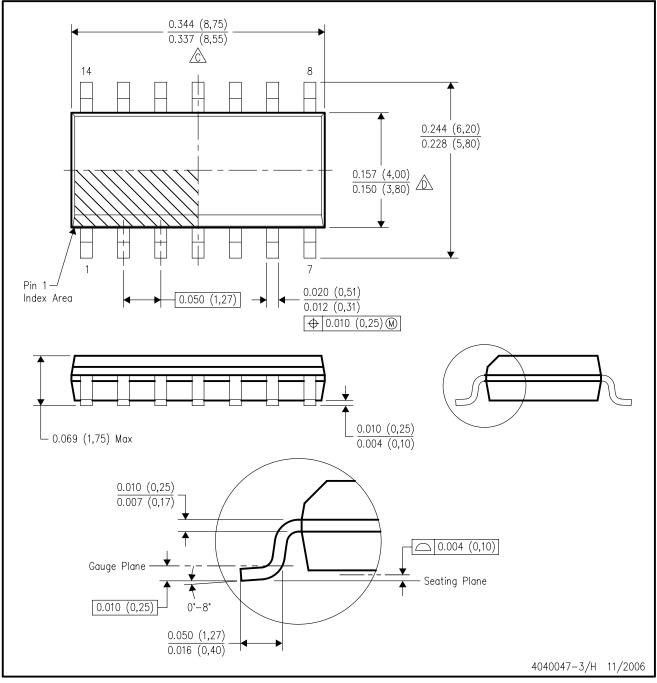
TAPE AND REEL BOX INFORMATION


Device	Package	Package Pins Site		Length (mm)	Width (mm)	Height (mm)	
SN74F125DR	D	14	MLA	342.9	336.6	28.58	
SN74F125NSR	NS	14	MLA	342.9	336.6	28.58	

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.

Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.

E. Reference JEDEC MS-012 variation AB.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9