
LH1550AAB1, LH1550AAB1TR, LH1550AT1

Vishay Semiconductors

1 Form A High-Voltage Solid-State Relay

DESCRIPTION

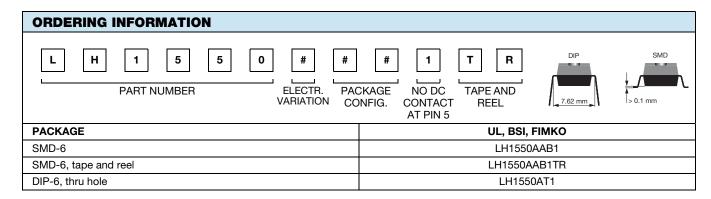
The LH1550 is robust, ideal for telecom and ground fault applications. It is an SPST normally open switch (1 form A) that replaces electromechanical relays in many applications. It is similar to the LH1540, but has a characteristically higher On resistance. It is constructed using a GaAlAs LED for actuation control and an integrated monolithic die for the switch output. The die, fabricated in a high-voltage dielectrically isolated technology, is comprised of a photodiode array, switch control circuitry and MOSFET switches. In addition, it employs current-limiting circuitry which meets lightning surge testing as per ANSI/TIA-968-B and other regulatory voltage surge requirements when overvoltage protection is provided.

FEATURES

- · Current limit protection
- Isolation test voltage 5300 V_{RMS}
- Typical R_{ON} 28 Ω
- Load voltage 350 V
- Load current 120 mA
- · High surge capability
- · Clean bounce free switching
- Low power consumption
- SMD lead available on tape and reel
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

- · General telecom switching
- Instrumentation
- · Industrial controls

AGENCY APPROVALS


UL1577: file no. E52744 system code H, double protection

BSI: 7979/7980

DIN EN: 60747-5-2 (VDE 0884)/60747-5-5 (pending),

available with option 1

FIMKO: 25419

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
INPUT							
LED continuous forward current		I _F	50	mA			
LED reverse voltage	I _R ≤ 10 μA	V_{R}	8	V			
OUTPUT							
DC or peak AC load voltage	$I_L \le 50 \ \mu A$	V_L	350	V			
Continuous DC load current - bidirectional operation		IL	100	mA			
Peak load current (single shot)	t = 100 ms	l _P	(1)				

LH1550AAB1, LH1550AAB1TR, LH1550AT1

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
SSR							
Ambient temperature range		T _{amb}	- 40 to + 85	°C			
Storage temperature range		T _{stg}	- 40 to + 150	°C			
Pin soldering temperature (2)	t = 10 s max.	T _{sld}	260	°C			
Input to output isolation voltage	V_{RMS} t = 1 s, I_{ISO} = 10 μ A	V _{ISO}	5300	V _{RMS}			
Output power dissipation (continuous)		P _{diss}	550	mW			

Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
 implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
 maximum ratings for extended periods of the time can adversely affect reliability.
- (1) Refer to current limit performance application note 58 for a discussion on relay operation during transient currents.
- (2) Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for through hole devices (DIP).

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
INPUT							
LED forward current, switch turn-on	$I_L = 100 \text{ mA}, t = 10 \text{ ms}$	I _{Fon}		1.1	2	mA	
LED forward current, switch turn-off	$V_{L} = \pm 350 \text{ V}$	I _{Foff}	0.001	1		mA	
LED forward voltage	I _F = 10 mA	V_{F}	1.15	1.25	1.45	V	
OUTPUT							
On-resistance, AC: pin 4 (±) to 6 (±)	$I_F = 5 \text{ mA}, I_L = 50 \text{ mA}$	R _{ON}		28	50	Ω	
Off-resistance	$I_F = 0 \text{ mA}, V_L = \pm 100 \text{ V}$	R _{OFF}	0.5	300		GΩ	
Current limit AC (1): pin 4 (±) to 6 (±)	$I_F = 5 \text{ mA}, t = 5 \text{ ms}, V_L = 6 \text{ V}$	I _{LMT}	170	210	250	mA	
Off-state leakage current	$I_F = 0 \text{ mA}, V_L = \pm 100 \text{ V}$	Io		0.35	200	nA	
	$I_F = 0 \text{ mA}, V_L = \pm 350 \text{ V}$	I _O		0.09	1	μΑ	
Output capacitance pin 4 to 6	$I_F = 0 \text{ mA}, V_L = 1 \text{ V}$	Co		18		pF	
	$I_F = 0 \text{ mA}, V_L = 50 \text{ V}$	Co		7		pF	
Switch offset	I _F = 5 mA	V _{OS}		0.3		μV	
TRANSFER							
Capacitance (input to output)	V _{ISO} = 1 V	C _{IO}		0.7		pF	

Notes

⁽¹⁾ No DC mode current limit available.

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Turn-on time	$I_F = 5 \text{ mA}, I_L = 50 \text{ mA}$	t _{on}		1.1	3	ms
Turn-off time	$I_F = 5 \text{ mA}, I_L = 50 \text{ mA}$	t _{off}		0.7	3	ms

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluations. Typical values are for information only and are not part of the testing requirements.

Vishay Semiconductors

PARAMETER		TEST CONDITION	SYMBOL	VALUE	UNIT
Climatic classification		IEC 68 part 1		40/85/21	
Pollution degree		DIN VDE 0109		2	
Tracking resistance (comparative tracking index)		Insulation group IIIa	СТІ	175	
Highest allowable overvoltage		Transient overvoltage	V _{IOTM}	8000	V _{peak}
Max. working insulation voltage		Recurring peak voltage	V _{IORM}	890	V _{peak}
Insulation resistance at 25 °C			R _{IS}	≥ 10 ¹²	Ω
Insulation resistance at T _S		V _{IO} = 500 V	R _{IS}	≥ 10 ⁹	Ω
Insulation resistance at 100 °C			R _{IS}	≥ 10 ¹¹	Ω
Partial discharge test voltage		Methode a, V _{pd} = V _{IORM} x 1.875	V_{pd}	1669	V _{peak}
Safety limiting values - maximum values allowed in the event of a failure	Case temperature		T _{SI}	175	°C
	Input current		I _{SI}	300	mA
	Output power		P _{SO}	700	mW
Minimum external air gap (clearance)		Measured from input terminals to output terminals, shortest distance through air		≥ 7	mm
Minimum external tracking (creepage)		Measured from input terminals to output terminals, shortest distance path along body		≥ 7	mm

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 1 - Recommended Operating Conditions

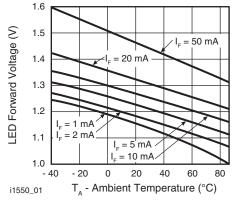


Fig. 2 - LED Voltage vs. Temperature

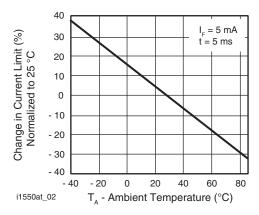


Fig. 3 - Current Limit vs. Temperature

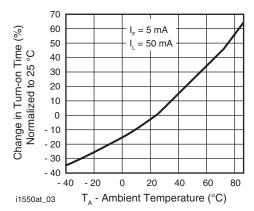


Fig. 4 - Turn-on Time vs. Temperature

Vishay Semiconductors

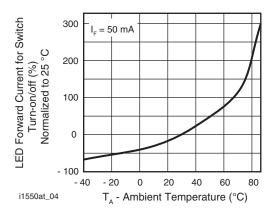


Fig. 5 - LED Current for Switch Turn-on vs. Temperature

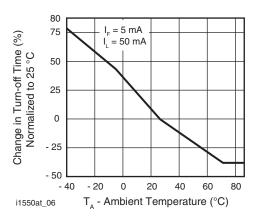


Fig. 7 - Turn-off Time vs. Temperature

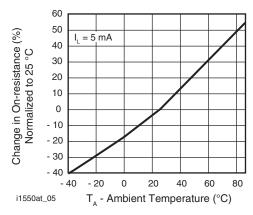
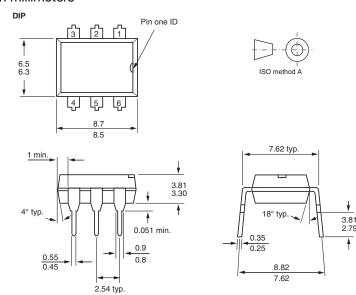
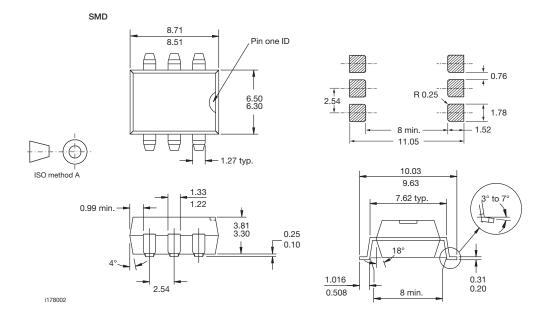



Fig. 6 - On-resistance vs. Temperature

i178001


PACKAGE DIMENSIONS in millimeters

LH1550AAB1, LH1550AAB1TR, LH1550AT1

Vishay Semiconductors

PACKAGE MARKING

Note

• Tape and reel suffix (TR) is not part of the package marking.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 11-Mar-11

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9