

General Description

The MAX3980 quad equalizer provides compensation for transmission medium losses for four "lanes" of digital NRZ data at a 3.125Gbps data rate in one package. It is tailor-made for 10-Gigabit Ethernet (10GbE) backplane applications requiring attenuation of noise and jitter that occur in communicating from MAC to PMD or from MAC to Switch. In support of the IEEE-802.3ae for the XAUI interface, the MAX3980 adaptively allows XAUI lanes to reach up to 40in (1.0m) on FR-4 board material.

The equalizer has 100 $\!\Omega$ differential CML data inputs and outputs.

The MAX3980 is available in a 44-pin exposed-pad QFN package. The MAX3980 consumes only 700mW at +3.3V or 175mW per channel.

Applications

IEEE-802.3ae XAUI Interface (3.125Gbps) InfiniBandSM (2.5Gbps)

Features

- Four Differential Digital Data "Lanes" at 3.125Gbps
- Spans 40in (1.0m) of FR-4 PC Board
- Receiver Equalization Reduces Intersymbol Interference (ISI)
- Low-Power, 175mW per Channel
- Standby Mode—Power-Down State
- Single +3.3V Supply
- Signal Detect

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3980UGH	0°C to +85°C	44 QFN-EP*
MAX3980UTH+	0°C to +85°C	44 TQFN-EP*

+Denotes a lead-free/RoHS-compliant package. *EP = Exposed pad.

Pin Configuration appears at end of data sheet.

Typical Application Circuit

InfiniBand is a trademark and service mark of the InfiniBand Trade Association.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{CC}	0.5V to +4.0V
Voltage at SDET, IN_±	0.5V to (V _{CC} + 0.5V)
Current Out of OUT_±	25mA to +25mA
Continuous Power Dissipation ($T_A = +85$	°C)

Operating Ambient Temperature Range0°C to +85°C Storage Temperature Range55°C to +150°C Lead Temperature (soldering, 10s)+300°C

44-Pin QFN-EP (derate 26.3mW/°C above +85°C)...2105mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0V \text{ to } +3.6V, \text{ input data rate} = 3.125 \text{Gbps}, T_A = 0^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Typical values are at $V_{CC} = +3.3V$ and $T_A = +25^{\circ}\text{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
		EN = TTL low			0.25	w
Supply Power		EN = TTL high		0.7	0.9	vv
		10Hz < f < 100Hz		100		
Supply Noise Tolerance		100Hz < f < 1MHz		40		mVp-p
		1MHz < f < 2.5GHz		10		
Signal Detect Assert		Input signal level to assert SDET (Note 1)	100			mVp-p
Signal Detect Deassert		Input signal level to deassert SDET (Note 1)			30	mVp-p
Signal Detect Delay					10	μs
Latency		From input to output		0.32		ns
CML RECEIVER INPUT						
Input Voltage Swing		XAUI transmitter output measured differentially at point A, Figure 1, using K28.5 pattern	200		800	mVp-p
Return Loss		100MHz to 2.5GHz		12		dB
Input Resistance		Differential	80	100	120	Ω
EQUALIZATION						
Residual Jitter		Total jitter (Note 2)			0.3	
Hesiqual Jiller		Deterministic jitter			0.2	Ulp-p
Random Jitter		(Note 2)		1.5		ps _{RMS}
CML TRANSMITTER OUTPU	T (into $100\Omega \pm 1\Omega$	2)				
Output Voltage Swing		Differential swing	550		850	mVp-p
Common-Mode Voltage				V _{CC} - 0.3		V
Transition Time	t _f , t _r	20% to 80% (Note 3)		60	130	ps
Differential Skew		Difference in 50% crossing between OUT_+ and OUT			12	ps
Output Resistance		Single ended	40	50	60	Ω

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = +3.0V to +3.6V, input data rate = 3.125Gbps, $T_A = 0^{\circ}C$ to +85°C. Typical values are at V_{CC} = +3.3V and $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
TTL CONTROL PINS						
Input High Voltage			2.0			V
Input Low Voltage					0.8	V
Input High Current					250	μΑ
Input Low Current					500	μΑ
Output High Voltage		Internal 10k Ω pullup	2.4			V
Output Low Voltage		Internal 10k Ω pullup			0.4	V

Note 1: K28.7 pattern is applied differentially at point A as shown in Figure 1.

Note 2: Total jitter does not include the signal source jitter. Total jitter (TJ) = [14.1 x RJ + DJ] where RJ is random RMS jitter and DJ is maximum deterministic jitter. Signal source is a K28.5± pattern (**00 1111 1010 11 0000 0101**) for the deterministic jitter test and K28.7 (**0011111000**) or equivalent for the random jitter test. Residual jitter is that which remains after equalizing media-induced losses of the environment of Figure 1 or its equivalent. The deterministic jitter at point B must be from media-induced loss and not from clock-source modulation. Jitter is measured at 0 at point C of Figure 1.

Note 3: Using K28.7 (0011111000) pattern.

Figure 1. Test Conditions Referenced in the Electrical Characteristics Table

Pin Description

		- -
PIN	NAME	FUNCTION
1, 5, 9, 13, 23, 27, 31, 35	Vcc	+3.3V Supply Voltage
2	IN1+	Positive Equalizer Input Channel 1, CML
3	IN1-	Negative Equalizer Input Channel 1, CML
4, 8, 12, 16, 26, 30, 34, 38	GND	Supply Ground
6	IN2+	Positive Equalizer Input Channel 2, CML
7	IN2-	Negative Equalizer Input Channel 2, CML
10	IN3+	Positive Equalizer Input Channel 3, CML
11	IN3-	Negative Equalizer Input Channel 3, CML
14	IN4+	Positive Equalizer Input Channel 4, CML
15	IN4-	Negative Equalizer Input Channel 4, CML
17–22, 39–42	N.C.	No Connection. Leave unconnected.
24	OUT4-	Negative Equalizer Output Channel 4, CML
25	OUT4+	Positive Equalizer Output Channel 4, CML
28	OUT3-	Negative Equalizer Output Channel 3, CML
29	OUT3+	Positive Equalizer Output Channel 3, CML
32	OUT2-	Negative Equalizer Output Channel 2, CML
33	OUT2+	Positive Equalizer Output Channel 2, CML
36	OUT1-	Negative Equalizer Output Channel 1, CML
37	OUT1+	Positive Equalizer Output Channel 1, CML
43	EN	Enable Equalizer Input. A TTL high selects normal operation. A TTL low selects low-power standby mode.
44	SDET	Signal Detect Output for Channel 1. Produces a TTL high output when a signal is detected.
	EP	Exposed Pad. The exposed pad must be soldered to the circuit board ground plane for proper thermal and electrical performance.

MAX3980

Functional Diagram

Detailed Description

Receiver and Transmitter

The receiver accepts four lanes of 3.125Gbps currentmode logic (CML) digital data signals. The adaptive equalizer compensates each received signal for dielectric and skin losses. The limiting amp shapes the output of the equalizer. The regenerated XAUI lanes are transmitted as CML signals. The source impedance and termination impedances are 100Ω differential.

General Theory of Operation

Internally, the MAX3980 comprises signal-detect circuitry, four matched equalizers, and one equalizercontrol loop. The four equalizers are made up of a master equalizer and three slave equalizers. The adaptive control is generated from only channel 1. It is assumed that all channels have the same characterization in frequency content, coding, and transmission length.

The master equalizer consists of the following functions: signal detect, adaptive equalizer, equalizer control, and limiting and output drivers. The signal detect indicates input signal power. When the input signal level is sufficiently high, the SDET output is asserted. This does not directly control the operation of the part.

The equalizer core reduces intersymbol interference (ISI), compensating for frequency-dependent, mediainduced loss. The equalization control detects the spectral contents of the input signal and provides a control voltage to the equalizer core, adapting it to different media. The equalizer operation is optimized for

short-run DC-balanced transmission codes such as 8b/10b codes.

CML Input and Output Buffers

The input and output buffers are implemented using CML. Equivalent circuits are shown in Figures 2 and 3. For details on interfacing with CML, see Maxim application note HFAN-1.0, Interfacing Between CML, PECL, and LVDS. The common-mode voltage of the input and output is above 2.5V. AC-coupling capacitors are required when interfacing this part. Values of 0.10µF or greater are recommended.

Media Equalization

Equalization at the input port compensates for the highfrequency loss encountered with up to 40in (1.0m) of FR-4 transmission lines. This part is optimized for 40in and 3.125Gbps; however, the part reduces ISI for signals spanning longer distances and functions for data rates from 2Gbps to 4Gbps, provided that short-length balanced codes, such as 8b/10b, are used.

Applications Information

Standby Mode

The power-saver standby state allows reduced-power operation. The TTL input, EN, must be set to TTL high for normal operation. A TTL low at EN forces the equalizer into the standby state. The signal EN does not affect the operation of the signal detect (SDET) function. For constant operation, connect the EN signal directly to Vcc.

Figure 2. CML Input Buffer

Signal Detect with Standby Mode

Signal activity is detected on channel 1 only. When the peak-to-peak differential voltage at IN1± is less than 30mVp-p, the TTL output SDET goes low. When the peak-to-peak differential voltage becomes greater than 100mVp-p, SDET is asserted high. SDET can be used to automatically force the equalizer into standby mode by connecting SDET directly to the EN input. When not used, SDET should not be connected.

The signal-detect function continues to operate while the part is in standby mode. While connected to the EN pin, the signal detect can "wake up" the part and resume normal operation.

Figure 3. CML Output Buffer

Layout Considerations

Circuit-board layout and design can significantly affect the MAX3980 performance. Use good high-frequency design techniques, including minimizing ground inductances and vias and using controlled-impedance transmission lines for the high-frequency data signals. Signals should be routed differentially to reduce EMI susceptibility and crosstalk. Power-supply decoupling capacitors should be placed as close as possible to the V_{CC} pins.

Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
44 QFN	G4477-1	<u>21-0092</u>
44 TQFN	T4477-3	<u>21-0144</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	9/01	Initial release.	—
4	5/03	Added the package code to the Ordering Information table.	1
I		Updated the 21-0092 package drawing in the Package Information section.	8, 9
2	1/05	Added the TQFN package to the Ordering Information table.	1
2		Added the 21-0144 package drawing to the Package Information section.	10
3	12/08	Changed the Absolute Maximum Ratings of SDET, IN_ \pm from +5.0V to (V _{CC} to 0.5V) to -5.0V to (V _{CC} to 0.5V).	2

MAX3980

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____

_____ 9

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9