

HumRC[™] Series Evaluation Module Data Guide

Wireless made simple®

Warning: Some customers may want Linx radio frequency ("RF") products to control machinery or devices remotely, including machinery or devices that can cause death, bodily injuries, and/or property damage if improperly or inadvertently triggered, particularly in industrial settings or other applications implicating life-safety concerns ("Life and Property Safety Situations").

NO OEM LINX REMOTE CONTROL OR FUNCTION MODULE SHOULD EVER BE USED IN LIFE AND PROPERTY SAFETY SITUATIONS. No OEM Linx Remote Control or Function Module should be modified for Life and Property Safety Situations. Such modification cannot provide sufficient safety and will void the product's regulatory certification and warranty.

Customers may use our (non-Function) Modules, Antenna and Connectors as part of other systems in Life Safety Situations, but only with necessary and industry appropriate redundancies and in compliance with applicable safety standards, including without limitation, ANSI and NFPA standards. It is solely the responsibility of any Linx customer who uses one or more of these products to incorporate appropriate redundancies and safety standards for the Life and Property Safety Situation application.

Do not use this or any Linx product to trigger an action directly from the data line or RSSI lines without a protocol or encoder/decoder to validate the data. Without validation, any signal from another unrelated transmitter in the environment received by the module could inadvertently trigger the action.

All RF products are susceptible to RF interference that can prevent communication. RF products without frequency agility or hopping implemented are more subject to interference. This module does have a frequency hopping protocol built in, but the developer should still be aware of the risk of interference.

Do not use any Linx product over the limits in this data guide. Excessive voltage or extended operation at the maximum voltage could cause product failure. Exceeding the reflow temperature profile could cause product failure which is not immediately evident.

<u>Do not make any physical or electrical modifications to any Linx</u> <u>product.</u> This will void the warranty and regulatory and UL certifications and may cause product failure which is not immediately evident.

Table of Contents

- 1 Description
- 2 Ordering Information
- 2 Absolute Maximum Ratings
- 3 Electrical Specifications
- 4 Pin Assignments
- 4 Pin Descriptions
- 6 Schematic
- 7 Pad Layout
- 7 Power Supply Requirements

HumRC™ Series Evaluation Module

Data Guide

Figure 1: HumRC™ Series Evaluation Module

Description

The HumRC[™] Series transceiver is designed for reliable bi-directional remote control applications. It consists of a highly optimized Frequency Hopping Spread Spectrum (FHSS) RF transceiver and integrated remote control transcoder. The FHSS system allows higher RF output power and, therefore, longer range than narrowband radios.

Eight status lines can be set up in any combination of inputs and outputs for the transfer of button or contact states. A selectable acknowledgement indicates that the transmission was successfully received. Versions are available in the 2400 to 2483MHz frequency bands.

Primary settings are hardware-selectable, which eliminates the need for an external microcontroller or other digital interface. For advanced features, optional software configuration is provided by a UART interface; however, no programming is required for basic operation.

The evaluation module contains the surface mount HumRC™ Series transceiver module and an MMCX connector on a single board with through-hole headers. This small board simplifies prototyping with the HumRC™ Series module.

- 1 - Revised 3/28/14

Ordering Information

Ordering Information			
Part Number	Description		
EVM-***-RC	HumRC™ Series Carrier Board		
HUM-***-RC	HumRC™ Series Remote Control Transceiver		
HUM-***-RC-MWA	HumRC™ Series Remote Control Transceiver with Antenna		
HUM-***-RC-MWC	HumRC™ Series Remote Control Transceiver with Connector		
MDEV-***-RC	HumRC™ Series Master Development System		
EVAL-***-RC	HumRC™ Series Basic Evaluation Kit		
MDEV-DEMO-RC-A	Development System Remote Control Demo Board, Type A		
MDEV-DEMO-RC-B	Development System Remote Control Demo Board, Type B		
MDEV-PGDOCK	Development System Programming Dock		
MDEV-PROTO	Development System Prototype Board		
CON-SOC-EVM	EVM Module Socket Kit		
*** = Frequency; 900MHz, 2.4GHz			

Figure 2: Ordering Information

Absolute Maximum Ratings

Absolute Maximum Ratings					
Supply Voltage V _{cc}	-0.3	to	+3.9	VDC	
Any Input or Output Pin	-0.3	to	V _{cc} + 0.3	VDC	
RF Input		0		dBm	
Operating Temperature	-40	to	+85	°C	
Storage Temperature	-40	to	+85	°C	
Exceeding any of the limits of this section may lead to permanent damage to the device. Furthermore, extended operation at these maximum ratings may reduce the life of this device.					

Figure 3: Absolute Maximum Ratings

Warning: This product incorporates numerous static-sensitive components. Always wear an ESD wrist strap and observe proper ESD handling procedures when working with this device. Failure to observe this precaution may result in module damage or failure.

Please see the $\operatorname{HumRC^{TM}}$ Series Transceiver module data guide for full electrical specifications.

Electrical Specifications

Parameter	Symbol	Min.	Тур.	Max.	Units	Note
Power Supply						
Operating Voltage	V _{cc}	2.0		3.6	VDC	
Peak TX Supply Current	I _{CCTX}					
2.4GHz at +1dBm			28	29	mA	1,2
2.4GHz at -10dBm			19	20	mA	1,2
900MHz at +10dBm			36	38.5	mA	1,2
900MHz at 0dBm			22	24	mA	1,2
Average TX Supply Current						
2.4GHz at +1dBm			22	24	mA	1,2
900MHz at +10dBm			27.5	28.5	mA	1,2
RX Supply Current	I _{CCRX}		25.5	28	mA	1,2,3
Standby Current	I _{SBY}		0.5	1.4	μA	1,2
Power-Down Current	I _{PDN}		0.5	1.4	μA	1,2
RF Section						
Operating Frequency Band	F _c				MHz	
HUM-2.4-RC		2400		2483.5	MHz	
HUM-900-RC		902		928	MHz	
Number of Channels			25			
Receiver Sensitivity						5
HUM-2.4-RC		-95	-99		dBm	5
HUM-900-RC		-94	-98		dBm	5
Output Power	Po					
HUM-2.4-RC		0	+1		dBm	6
HUM-900-RC		+8.5	+9.5		dBm	6
Antenna Port						
RF Impedance	R _{IN}		50		Ω	4
Environmental						
Operating Temp. Range		-40		+85	°C	4
Timing						
IU to RU Status High				50	ms	7
Measured at 3.3V V _{cc} Measured at 25°C Input power < -60dBm		5. 6. 7.	PER = 5% Into a 50-oh No RF inter			

Figure 4: Electrical Specifications

Pin Assignments

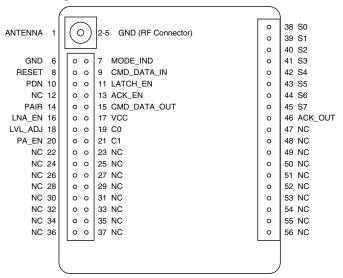


Figure 5: EVM-xxx-RC Pin Assignments

Pin Descriptions

Pin Descriptio	Pin Descriptions					
Pin Number	Name	I/O	Description			
1	ANTENNA	_	50-ohm RF Antenna Port			
2, 3, 4, 5, 6	GND	_	Ground			
7	MODE_IND	0	This line indicates module activity. It can source enough current to drive a small LED, causing it to flash. The duration of the flashes indicates the module's current state.			
8	RESET	ı	This line resets the module when pulled low. It should be pulled high for normal operation.			
9	CMD_DATA_IN	I	Command Data In. Input line for the serial interface commands. If serial control is not used, this line should be tied to ground or POWER_DOWN to minimize current consumption.			
10	POWER_DOWN	I	Power Down. Pulling this line low places the module into a low-power state. The module is not functional in this state. Pull high for normal operation. Do not leave floating.			
11	LATCH_EN	I	If this line is high, then the status line outputs are latched (a received command to activate a status line toggles the output state). If this line is low, then the output lines are momentary (active for as long as a valid signal is received).			

Pin Descriptions					
Pin Number	Name	I/O	Description		
12, 22–25, 26–37, 47-56	NC	-	No Electrical Connection. Do not connect any traces to these lines.		
13	ACK_EN	ı	Pull this line high to enable the module to send an acknowledgement message after a valid control message has been received.		
14	PAIR ¹	I	A high on this line initiates the Pair process, which causes two units to accept each other's transmissions. It is also used with a special sequence to reset the module to factory default configuration.		
15	CMD_DATA_OUT	0	Command Data Out. Output line for the serial interface commands		
16	LNA_EN	0	Low Noise Amplifier Enable. This line is driven high when receiving. It is intended to activate an optional external LNA.		
17	VCC	_	Supply Voltage		
18	LVL_ADJ	ı	Level Adjust. The voltage on this line sets the transmitter output power level.		
19	CO	I	This line sets the input/output direction for status lines S0–S3. When low, the lines are outputs; when high they are inputs.		
20	PA_EN	0	Power Amplifier Enable. This line is driven high when transmitting. It is intended to activate an optional external power amplifier.		
21	C1	ı	This line sets the input/output direction for status lines S4–S7. When low, the lines are outputs; when high they are inputs.		
38-45	S0-S7 ¹	I/O	Status Lines. Each line can be configured as either an input to register button or contact closures or as an output to control application circuitry.		
46	ACK_OUT	0	This line goes high when the module receives an acknowledgement message from another module after sending a control message.		
1. These lines	1. These lines have an internal $20k\Omega$ pull-down resistor				

Figure 6: EVM-xxx-RC Pin Descriptions

Schematic

Figure 7 shows the schematic diagram for the evaluation module.

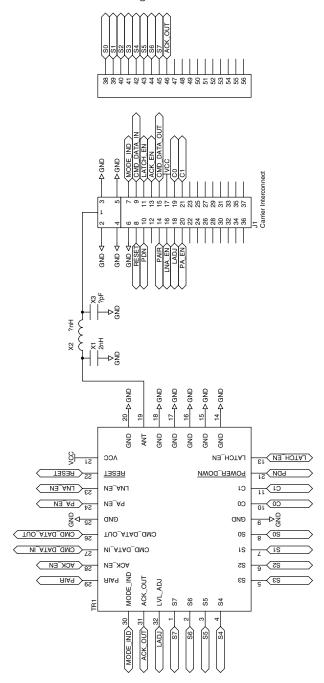


Figure 7: EVM-xxx-RC Schematic

Pad Layout

Figure 8 shows the recommended PCB layout for the evaluation module.

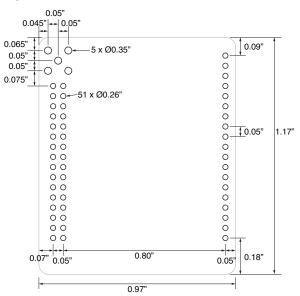


Figure 8: EVM-xxx-RC PCB Layout Dimensions

Power Supply Requirements

The transceiver incorporates a precision low-dropout regulator which allows operation over a wide input voltage range. Despite this regulator, it is still important to provide a supply that is free of noise. Power supply noise can significantly affect the module's performance, so providing a clean power supply for the module should be a high priority during design.

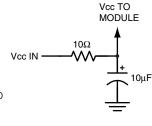


Figure 9: Supply Filter

A 10Ω resistor in series with the supply followed by a $10\mu F$ tantalum capacitor from V_{∞} to ground helps in cases where the quality of supply power is poor (Figure 9). This filter should be placed close to the module's supply lines. These values may need to be adjusted depending on the noise present on the supply line.

Linx Technologies 159 Ort Lane Merlin, OR, US 97532

3090 Sterling Circle, Suite 200 Boulder. CO 80301

Phone: +1 541 471 6256 Fax: +1 541 471 6251 www.linxtechnologies.com

Disclaimer

Linx Technologies is continually striving to improve the quality and function of its products. For this reason, we reserve the right to make changes to our products without notice. The information contained in this Data Guide is believed to be accurate as of the time of publication. Specifications are based on representative lot samples. Values may vary from lot-to-lot and are not guaranteed. "Typical" parameters can and do vary over lots and application. Linx Technologies makes no guarantee, warranty, or representation regarding the suitability of any product for use in any specific application. It is Customer's responsibility to verify the suitability of the part for the intended application. At Customer's request, Linx Technologies may provide advice and assistance in designing systems and remote control devices that employ Linx Technologies RF products, but responsibility for the ultimate design and use of any such systems and devices remains entirely with Customer and/or user of the RF products.

LINX TECHNOLOGIES DISCLAIMS ANY AND ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LINX TECHNOLOGIES BE LIABLE FOR ANY CUSTOMER'S OR USER'S INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATED TO THE DESIGN OR USE OF A REMOTE CONTROL SYSTEM OR DEVICE EMPLOYING LINX TECHNOLOGIES RF PRODUCTS OR FOR ANY OTHER BREACH OF CONTRACT BY LINX TECHNOLOGIES. CUSTOMER AND/OR USER ASSUME ALL RISKS OF DEATH, BODILY INJURIES, OR PROPERTY DAMAGE ARISING OUT OF OR RELATED TO THE USE OF LINX TECHNOLOGIES RF PRODUCTS, INCLUDING WITH RESPECT TO ANY SERVICES PROVIDED BY LINX RELATED TO THE USE OF LINX TECHNOLOGIES RF PRODUCTS. LINX TECHNOLOGIES SHALL NOT BE LIABLE UNDER ANY CIRCUMSTANCES FOR A CUSTOMER'S, USER'S, OR OTHER PERSON'S DEATH, BODILY INJURY, OR PROPERTY DAMAGE ARISING OUT OF OR RELATED TO THE DESIGN OR USE OF A REMOTE CONTROL SYSTEM OR DEVICE EMPLOYING LINX TECHNOLOGIES RF PRODUCTS.

The limitations on Linx Technologies' liability are applicable to any and all claims or theories of recovery asserted by Customer, including, without limitation, breach of contract, breach of warranty, strict liability, or negligence. Customer assumes all liability (including, without limitation, liability for injury to person or property, economic loss, or business interruption) for all claims, including claims from third parties, arising from the use of the Products. Under no conditions will Linx Technologies be responsible for losses arising from the use or failure of the device in any application, other than the repair, replacement, or refund limited to the original product purchase price. Devices described in this publication may contain proprietary, patented, or copyrighted techniques, components, or materials.

© 2014 Linx Technologies. All rights reserved.

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9