Integrated mixer oscillator PLL for satellite LNB

Rev. 1 — 13 January 2015

Product data sheet

1. General description

The TFF1024HN is an integrated downconverter for use in Low Noise Block (LNB) convertors in a 10.70 GHz to 12.85 GHz K_{u} band satellite receiver system.

2. Features and benefits

- Low current consumption integrated pre-amplifier, mixer, buffer amplifier and PLL synthesizer
- Flat gain over frequency
- Single 5 V supply pin
- Low cost 25 MHz crystal
- Crystal controlled LO frequency generation
- Switched LO frequency (selectable to 9.75 GHz, 10.00 GHz, 10.25 GHz, 10.55 GHz, 10.60 GHz, 10.75 GHz, 11.25 GHz or 11.30 GHz) with a 25 MHz crystal as reference
- Other LO frequencies within the 9.75 GHz to 11.30 GHz range can be realized by using an alternative reference frequency
- Low phase noise
- Low spurious
- Low external component count
- Alignment-free concept
- ESD protection on all pins

3. Applications

K_u band LNB converters for VSAT and digital satellite reception (DVB-S / DVB-S2)

4. Quick reference data

Table 1. Quick reference data

9.75 GHz \leq $f_{LO} \leq$ 11.30 GHz; operating conditions of Table 6 apply.

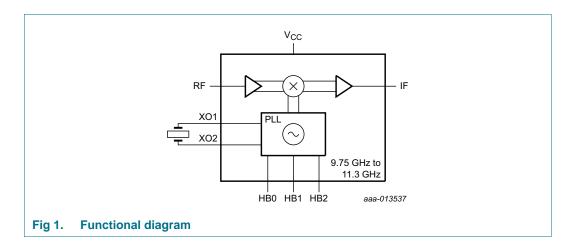
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage	RF input and IF output AC coupled [1]	4.5	5	5.5	V
Icc	supply current	RF input and IF output AC coupled [1]	-	56	70	mA
NF _{SSB}	single sideband noise figure	f_{IF} = 1450 MHz; T_{amb} = 25 °C; 10.55 GHz \leq f_{LO} \leq 10.60 GHz	-	9.0	11.0	dB
f _{RF}	RF frequency	[2]	10.70	-	12.85	GHz

Integrated mixer oscillator PLL for satellite LNB

Table 1. Quick reference data ...continued

9.75 GHz \leq $f_{LO} \leq$ 11.30 GHz; operating conditions of <u>Table 6</u> apply.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
G _{conv}	conversion gain	f _{IF} = 1450 MHz				
		f _{LO} = 10.55 GHz	29.8	34.3	38.8	dB
		f _{LO} = 10.60 GHz	29.8	34.3	38.8	dB
S ₁₁	input reflection coefficient	10.70 GHz ≤ f _{RF} ≤ 12.85 GHz	-	-10	-	dB
S ₂₂	output reflection coefficient	950 MHz \leq f _{IF} \leq 2150 MHz; Z ₀ = 75 Ω	-	-10	-	dB
IP3 _o	output third-order intercept point	carrier power = -10 dBm (measured at output)				
		f_{IF} = 1450 MHz; 9.75 GHz \leq $f_{LO} \leq$ 10.75 GHz	14	18	-	dBm
		f_{IF} = 1250 MHz; 11.25 GHz \leq $f_{LO} \leq$ 11.30 GHz	14	18	-	dBm

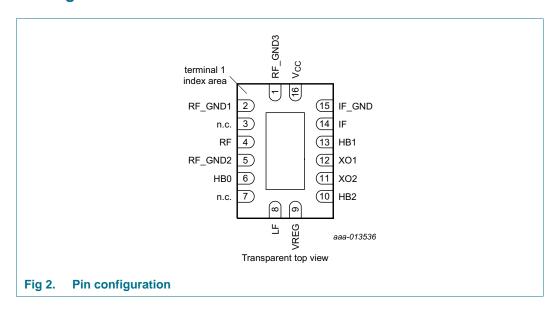

^[1] DC values.

5. Ordering information

Table 2. Ordering information

Type number	Package					
	Name	Description	Version			
TFF1024HN	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads;16 terminals; body $2.5\times3.5\times0.85$ mm	SOT763-1			

6. Functional diagram



^[2] See Table 4 for specific values at certain settings of pins HB0, HB1 and HB2.

Integrated mixer oscillator PLL for satellite LNB

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
GND	0	ground (exposed die pad)
RF_GND3	1	RF ground. Connect this pin to the exposed die pad landing.
RF_GND1	2	RF ground. Connect this pin to the exposed die pad landing and the RF input CPW line.
n.c.	3	not connected. Connect to RF on PCB. [1]
RF	4	RF input.
RF_GND2	5	RF ground. Connect this pin to the exposed die pad landing and the RF input CPW line.
HB0	6	LO frequency selection, LSB. Connect this pin to GND for "0", leave open for "1". Also see Table 4.
n.c.	7	not connected. Use this pin to route the ground layer on top of the PCB to the exposed die pad.
LF	8	Loop filter PLL. Connect loop filter between this pin and VREG (pin 9).
VREG	9	Regulated output voltage for PLL loop filter. Connect loop filter to this pin. Decouple against die pad via pin 7.
HB2	10	LO frequency selection, MSB. Connect this pin to GND for "0", leave open for "1". Also see <u>Table 4</u> .
XO2	11	Crystal connection 2. Connect crystal between this pin and XO1 (pin 12).
XO1	12	Crystal connection 1. Connect crystal between this pin and XO2 (pin 11).
HB1	13	LO frequency selection. Connect this pin to GND for "0", leave open for "1". Also see Table 4.
IF	14	IF output
IF_GND	15	IF output ground. Connect this pin to the exposed die pad landing and the output transmission line ground.
V _{CC}	16	Supply voltage

^[1] The distance between the outer edges of pin 2 and pin 3 is 740 μ m. This gives an optimum transition from a 1.1 mm wide, $Z_0 = 50 \Omega$ line to the TFF1024HN on a Rogers RO4223 Printed-Circuit Board (PCB) material of 0.5 mm height.

Integrated mixer oscillator PLL for satellite LNB

8. Functional description

8.1 LO frequency selection

Table 4. LO frequency selection table

See Figure 1 for the functional diagram.

f _{LO}	f _{xtal}	HB2	HB1	HB0	HB0 f _{RF} (GHz)		f _{IF} (MHz)
(GHz)	(MHz)	(pin 10)	(pin 13)	(pin 6)	Min	Max	Min	Max
9.75	25	0	0	0	10.70	11.90	950	2150
10.00	25	0	0	1	10.95	12.15	950	2150
10.25	25	0	1	0	11.20	12.40	950	2150
10.45 🗓	24.76	0	1	1	11.40	12.60	950	2150
10.55	25	0	1	1	11.50	12.70	950	2150
10.60	25	1	0	0	11.55	12.75	950	2150
10.75	25	1	0	1	11.70	12.85	950	2100
11.25	25	1	1	0	12.20	12.85	950	1600
11.30	25	1	1	1	12.25	12.85	950	1550

^[1] For frequencies that cannot be achieved using the 25 MHz crystal choose the closest frequency and adapt the crystal frequency. Example: 10.45 GHz. This can be achieved by choosing 10.55 GHz. The divider ratio is 422. 10.45 GHz will be achieved with a crystal frequency of 10.45 GHz / 422 = 24.76303 MHz.

9. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+6	V
V _i	input voltage	on pin HB0	-0.5	+6	V
		on pin HB1	-0.5	+6	V
		on pin HB2	-0.5	+6	V
T _{stg}	storage temperature		-40	+125	°C

10. Recommended operating conditions

Table 6. Operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage	RF input and IF output AC coupled [1]	4.5	5	5.5	V
Vi	input voltage	on pin HB0	0	-	2.7	V
		on pin HB1	0	-	2.7	V
		on pin HB2	0	-	2.7	V
I _{CC(startup)}	start-up supply current	during 30 ms only at supply power-on	300	-	-	mA
T _{amb}	ambient temperature		-40	+25	+85	°C
Z_0	characteristic impedance		-	50	-	Ω
f _{RF}	RF frequency	[2]	10.70	-	12.85	GHz

TFF1024HN

All information provided in this document is subject to legal disclaimers.

Integrated mixer oscillator PLL for satellite LNB

 Table 6.
 Operating conditions ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LO}	LO frequency	HB2 = 0; HB1 = 0; HB0 = 0	-	9.75	-	GHz
		HB2 = 1; HB1 = 1; HB0 = 1 [4]	-	11.30	-	GHz
f _{IF}	IF frequency	[2]	950	-	2150	MHz
C _{L(xtal)}	crystal load capacitance		-	10	-	pF
ESR	equivalent series resistance		-	-	40	Ω
f _{xtal}	crystal frequency		-	25	-	MHz

- [1] DC values.
- [2] See Table 4 for specific values at certain settings of pins HB0, HB1 and HB2.
- [3] The minimum LO frequency is specified. See Table 4 for other specific values at certain settings of pins HB0, HB1 and HB2.
- [4] The maximum LO frequency is specified. See <u>Table 4</u> for other specific values at certain settings of pins HB0, HB1 and HB2.

11. Thermal characteristics

Table 7. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-c)}	thermal resistance from junction to case		35	K/W

12. Characteristics

Table 8. Characteristics

9.75 GHz \leq $f_{LO} \leq$ 11.30 GHz; operating conditions of Table 6 apply.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CC}	supply current	RF input and IF output AC coupled [1]	-	56	70	mA
Φnλ(itg)RMS	RMS integrated phase noise density	loop bandwidth = crossover bandwidth; low ESR crystal used (ESR < 20 Ω)				
		integration offset frequency = 1 kHz to 1 MHz	-	1.2	2.2	deg
		integration offset frequency = 10 kHz to 13 MHz	-	1.2	2.2	deg
NF _{SSB}	single sideband noise figure	f_{IF} = 1450 MHz; T_{amb} = 25 °C				
		f _{LO} = 9.75 GHz	-	8.8	10.8	dB
		$10.55 \text{ GHz} \le f_{LO} \le 10.60 \text{ GHz}$	-	9.0	11.0	dB
		f _{IF} = 1250 MHz; T _{amb} = 25 °C				
		11.25 GHz ≤ f _{LO} ≤ 11.30 GHz	-	9.5	11.5	dB
G _{conv}	conversion gain	f _{IF} = 1450 MHz				
		f _{LO} = 9.75 GHz	29.6	34.1	38.6	dB
		f _{LO} = 10.00 GHz	29.5	34.0	38.5	dB
		f _{LO} = 10.25 GHz	29.5	34.0	38.5	dB
		f _{LO} = 10.55 GHz	29.8	34.3	38.8	dB
		f _{LO} = 10.60 GHz	29.8	34.3	38.8	dB
		f _{LO} = 10.75 GHz	30.2	34.7	39.2	dB
		f _{IF} = 1250 MHz				
		f _{LO} = 11.25 GHz	30.2	34.7	39.2	dB
		f _{LO} = 11.30 GHz	30.1	34.6	39.1	dB

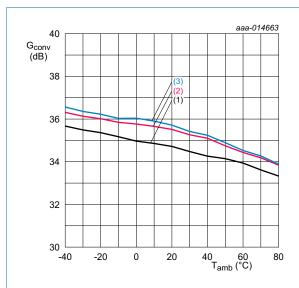
TFF1024HN

All information provided in this document is subject to legal disclaimers.

Integrated mixer oscillator PLL for satellite LNB

 Table 8.
 Characteristics ...continued

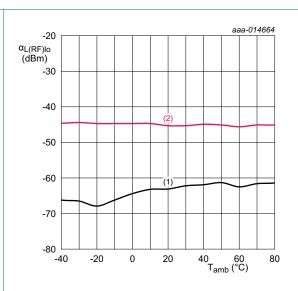
9.75 GHz \leq $f_{LO} \leq$ 11.30 GHz; operating conditions of <u>Table 6</u> apply.


Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$\Delta G_{conv}/\Delta f$	conversion gain variation	over IF band; $-40~^{\circ}\text{C} \le T_{amb} \le +85~^{\circ}\text{C}; \ V_{CC} = 5.0~\text{V}$					
	with frequency	f _{LO} = 9.75 GHz	[2]	-	-	2.5	dB
		f _{LO} = 10.00 GHz	[2]	-	-	3.0	dB
		f _{LO} = 10.25 GHz	[2]	-	-	3.6	dB
		f _{LO} = 10.55 GHz	[2]	-	-	4.0	dB
		f _{LO} = 10.60 GHz	[2]	-	-	4.0	dB
		f _{LO} = 10.75 GHz	[2]	-	-	4.0	dB
		f _{LO} = 11.25 GHz	[2]	-	-	3.0	dB
		f _{LO} = 11.30 GHz	[2]	-	-	3.0	dB
		in every 36 MHz band; $-40~^{\circ}C \le T_{amb} \le +85~^{\circ}C;$ $V_{CC} = 5.0~V$		-	-	0.6	dB
S ₁₁	input reflection coefficient	10.70 GHz ≤ f _{RF} ≤ 12.85 GHz		-	-10	-	dB
S ₂₂	output reflection coefficient	950 MHz \leq f _{IF} \leq 2150 MHz; Z ₀ = 75 Ω		-	-10	-	dB
IP3 _o	output third-order intercept point	carrier power is -10 dBm (measured at the output)					
		$f_{IF} = 1450 \text{ MHz}; 9.75 \text{ GHz} \le f_{LO} \le 10.75 \text{ GHz}$		14	18	-	dBm
		$f_{IF} = 1250 \text{ MHz}; 11.25 \text{ GHz} \le f_{LO} \le 11.30 \text{ GHz}$		14	18	-	dBm
P _{L(1dB)}	output power at 1 dB	measured at the output					
	gain compression	$f_{IF} = 1450 \text{ MHz}; 9.75 \text{ GHz} \le f_{LO} \le 10.75 \text{ GHz}$		2	6	-	dBm
		$f_{IF} = 1250 \text{ MHz}; 11.25 \text{ GHz} \le f_{LO} \le 11.30 \text{ GHz}$		2	6	-	dBm
α _L (RF)lo	local oscillator RF leakage	$f_c = f_{LO}$; span = 100 MHz; RBW = 50 kHz; VBW = 200 kHz		-	-	-35	dBm
V _{IL}	LOW-level input voltage	on pin HB0		-	-	8.0	V
		on pin HB1		-	-	8.0	V
		on pin HB2		-	-	8.0	V
V _{IH}	HIGH-level input voltage	on pin HB0		1.6	-	2.7	V
		on pin HB1		1.6	-	2.7	V
		on pin HB2		1.6	-	2.7	V
R _{pu}	pull-up resistance	on pin HB0		80	110	140	kΩ
		on pin HB1		80	110	140	kΩ
		on pin HB2		80	110	140	kΩ

^[1] DC values.

^[2] See $\underline{\text{Table 4}}$ for the corresponding f_{IF} ranges.

Integrated mixer oscillator PLL for satellite LNB


12.1 Graphs

 $V_{CC} = 5 \text{ V}; f_{IF} = 1550 \text{ MHz}.$

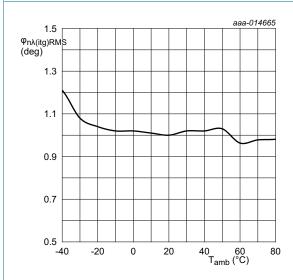
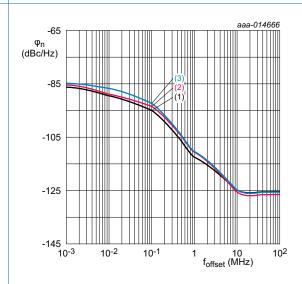

- (1) $f_{LO} = 9.75 \text{ GHz}$
- (2) $f_{LO} = 10.60 \text{ GHz}$
- (3) $f_{LO} = 11.30 \text{ GHz}$

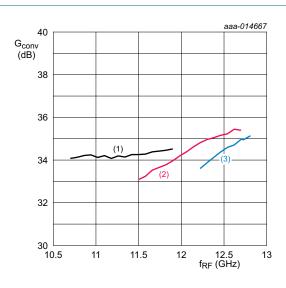
Fig 3. Conversion gain as a function of ambient temperature; typical values



- $V_{CC} = 5 \text{ V}.$
- (1) $f_{LO} = 9.75 \text{ GHz}$
- (2) $f_{LO} = 11.30 \text{ GHz}$

Fig 4. Local oscillator RF leakage as a function of ambient temperature; typical values

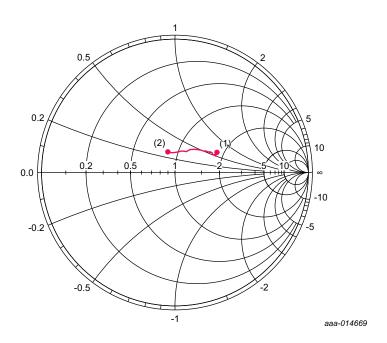
 $V_{CC} = 5 \text{ V}; f_{LO} = 10.55 \text{ GHz}.$


 $V_{CC} = 5 \text{ V}; T_{amb} = 25 ^{\circ}\text{C}.$

- (1) $f_{LO} = 9.75 \text{ GHz}$
- (2) $f_{LO} = 10.60 \text{ GHz}$
- (3) $f_{LO} = 11.30 \text{ GHz}$

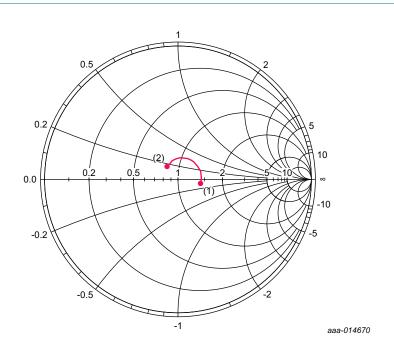
Fig 6. Phase noise as a function of offset frequency; typical values

Fig 5. RMS integrated phase noise density as a function of ambient temperature; typical values

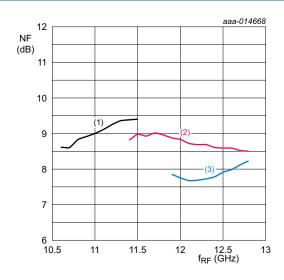

Integrated mixer oscillator PLL for satellite LNB

 $V_{CC} = 5 V$.

- (1) $f_{LO} = 9.75 \text{ GHz}$
- (2) $f_{LO} = 10.60 \text{ GHz}$
- (3) $f_{LO} = 11.30 \text{ GHz}$


Fig 7. Conversion gain as a function of RF frequency; typical values

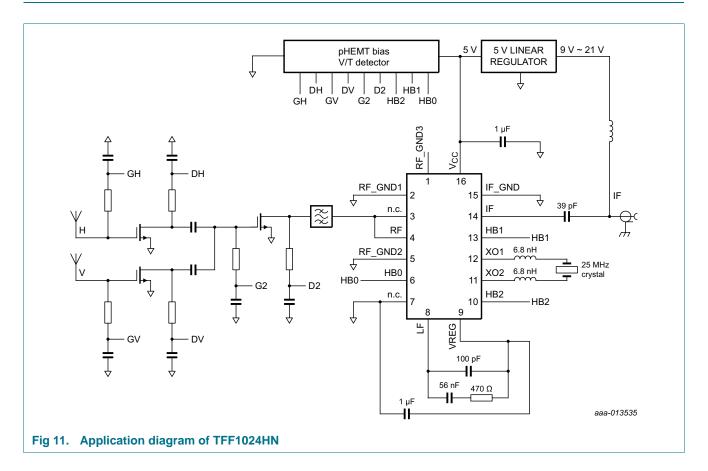
- (1) $f_{RF} = 10.70 \text{ GHz}$
- (2) $f_{RF} = 12.75 \text{ GHz}$


Fig 8. Input reflection coefficient (S₁₁); typical values

Integrated mixer oscillator PLL for satellite LNB

- (1) $f_{IF} = 250 \text{ MHz}$
- (2) $f_{IF} = 2150 \text{ MHz}$

Fig 9. Output reflection coefficient (S₂₂); typical values


 $V_{CC} = 5 \text{ V}.$

- (1) $f_{LO} = 9.75 \text{ GHz}$
- (2) $f_{LO} = 10.60 \text{ GHz}$
- (3) $f_{LO} = 11.30 \text{ GHz}$

Fig 10. Noise figure as function of RF frequency; typical values

Integrated mixer oscillator PLL for satellite LNB

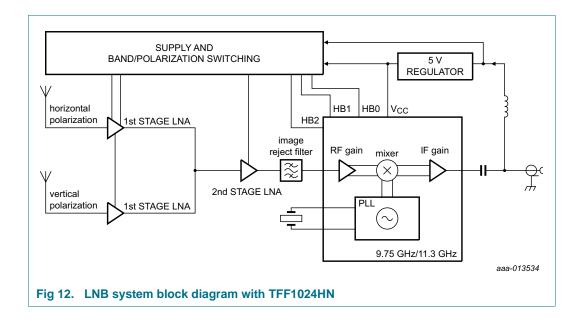

13. Application information

Table 9. List of netnames See Figure 11.

Netname	Description
GH	Gate voltage of 1st stage LNA. Horizontal polarization
DH	Drain voltage of 1st stage LNA. Horizontal polarization
GV	Gate voltage of 1st stage LNA. Vertical polarization
DV	Drain voltage of 1st stage LNA. Vertical polarization
G2	Gate voltage of 2nd stage LNA
D2	Drain voltage of 2nd stage LNA
HB0	LO frequency selection, LSB
HB1	LO frequency selection
HB2	LO frequency selection, MSB

Integrated mixer oscillator PLL for satellite LNB

Integrated mixer oscillator PLL for satellite LNB

14. Package outline

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

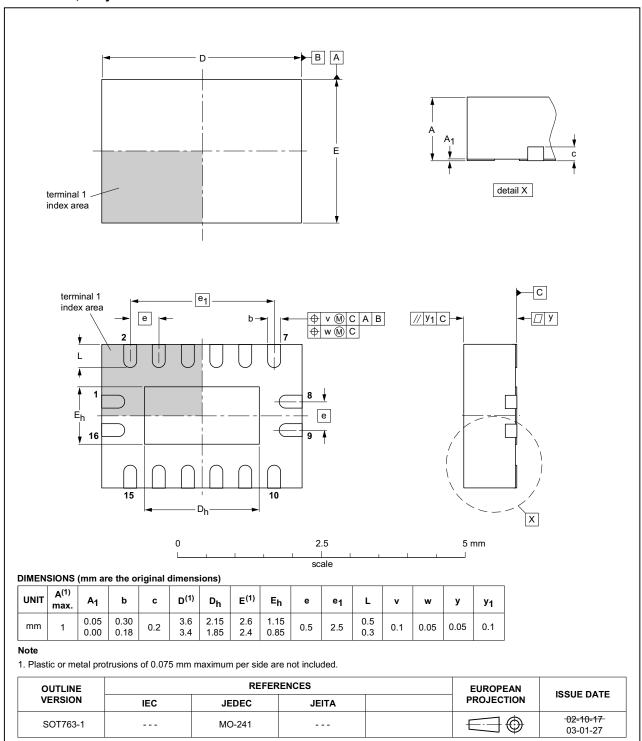


Fig 13. Package outline SOT763-1

TFF1024HN All information provided in this document is subject to legal disclaimers.

Integrated mixer oscillator PLL for satellite LNB

15. Abbreviations

Table 10. Abbreviations

Acronym	Description	
CPW	CoPlanar Waveguide	
DVB-S	Digital Video Broadcasting by Satellite	
DVB-S2	Digital Video Broadcasting - Satellite - Second generation	
ESD	ElectroStatic Discharge	
IF	Intermediate Frequency	
K _u band	K-under band	
LNA	Low-Noise Amplifier	
LNB	Low-Noise Block	
LO	Local Oscillator	
LSB	Least Significant Bit	
MSB	Most Significant Bit	
pHEMT	Pseudomorphic High Electron Mobility Transistor	
PLL	Phase-Locked Loop	
RBW	Resolution BandWidth	
VSAT	Very Small Aperture Terminal	
V/T	Voltage / Tone	
VBW	Video BandWidth	

16. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
TFF1024HN v.1	20150113	Product data sheet	-	-

Integrated mixer oscillator PLL for satellite LNB

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

TFF1024HN

All information provided in this document is subject to legal disclaimers.

Integrated mixer oscillator PLL for satellite LNB

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any

liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

TFF1024HN NXP Semiconductors

Integrated mixer oscillator PLL for satellite LNB

19. Contents

1	General description
2	Features and benefits
3	Applications
4	Quick reference data
5	Ordering information
6	Functional diagram 2
7	Pinning information
7.1	Pinning
7.2	Pin description
8	Functional description 4
8.1	LO frequency selection
9	Limiting values 4
10	Recommended operating conditions 4
11	Thermal characteristics 5
12	Characteristics 5
12.1	Graphs
13	Application information 10
14	Package outline
15	Abbreviations13
16	Revision history
17	Legal information
17.1	Data sheet status
17.2	Definitions
17.3	Disclaimers
17.4	Trademarks15
18	Contact information 15
19	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9