

FEATURES

- Single Isolated output
- 1kVDC or 3kVDC option
- Wide temperature performance at full 1 Watt load -40°C to 85°C
- Industry Standard Pinout
- 3.3V and 5V Inputs
- 3.3V, 5V & 12V outputs
- Pin Compatible with LME, MEE1, MEE3, NKE, NME, & NML series

PRODUCT OVERVIEW

The CME series are a cost effective 0.75W DC/DC converter series, in industry standard packages with industry standard pinout. Popular input and output voltages are available as a lower power alternative to a 1W DC/DC converter. The galvanic isolation allows the device to be configured to provide an isolated negative rail in systems where only positive rails exist. The wide temperature range guarantees startup from -40°C and full 0.75 watt output at 85°C.

SELECTION GUIDE

Order Code	Nominal Input Voltage		Output Current	Load Regulation		Ripple & Noise		Input Current at Rated Load	Efficiency		Isolation Capacitance	MTTF ¹
	V	V		mA	%	mV p-p	Typ.	Max.	mA	%	Min.	Typ.
CME0505DC	5	5	150	10	12	15	25	218	67	70	30	3400
CME0505SC	5	5	150	10	12	15	25	218	67	70	30	3400
CME0512SC	5	12	63	5	7	20	30	195	72	77	33	2200
3kVDC isolation options												
CME0303S3C	3.3	3.3	227	9	12	15	25	300	68	73	30	1230
CME0305S3C	3.3	5	150	9	12	15	25	300	68	73	35	630
CME0505S3C	5	5	150	9	12	15	25	218	65	70	28	2400
CME0512S3C	5	12	63	5	7	10	15	200	70	75	30	630

INPUT CHARACTERISTICS

Parameter	Conditions	Min.	Typ.	Max.	Units
Voltage range	Continuous operation, 3.3V input types	2.97	3.3	3.63	V
	Continuous operation, 5V input types	4.5	5.0	5.5	
Reflected ripple current	3.3V input types			1.5	mA
	5V input types			2	

OUTPUT CHARACTERISTICS

Parameter	Conditions	Min.	Typ.	Max.	Units
Rated Power	$T_A = -40^\circ\text{C}$ to 120°C , see derating graphs			0.75	W
Voltage Set Point Accuracy	See tolerance envelope				
Line regulation	High V_{IN} to low V_{IN}		1.0	1.2	%/%

ISOLATION CHARACTERISTICS

Parameter	Conditions	Min.	Typ.	Max.	Units
Isolation test voltage	C Versions Flash tested for 1 second	1000			VDC
	3C Versions Flash tested for 1 second	3000			
Resistance	$V_{ISO} = 1000\text{VDC}$			10	$\text{G}\Omega$

GENERAL CHARACTERISTICS

Parameter	Conditions	Min.	Typ.	Max.	Units
Switching frequency	CME0505		120		kHz
	All other types		135		

ABSOLUTE MAXIMUM RATINGS

Lead temperature 1.5mm from case for 10 seconds	260°C
Input voltage V_{IN} , 3.3V input	5.5V
Input voltage V_{IN} , 5V input	7V

1. Calculated using MIL-HDBK-217F with nominal input voltage at full load.

All specifications typical at $T_A = 25^\circ\text{C}$, nominal input voltage and rated output current unless otherwise specified.

For full details go to
www.murata-ps.com/rohs

TEMPERATURE CHARACTERISTICS

Parameter	Conditions	Min.	Typ.	Max.	Units
Specification	All output types	-40		85	
Storage		-50		130	
Case temperature rise above ambient	3.3V & 5V output types			41	°C
	12V output types			32	
Cooling	Free air convection				

TECHNICAL NOTES
ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

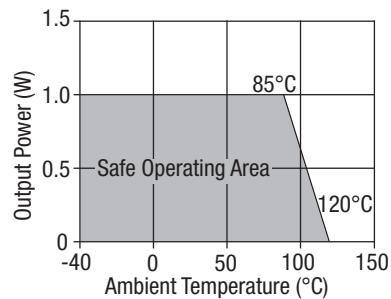
Murata Power Solutions CME series of DC/DC converters are all 100% production tested at their stated isolation voltage. This is 1kVDC for 1 second.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

For a part holding no specific agency approvals, such as the CME series, both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier; but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements.

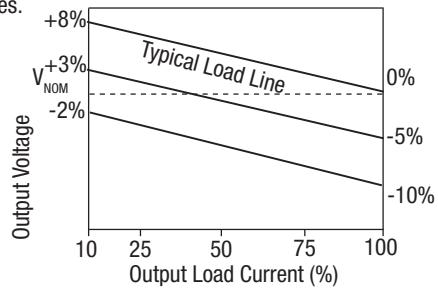
REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The CME series has toroidal isolation transformers, with no additional insulation between primary and secondary windings of enameled wire. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyurethane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

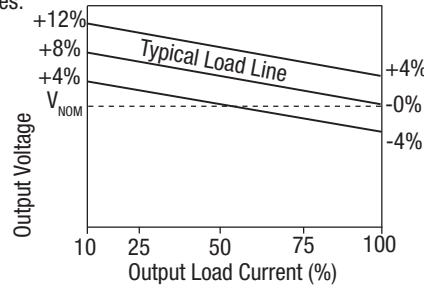

This consideration equally applies to agency recognized parts rated for better than functional isolation where the wire enamel insulation is always supplemented by a further insulation system of physical spacing or barriers.

TEMPERATURE DERATING GRAPHS

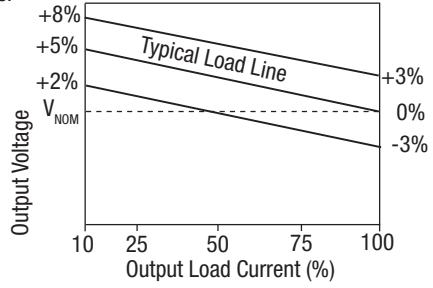
0303, 0305 types only.



All other types.



TOLERANCE ENVELOPES


3.3V output types.

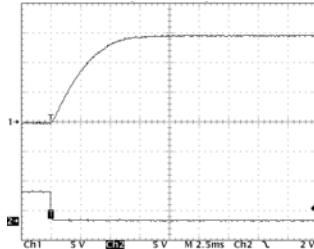
5V output types.

12V output types.

The voltage tolerance envelope shows typical load regulation characteristics for this product series. The tolerance envelope is the maximum output voltage variation due to changes in output loading.

APPLICATION NOTES

Minimum load

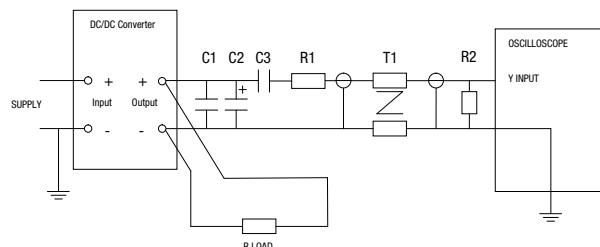

The minimum load to meet datasheet specification is 10% of the full rated load across the specified input voltage range. Lower than 10% minimum loading will result in an increase in output voltage, which may rise to typically double the specified output voltage if the output load falls to less than 5%.

Capacitive loading and start up

Typical start up times for this series, with a typical input voltage rise time of 2.2 μ s and output capacitance of 10 μ F, are shown in the table below. The product series will start into a capacitance of 47 μ F with an increased start time, however, the maximum recommended output capacitance is 10 μ F.

Typical Start-Up Wave Form

	Start-up time
	μ s
CME0505DC	1000
CME0505SC	1000
CME0512SC	5600
CME0303S3C	540
CME0305S3C	1300
CME0505S3C	1080
CME0512S3C	5000


Ripple & Noise Characterisation Method

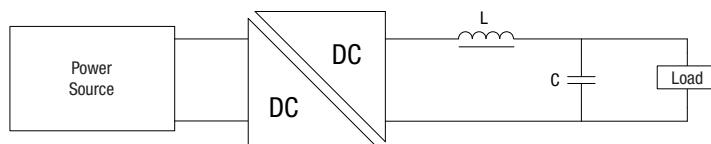
Ripple and noise measurements are performed with the following test configuration.

C1	1 μ F X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC/DC converter
C2	10 μ F tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC/DC converter with an ESR of less than 100m Ω at 100 kHz
C3	100nF multilayer ceramic capacitor, general purpose
R1	450 Ω resistor, carbon film, $\pm 1\%$ tolerance
R2	50 Ω BNC termination
T1	3T of the coax cable through a ferrite toroid
RLOAD	Resistive load to the maximum power rating of the DC/DC converter. Connections should be made via twisted wires

Measured values are multiplied by 10 to obtain the specified values.

Differential Mode Noise Test Schematic

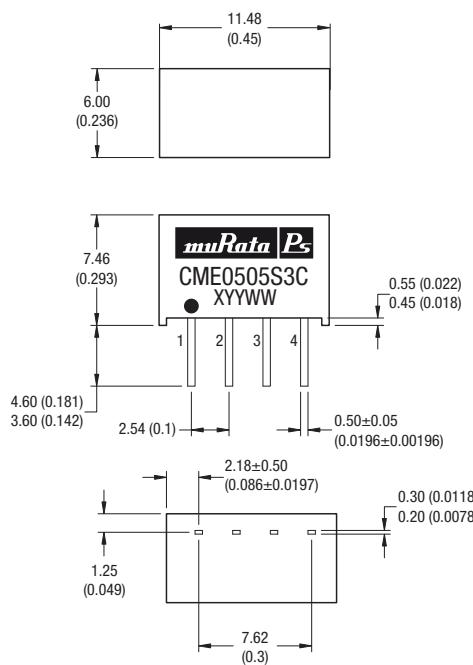
APPLICATION NOTES (continued)

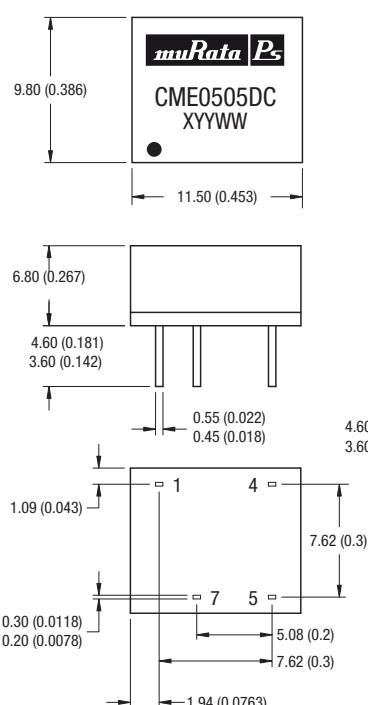

Output Ripple Reduction

By using the values of inductance and capacitance stated, the output ripple at the rated load is lowered to 5mV p-p max.

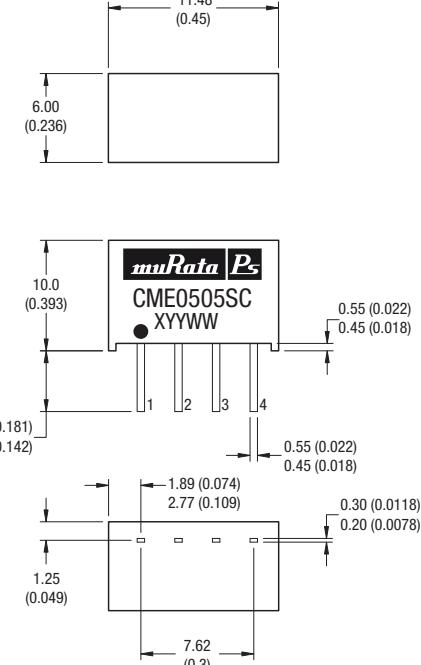
Component selection

Capacitor: It is required that the ESR (Equivalent Series Resistance) should be as low as possible, ceramic types are recommended. The voltage rating should be at least twice (except for 15V output), the rated output voltage of the DC/DC converter.


Inductor: The rated current of the inductor should not be less than that of the output of the DC/DC converter. At the rated current, the DC resistance of the inductor should be such that the voltage drop across the inductor is <2% of the rated voltage of the DC/DC converter. The SRF (Self Resonant Frequency) should be >20MHz.


	Inductor			Capacitor
	L, μ H	SMD	Through Hole	
CME0505DC	47	82473C	11R473C	4.7
CME0505SC	47	82473C	11R473C	4.7
CME0512SC	68	82683C	11R683C	1
CME0303S3C	10	82103C	11R103C	4.7
CME0305S3C	47	82473C	11R473C	4.7
CME0505S3C	10	82103C	11R103C	4.7
CME0512S3C	68	82683C	11R683C	0.68

PACKAGE SPECIFICATIONS


3C Package

DC Package

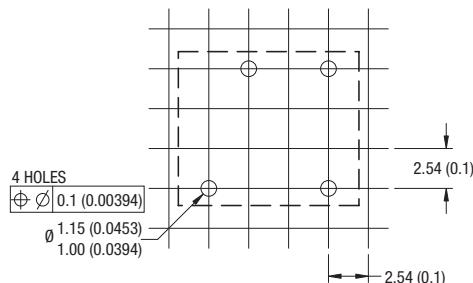
SC Package

All dimensions in millimetres $\pm 0.25\text{mm}$ ($\pm 0.01\text{"}$). All pins on a 2.54 (0.1) pitch and within ± 0.25 (0.01) of true position.

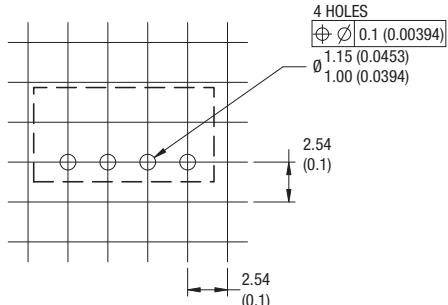
Weight: 1.09g (3C) 1.30g (SC) 1.38g (DC)

PIN CONNECTIONS - 8 PIN DC

Pin	Function
1	$-V_{IN}$
4	$+V_{IN}$
5	$+V_{OUT}$
7	$-V_{OUT}$

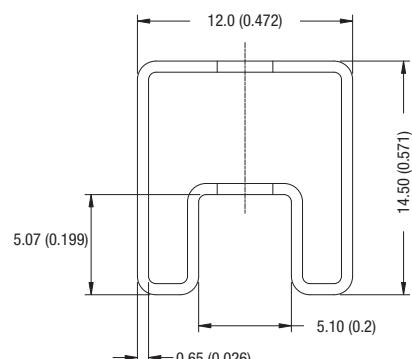

PIN CONNECTIONS - 4 PIN 3C & SC

Pin	Function
1	$-V_{IN}$
2	$+V_{IN}$
3	$-V_{OUT}$
4	$+V_{OUT}$

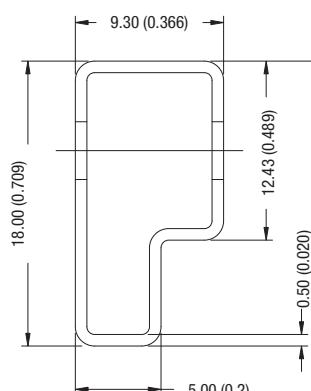

PACKAGE SPECIFICATIONS (continued)

RECOMMENDED FOOTPRINT DETAILS

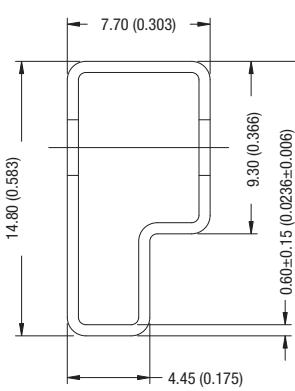
8 Pin DC Package



4 Pin 3C & SC Package



TUBE OUTLINE DIMENSIONS


DC Tube

SC Tube

3C Tube

Unless otherwise stated all dimensions in inches (mm) $\pm 0.5\text{mm}$.
 Tube length (8 Pin DIP) : 20.47 (520mm $\pm 2\text{mm}$).
 Tube length (4 Pin SIP) : 20.67 (525mm $\pm 2\text{mm}$).

Tube Quantity : 40

RoHS COMPLIANCE INFORMATION

This series is compatible with RoHS soldering systems with a peak wave solder temperature of 260°C for 10 seconds. The pin termination finish on the SIP package type is Tin Plate, Hot Dipped over Matte Tin with Nickel Preplate. The DIP types are Matte Tin over Nickel Preplate. Both types in this series are backward compatible with Sn/Pb soldering systems.

For further information, please visit www.murata-ps.com/rohs

Murata Power Solutions, Inc.
 11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A.
 ISO 9001 and 14001 REGISTERED

www.murata-ps.com/support

This product is subject to the following [operating requirements](#) and the [Life and Safety Critical Application Sales Policy](#):
 Refer to: <http://www.murata-ps.com/requirements/>

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

© 2013 Murata Power Solutions, Inc.

Данный компонент на территории Российской Федерации**Вы можете приобрести в компании MosChip.**

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

<http://moschip.ru/get-element>

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибуторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ Р В 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru

moschip.ru_4

moschip.ru_6

moschip.ru_9