IND045W Hornet: Non-Isolated DC-DC Voltage Regulator Modules #### 12Vdc input; 3Vdc to 8Vdc output; 34W Max Power #### **Applications** - ✓ Industrial Equipment - ✓ Control Boards - ✓ Test Equipment # VIN VOUT SENSE MODULE Cin ON/OFF GND RTrim #### **Electrical Features** - 12V Input voltage with ±20% Tolerance - Output voltage programmable from 3Vdc to 8Vdc via external resistor - Remote On/Off for optional external control - Fixed switching frequency - Output overcurrent protection (non-latching) #### **Mechanical Features** - Small size: 20.3 mm x 11.4 mm x 8.5 mm (0.8 in x 0.45 in x 0.335 in) - Operating range: -40°C to 105°C ambient - Operating shock to 40G per Mil Std. 810G, Method 516.4 Procedure I - Operating vibration per Mil Std. 810G, Method 514.5 Procedure I #### **Process and Safety** - Qualified for 1000h High Temperature Operating Bias, 1000h 85RH/85°C Temperature, Humidity and Bias, 700 cycle -40 to 125°C thermal cycling. - ANSI/UL# 60950-1 2nd Revised October 14, 2014, CSA[†] C22.2 No. 60950-1-07, Second Ed. + A2:2014 (MOD) Recognized, DIN EN 60950-1:2006 + A11:2009 + A1:2010 +A12:2011, + A2:2013 (VDE[‡] 0805-1) Licensed. - ISO** 9001 and ISO 14001 certified manufacturing facilities. - Compliant to RoHS II EU "Directive 2011/65/EU". - Compatible in a Pb-free or SnPb reflow environment. - Suitable for aqueous clean. - Suitable for conformal coating with dip and vapor deposition. Conformal coating can provide the protection to meet Salt Fog Test per IEC 60068-2-52 (Severity 3) and Mixed Gas Flow test per Telcordia GR-3108 Outdoor Levels. - 3 year warranty. | Device Code | Input Voltage | Output
Voltage | Output
Current (Max.) | On/Off Logic | Comcode | |-------------|---------------|-------------------|--------------------------|--------------|-------------| | IND045W | 9.6 – 14.4Vdc | 3.0 – 8.0Vdc | 5A(@3Vout) | Negative | 1600102903A | #### **Thermal Performance** Full rated output with natural convection up to 95°C at 3.3Vout and up to 94°C at 5Vout.. Thermal curves for 2 voltages below. #### **Electrical Specifications** | Parameter | Device | Symbol | Min | Тур | Max | Unit | |---|--------|---------------------|--------------------|-----|------|-----------| | Operating Input Voltage | All | V _{IN} | 9.6 | 12 | 14.4 | Vdc | | External Capacitance, Ceramic $ESR \ge 1 \text{ m}\Omega$ | All | C _{0, max} | | _ | 47* | μF | | Efficiency 12V _{INDC} , T _A =25°C, I _o as per Figure 2 | | η | 91(3.3V), 93.3(5V) | | | % | | Switching Frequency | All | f _{sw} | _ | 300 | _ | kHz | | Output Voltage (Over all line, load, and temperature conditions) | All | VO, set | -3.0 | _ | +3.0 | % VO, set | | On/Off Logic High (MODULE OFF) Input High Voltage | All | VIH | 1.5 | _ | 36 | Vdc | | On/ Off Logic Low (MODULE ON) Input Low Voltage | All | VIL | -0.2 | _ | 1 | Vdc | ^{*}Additional External Capacitance possible using Tunable Loop #### **Characteristic Curves** The following figures provide typical characteristics for the IND045W Hornet at 25°C. Figure 1. Output Ripple Voltage for various output voltages and external caps @12Vin. Additional Decoupling cap of 0.01uF used on input and output side Figure 2. Graph showing maximum output current capability at different output voltages. Use electrical profile in Figure 2 for determining baseline output current for a specific voltage. Then thermal curves. #### **Trim** Rtrim for a desired output voltage, should be as per the following table. The formula in the last column helps determine Rtrim for other voltages. | Vo (V) | 3.3 | 5.0 | 6 | 8 | $Rtrim = \left[\frac{70}{10000000000000000000000000000000000$ | |--------------------|-------|-------|------|------|---| | Rtrim(k Ω) | 26.92 | 16.27 | 13.2 | 9.59 | $Rtrum = \left\lfloor \frac{1}{(Vo - 0.7)} \right\rfloor^{KS2}$ | #### On/Off On/Off pin must be connected to Ground. If the On/Off pin is left floating the module with be left in the OFF state. #### **Safety Considerations** For safety agency approval, the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards listed on the first page of this document. For the converter output to be considered meeting the requirements of safety extra-low voltage (SELV), the input must meet SELV requirements. The power module has extra-low voltage (ELV) outputs when all inputs are ELV. The input to these units is to be provided with a fast-acting fuse with a maximum rating of 8A in the positive input lead. #### **Tunable Loop** The module is designed for 200uF capacitor on its output. For applications where more than 200uF capacitors would be used on the output, an additional Resistor (Rtune) and Capacitor (Ctune) would be required in the circuit schematic to compensate for the additional capacitance. The placement is between the Sense+ pin and Trim pin as per figure below: Figure. 3. Circuit diagram showing connection of Rtune and Ctune to tune the control loop of the module The recommended values for Rtune and Ctune for different amounts of external capacitance are as per the table below: | Со | 1×10μF | 1x22μF | 2x22μF | 4x22μF | 6x22μF | |-------------------|--------|--------|--------|--------|--------| | R _{TUNE} | 330Ω | 270Ω | 270Ω | 220Ω | 180Ω | | C _{TUNE} | 680pF | 1200pF | 2700pF | 4700pF | 1.8nF | #### **Recommended Pad Layout** Dimensions are in millimeters and (inches). Tolerances: x.x mm \pm 0.5 mm (x.xx in. \pm 0.02 in.) [unless otherwise indicated] x.xx mm \pm 0.25 mm (x.xxx in \pm 0.010 in.) #### **Nozzle Recommendations** The minimum recommended inside nozzle diameter for reliable operation is 3mm. The maximum nozzle outer diameter, which will safely fit within the allowable component spacing, is 7 mm. #### **Bottom Side / First Side Assembly** This module is not recommended for assembly on the bottom side of a customer board. If such an assembly is attempted, components may fall off the module during the second reflow process #### **Lead Free Soldering** The modules are lead-free (Pb-free) and RoHS compliant and fully compatible in a Pb-free soldering process. Failure to observe the instructions below may result in the failure of or cause damage to the modules and can adversely affect long-term reliability #### **MSL Rating** The modules have a MSL rating of 2a. #### **Pb-free Reflow Profile** Power Systems will comply with J-STD-020 Rev. D (Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices) for both Pb-free solder profiles and MSL classification procedures. The suggested Pb-free solder paste is Sn/Ag/Cu (SAC). The following profile is the recommended linear reflow profile using Sn/Ag/Cu solder. Soldering outside of the recommended profile requires testing to verify results and performance. #### Storage and Handling J-STD-033 Rev. A (Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices) is recommended. Moisture barrier bags (MBB) with desiccant are required for MSL ratings of 2 or greater. These sealed packages should not be broken until time of use. Once the original package is broken, the floor life of the product at conditions of \leq 30°C and 60% relative humidity varies according to the MSL rating (see J-STD-033A). The shelf life for dry packed SMT packages will be a minimum of 12 months from the bag seal date, when stored at the following conditions: < 40°C, < 90% relative humidity. #### Post Solder Cleaning and Drying Considerations Post solder cleaning is usually the final circuit-board assembly process prior to electrical board testing. The result of inadequate cleaning and drying can affect both the reliability of a power module and the testability of the finished circuit-board assembly ## Contact Us For more information, call us at USA/Canada: +1 888 546 3243, or +1 972 244 9288 Asia-Pacific: +86.021.54279977*808 Europe, Middle-East and Africa: +49.89.878067-280 www.gecriticalpower.com GE Critical Power reserves the right to make changes to the product(s) or information contained herein without notice, and no liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. ### **ПОСТАВКА** ЭЛЕКТРОННЫХ КОМПОНЕНТОВ Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107 # Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip. Для оперативного оформления запроса Вам необходимо перейти по данной ссылке: #### http://moschip.ru/get-element Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора. В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов. Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair. Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки. На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров. Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009 #### Офис по работе с юридическими лицами: 105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский» Телефон: +7 495 668-12-70 (многоканальный) Факс: +7 495 668-12-70 (доб.304) E-mail: info@moschip.ru Skype отдела продаж: moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9