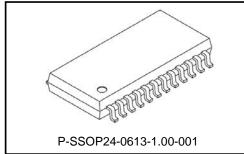
TOSHIBA Bi-CMOS Integrated Circuit Silicon Monolithic

TB6586FG, TB6586AFG


Three-Phase Full-Wave Brushless Motor Controller

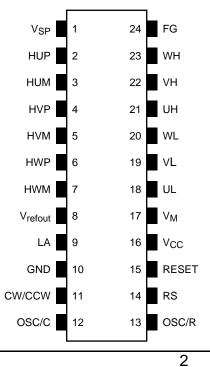
The TB6586FG/AFG is a three-phase full-wave brushless motor controller developed for use in motor fans.

Features

- Upper-phase PWM control
- Built-in triangular-wave generator
- Support of a bootstrap circuit
- Built-in Hall amplifier (support of a Hall element)
- Selectable 120°/150° energization
- Built-in lead angle control function
- Overcurrent protection signal input pin $(V_{RS} = 0.5 \text{ V (typ.)})$
- Built-in regulator (V_{refout} = 5 V (typ.), 35 mA (max))
- Operating supply voltage range: V_{CC} = 6.5 to 16.5 V, V_{M} = 4.5 to 16.5 V
- The TB6586FG and TB6586AFG differ in the number of pulses per revolution:

TB6586FG: 1 pulse / electrical angle: 360° TB6586AFG: 3 pulses / electrical angle: 360°

Weight: 0.36 g (typ.)



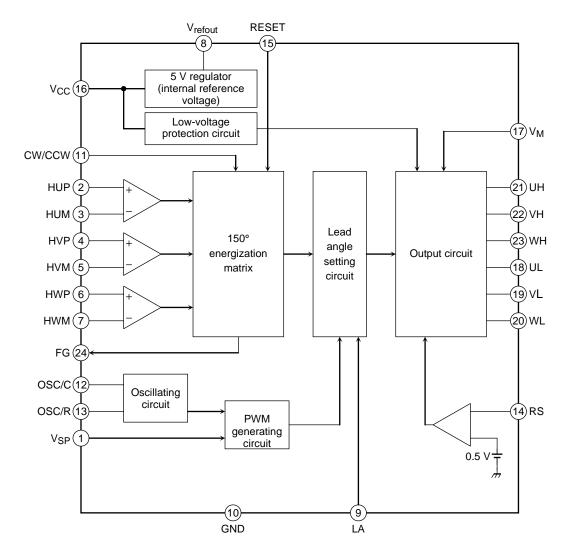
Pin Description

TOSHIBA

Pin No.	Symbol	Description	
1	V_{SP}	Speed control input	
2	HUP	U-phase Hall signal input (+) pin	
3	HUM	U-phase Hall signal input (-) pin	
4	HVP	V-phase Hall signal input (+) pin	
5	HVM	V-phase Hall signal input (-) pin	
6	HWP	W-phase Hall signal input (+) pin	
7	HWM	W-phase Hall signal input (-) pin	
8	V _{refout}	Outputs reference voltage signal (5 V / 35 mA)	
9	LA	Lead angle setting signal input pin (30° / 4 bit)	
10	GND	Ground pin	
11	CW/CCW	Rotation direction signal input pin	
12	OSC/C	Connect to capacitor for PWM oscillator	
13	OSC/R	Connect to resistor for PWM oscillator	
14	RS	Overcurrent protection (0.5 V)	
15	RESET	Energization width toggle pin (Low: 150°, High; Reset, 6.35 V: 120°)	
16	V _{CC}	Power supply	
17	V _M	Input for output power	
18	UL	U-phase output pin (Low side)	
19	VL	V-phase output pin (Low side)	
20	WL	W-phase output pin (Low side)	
21	UH	U-phase output pin (High side)	
22	VH	V-phase output pin (High side)	
23	WH	W-phase output pin (High side)	
24	FG	Output of number of pulses per revolution (FG: 1 pulse / electrical angle; AFG: 3 pulses / electrical angle)	

Pin Layout

Input/Output Equivalent Circuits


The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

Pin Description	Symbol	Input/Output Signal	Input/Output Internal Circuit
Positional signal input pin	HUP HUM HVP HVM HWP	Analog/Digital Hysteresis ± 7.5 mV (typ.)	Vrefout Vrefout
Speed control signal input pin	V _{SP}	Analog Input range 0 to 7 V	0 100 Ω Cy M M
Rotation direction signal input pin L: Forward (CW) H: Reverse (CCW)	cw/ccw	Digital L: 0.8 V (max) H: V _{refout} – 1 V (min) Test input If CW/CCW = 6.35 V (typ.) or higher, the system resets Hysteresis 150 mV (typ.)	V_{CC} G_{N} $G_{$
Reset input L: 150° turn-on mode H: Reset	RESET	Digital L: 0.8 V (max) H: V _{refout} – 1 V (min) If RESET = 6.35 V (typ.) or higher, then 120° energization drive is selected Hysteresis 150 mV (typ.) During a reset: Output OFF (all phases Low). The internal counter continues to operate.	V_{CC} G_{S} $G_{$
Lead angle setting signal input	LA	Analog Input range 0 to 5.0 V (V _{refout}) Electrical angle 0° to 28° can be divided into 16 by 4-bit data. Lead angle 0°: LA = 0 V (GND) Lead angle 28°: LA = 5 V (V _{refout})	V _{refout} 100 kΩ 300 100 kΩ

Pin Description Symbol		Input/Output Signal	Input/Output Internal Circuit		
Overcurrent protection signal RS input		Analog Analog filter 0.5 μs (typ.) If RS = 0.5 V (typ.) or higher, UH, VH and WH pin goes low (released at carrier cycle)	V _{refout} V _{refout} O O O O O O O O O O O O O		
Reference voltage signal output pin	Reference voltage signal output pin V_{refout} 5.0 ± 0.5 V (35 5.0 ± 0.3 V (15 5.0 ± 0.3 V)		Vcc VccVcc T		
Rotational frequency output FG		Digital Push-pull output (± 2 mA (max)) TB6586FG: 1 pulse / electrical angle of 360° TB6586AFG: 3 pulses / electrical angle of 360°	V _{refout} V _{refout}		
UH UL Energization signal output VH VL WH WL		Push-pull output (± 3 mA (max))	○ V _M		

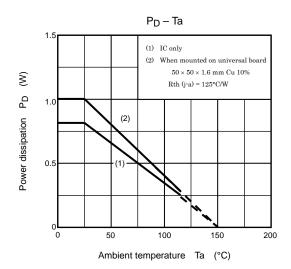
Block Diagram

In the block diagram, part of the functional blocks or constants may be omitted or simplified for explanatory purposes.

Absolute Maximum Ratings

Characteristic	Symbol	Rating	Unit	
Cupply voltage	Vcc	18	V	
Supply voltage	V _M	18	V	
	V _{IN1}	-0.3 to 8 (Note 1)		
Input voltage	V _{IN2}	−0.3 to 8.5 (Note 2)	V	
	V _{IN3}	-0.3 to V _{refout} + 0.3 (Note 3)		
Turn-on signal output current	lout	3	mA	
Dawar discipation	D-	0.8 (Note 4)	W	
Power dissipation	P _D	1.0 (Note 5)	VV	
Operating temperature	T _{opr}	−30 to 115	°C	
Storage temperature	T _{stg}	−55 to 150	ر	

Note 1: CW/CCW, RESET


Note 2: V_{SP} Note 3: LA

Note 4: No heatsink

Note 5: When mounted on a PCB ($50 \times 50 \times 1.6$ mm, Cu 10%)

Operation Conditions (Ta = 25°C)

Characteristic	Symbol	Min	Тур.	Max	Unit
Supply voltage	V _{CC}	6.5	15	16.5	V
Supply voltage	V _M	4.5	_	16.5	V
Oscillation frequency	F _{osc}	2	5	8	MHz

Electrical Characteristics (Unless otherwise specified Ta = 25°C, V_{CC} = 15 V, V_{M} = 5 V)

Supply current									
Supply current		Icc		V_{refout} = OPEN, OSC/C = 560 pF, OSC/R = 6.2 k Ω	_	5.5	10	mA	
Output current		I _M		Drive output (UH, UL, VH, VL, WH, WL) = OPEN	_	0.5	1	mA	
		I _{IN (LA)}		V _{IN} = 5 V LA	_	25	50		
		I _{IN} (SP))	V _{IN} = 5 V V _{SP}	_	35	70	1	
Input current		I _{IN} (RESE	T)	V _{IN} = 5 V RESET	_	25	50	μА	
		In (cw)		V _{IN} = 5 V CW/CCW	_	25	50		
		I _{IN} (RS))	V _{IN} = 0 V RS	_	-25	-50		
			RST	System reset	6.0	6.35	7.1		
		VIN(CW/CCW)	High	CCW (Reverse)	V _{refout} – 1	_	V _{refout}	V	
			Low	CW (Forward)	0	_	0.8		
			RST	120° energization	6.0	6.35	7.1		
Input voltage		V _{IN(RESET)}	High	Output off reset	2.2	_	V _{refout}	V	
			Low	150° energization	0	_	0.8		
			Н	PWM ON duty 95%	5.1	5.4	5.7	V	
		V _{SP}	М	Refresh → Start motor operation	1.8	2.1	2.4		
			L	Energization OFF → Refresh	0.7	1.0	1.3		
	Input sensitivity	Vs		Differential input	40	_	_	mVpp	
Hall element input	Common mode	Vw			1.5	_	3.5	V	
Input hysteresis		VH (1)		(Note)	± 4.5	± 7.5	± 10.5	mV	
1		VH (2)		RESET: Reset ↔ 120° energization (Note)	_	0.15	_	V	
Input hysteresis vol	tage	VH (3)		CW/CCW: CCW ↔ Reset (Note)	_	0.15	_	v	
Input delay		T _{RS}		RS → Output OFF RS input : 0V / 2V	_	2.2	_	μS	
		V _{OUT} (15) – H		I _{OUT} = 3 mA, V _M = 15 V	13	14.2	_		
		VOUT (15) – L		I _{OUT} = 3 mA, V _M = 15 V	_	0.8	1.2		
		V _{OUT} (5) – H		I _{OUT} = 2 mA, V _M = 5 V	4.0	4.2	_		
		V _{OUT} (5) – L		I _{OUT} = 2 mA, V _M = 5 V	_	0.8	1.0		
Output voltage		V _{FG} (H)		I _{OUT} = 2 mA FG	4	_	_		
		V _{FG} (L)		I _{OUT} = 2 mA FG	_	_	1.0		
		V _{refout1}		I _{OUT} = 15 mA V _{refout}	4.7	5.0	5.3	1	
		V _{refout2}		I _{OUT} = 35 mA V _{refout}	4.5	5.0	5.3		
		I _{L (H)}		V _{OUT} = 0 V	_	0	1		
Output leakage current		I _{L (L)}		V _{OUT} = 15 V	_	0	1	μΑ	
Electrical current detector		V _{RS}		RS	0.46	0.5	0.54	V	
Lead angle correction		T _{LA (0)}		LA = 0 V or open, Hall IN = 100 Hz	_	0	_		
		T _{LA} (2.5)		LA = 2.5 V, Hall IN = 100 Hz	_	17	_	0	
				LA = 5 V, Hall IN = 100 Hz	_	28	<u> </u>	\dashv	
		V _{CC} (H)		Output operation start point	5.7	6.0	6.3		
V _{CC} monitor		VCC (L)		No output operation point	4.7	5.0	5.3	V	

Note: Pre-shipment testing is not performed.

TOSHIBA

Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
PWM oscillator frequency	F _{C (20)}	OSC/C = 560 pF, $OSC/R = 6.2 \text{ k}\Omega$	18	20	22	kHz
(carrier frequency)	F _{C (18)}	OSC/C = 470 pF, $OSC/R = 8.2 \text{ k}\Omega$	16.2	18	19.8	KΠZ
Output duty (max)	T _{on} (max)	OSC/C = 560 pF, OSC/R = 6.2 k Ω , V _{SP} = 5.7 V	92	95	98	%

8 2016-02-24

Functional Description

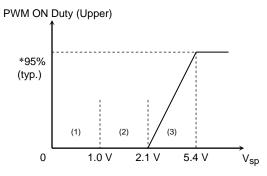
Basic operation

At startup, the motor runs at 120° energization. When the position detection signal reaches a revolution count of fs = 5 Hz or higher, the rotor position is extrapolated from the position detection signal and output is activated using the lead angle based on the LA signal.

Startup - 5 Hz: 120° energization

 $f_{s} = f_{osc} / (120 \times 2^{5} \times 2^{8})$

5 Hz or higher: 120° energization or 150° energization * Approximately 5 Hz if f_{osc} = 5 MHz.


*: At 5 Hz or higher, operation is performed in accordance with commands from RESET and LA pins. When the motor is running at 5 Hz or lower and in reverse (in accordance with the timing chart), it will be driven at 120° energization for a lead angle of 0°.

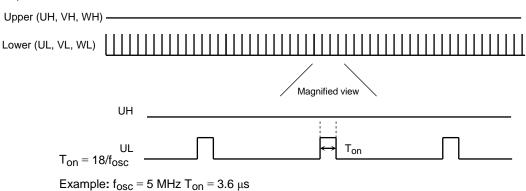
V_{SP} voltage command signal function

- When voltage instruction is input at $VSP \le 1.0 \text{ V}$: Output is turned off (gate block protection).
- (2)When voltage instruction is input at $1.0 \text{ V} < \text{Vsp} \le 2.1 \text{ V}$ (refresh operation): The lower transistor is turned on at a regular (carrier) cycle. (ON duty: $T_{on} = 18/f_{osc}$)
- (3)When a voltage instruction is input at $V_{SP} > 2.1 \text{ V}$:

The drive signal is output using the energization method configured using the RESET pin.

Note: At startup, to charge the upper transistor gate power supply, turn on the lower transistor for a fixed time with 1.0 V < V_{SP} \leq 2.1 V.

*: The maximum ON duty is $T_{on} = 95\%$ (typ.) when $V_{SP} = 5.4 \text{ V}$ (typ.).

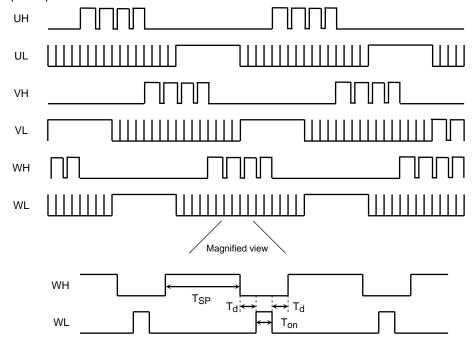

Example: If $f_{OSC} = 5$ MHz, then ON time = 48 μs (typ.) ($f_C = 19.8$ kHz) If $f_{OSC} = 4$ MHz, then ON time = 60 μ s (typ.) ($f_{C} = 15.9$ kHz)

Function to stabilize the bootstrap voltage

The product is equipped with a bootstrap capacitor charging function that supports the output level of the bootstrap method.

If the VSP input voltage is $1.0 \text{ V} < \text{VSP} \le 2.1 \text{ V}$, the ON signal based on the carrier cycle is output to the lower phase (UL, VL, WL) and the OFF signal (Low) is output to the upper phase (UH, VH, WH).

Output Waveform



9

2016-02-24

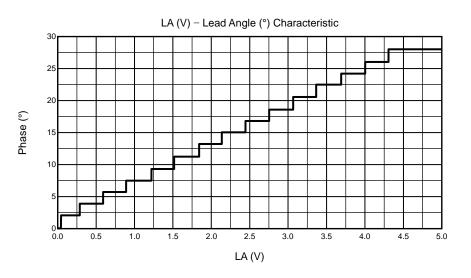
(2) If the Vsp input voltage is 2.1 V < Vsp and the Hall signal is 5 Hz or less, the upper phase (UH, VH, WH) will perform 120° energization at a PWM that complies with the Vsp; and the lower phase (UL, VL, WL) will operate at 120° energization, performing refresh operation based on the OFF timing. (The same drive is executed during reverse rotation as well.)

Example Output Waveform

 T_{SP} : Variable depending on the V_{SP} (the figure above being applicable when $V_{SP} = 5.4$ V (typ.)); $T_{ON} = 18/f_{OSC}$; $T_{OSC} = 18/f_{OSC}$

*: The lead angle correction (LA pin) function does not operate when the Hall signal is 5 Hz or less. The lead angle correction function also does not operate when in a reverse detection state.

4. Correcting the lead angle


The lead angle can be corrected in the turn-on signal range from 0 to 28° in relation to the induced voltage. Analog input from the LA pin (0 V to 4.3 V divided by 16):

$$0 \text{ V} = 0^{\circ}$$

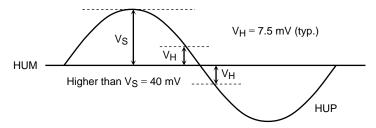
 $4.3 \text{ V} \text{ or higher} = 28^{\circ}$

Sample Evaluation Results

Steps	LA (V)	Lead Angle (°)
1	0.00	0.00
2	0.05	1.93
3	0.28	3.79
4	0.59	5.65
5	0.89	7.54
6	1.21	9.43
7	1.52	11.29
8	1.83	13.15
9	2.14	15.08
10	2.45	16.87
11	2.75	18.73
12	3.06	20.66
13	3.37	22.55
14	3.68	24.37
15	3.99	26.16
16	4.30	28.09

10 2016-02-24

5. Setting the carrier frequency


This function involves setting the triangular wave frequency (carrier frequency) necessary for generating PWM signals.

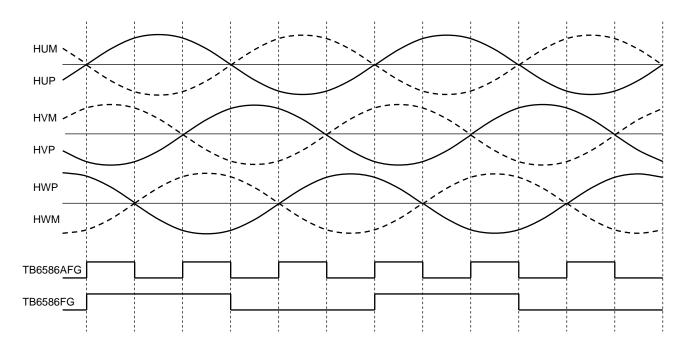
Carrier frequency: $f_c = f_{osc}/252$ (Hz) $f_{osc} = reference clock$ (CR oscillation)

Example: If $f_{OSC} = 5$ MHz, then $f_C = 19.8$ kHz If $f_{OSC} = 4$ MHz, then $f_C = 15.9$ kHz

6. Position detection pin

The common-mode voltage range is $V_W = 1.5$ to 3.5 V. The input hysteresis is $V_H = 7.5$ mV (typ.).

7. Revolution pulse output pin (the difference between TB6586FG and TB6586AFG)


This pin outputs the revolution pulses based on the Hall signal. The TB6586FG outputs one (1) pulse / electrical angle and the TB6586AFG outputs three (3) pulses / electrical angle. In the case of the TB6586FG, this pulse is generated via the U phase Hall signal. For a Hall element, the pulse is converted to digital and then output. For a Hall IC, it is output in the equivalent waveform. In the case of the TB6586AFG, the up-down edges of the U, V and W phase (respectively) are combined and then generated.

Example: Number of FG pulses for an 8-pole motor:

• TB6586FG: 4 pulses per revolution (4 ppr)

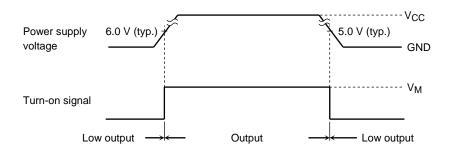
• TB6586AFG: 12 pulses per revolution (12 ppr)

FG Signal Timing Chart

8. Protecting input pin

(1) Overcurrent protection (Pin RS)

When the DC link current exceeds the internal reference voltage, this pin performs gate block protection. Overcurrent protection is restored for each carrier cycle.


The pin is equipped with a filter (analog filter = $0.5~\mu s$ (typ.)) that prevents malfunctioning due to external noise.

(2) Position detection signal error protection

When the position detection signals are either all High, Low or Open, all the output is turned OFF (all phases Low). Anything else results in a restart.

(3) Low power voltage protection (VCC power monitor)

If the operation voltage range is exceeded when the power is being turned on or off, all the output is turned Low to prevent short circuit damage to the power element. Also, if 2.1 V or higher is input via the VSP pin, and if the motor is not rotating (Hall signal = 5 Hz or less), then normal drive is restored after a refresh operation (1.5 ms (typ.)) is performed. However, operations cannot be guaranteed during a power restoration as the circuitry will be unstable when the power is turned on.

(4) Output pulse width restriction

To prevent damage to the output driver (externally attached), the drive output signals (UH, VH, WH, UL, VL, WL) are restricted from being output at a pulse width of 1 µs or less.

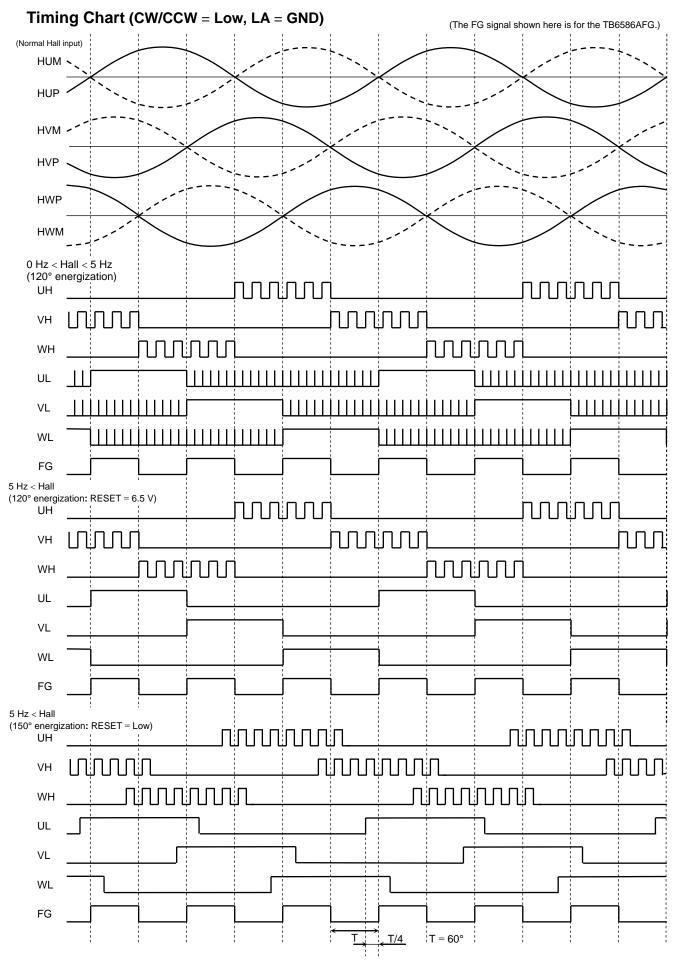
(5) Reset circuit

When 2.2 V (min) or more is input to the RESET pin, a reset will be performed with all output phases being turned off (i.e., all phases Low). Output is also turned off if 6.35 V (typ.) or more is supplied to the CW/CCW pin. However, do not use this method as the restoration obtained from it is unstable.

• RESET pin: Output off reset

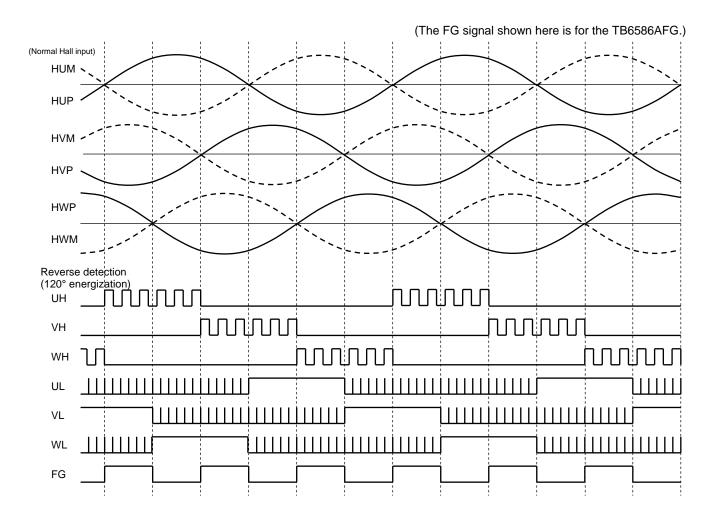
All output phases are turned Low and the externally connected power element is stopped. When 0.8 V (max) or less is input, the power is restored. During the restoration, if 2.1 V or more is not input to the VSP pin, and if the motor is not rotating (Hall signal = 5 Hz or less), a refresh operation will be performed (1.5 ms (typ.)). Normal drive will then be restored.

During the reset, the internal counter continues to operate and the FG signal continues to be output.

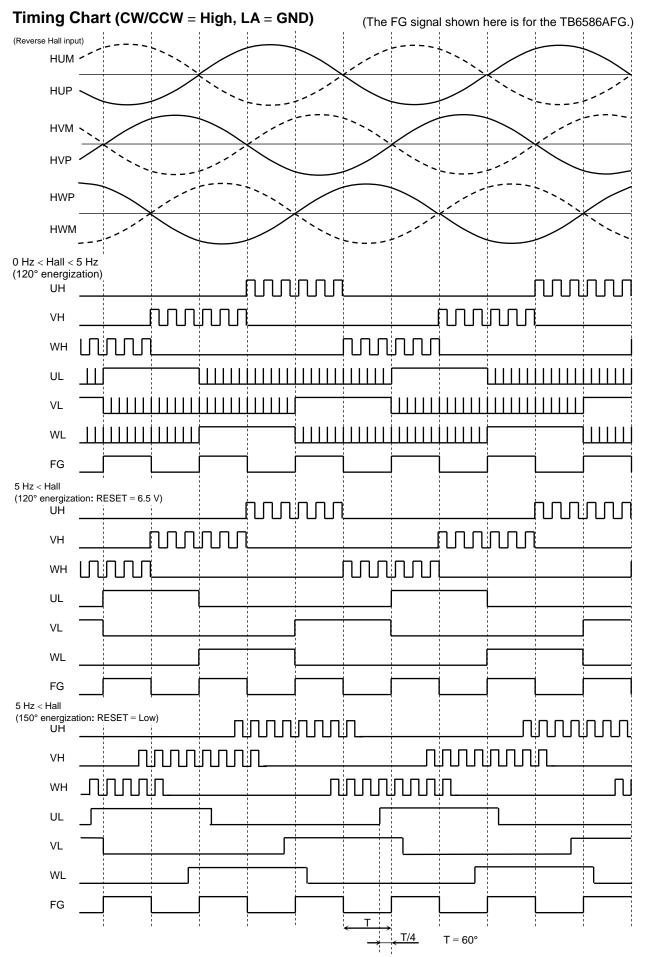

• CW/CCW pin: System reset

All output phases are turned Low and the externally connected power element is stopped. Restoration takes place at an input of 6.35 V (typ.). However, operation after this kind of system reset is unstable.

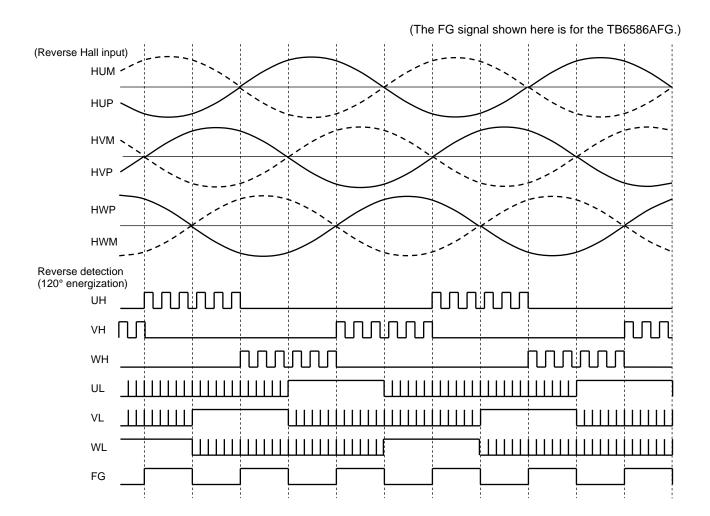
TB6586FG: During a system reset, the FG signal is output in compliance with the U-phase Hall signal.


12

TB6586AFG: The FG signal is not output during a system reset.


*: When the Hall signal is 5 Hz or higher, the lead angle function operates in accordance with the LA pin. signal.

Timing Chart (CW/CCW = High, LA = GND)


^{*:} When CW/CCW = High and a normal Hall signal is input, it runs at 120° energization for a lead angle of 0° (reverse rotation).

14

*: When the Hall signal is 5 Hz or higher, the lead angle function operates in accordance with the LA pin signal.

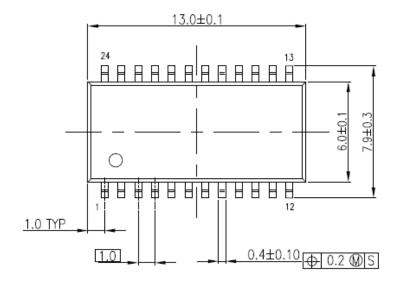
Timing Chart (CW/CCW = Low, LA = GND)

*: When CW/CCW = Low and a reverse Hall signal is input, the motor runs at 120° energization for a lead angle of 0° (reverse rotation)

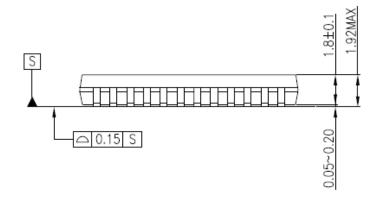
Example Application Circuit V_{refout} In the block diagram, part of the functional 0.1 μF 🛓 blocks, circuits or constants may be omitted or simplified for explanatory purposes. RESET V_{refout} 5-V regulator Vcc (internal reference $V_{CC} = 6.5 \text{ to } 16.5 \frac{1}{70}$ voltage) V_{M} Low-voltage $\frac{1}{T}$ V_M = 4.5 to 16.5 V V_{refout} ✓ protection circuit CW/CCW _ Motor power V_{refout} ___ supply HUP Hall element HUM VH HVP Lead WH angle **RESET** matrix Output circuit Driver HVM setting 18) circuit 19)VL **HWP HWM** WL FG OSC/C 560 pF ± Oscillating MCU circuit OSC/R 0.5 V 士 **PWM** generating circuit GND V_{refout}

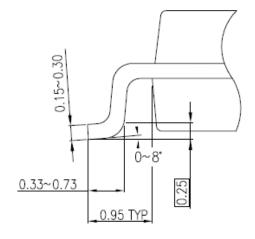
Note: Utmost care is necessary in the design of the output, V_{CC} , V_{M} , and GND lines, since the IC may be destroyed by short-circuiting between outputs, short to VCC, short to VM or short to ground.

Add overcurrent protection such as a fuse to make the device drive normally should a current exceeding the maximum rating flow in the IC for any reason.


17 2016-02-24

Package Dimensions


TOSHIBA


P-SSOP24-0613-1,00-001

"Unit:mm"

Weight: 0.36 g (typ.)

Notes on Contents

1. Block Diagrams

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

2. Equivalent Circuits

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

3. Timing Charts

Timing charts may be simplified for explanatory purposes.

4. Application Circuits

The application circuits shown in this document are provided for reference purposes only. Thorough evaluation is required, especially at the mass production design stage.

Toshiba does not grant any license to any industrial property rights by providing these examples of application circuits.

IC Usage Considerations Notes on handling of ICs

- [1] The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings.
 - Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
- [2] Do not insert devices in the wrong orientation or incorrectly.

Make sure that the positive and negative terminals of power supplies are connected properly.

Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.

In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.

Points to remember on handling of ICs

Heat Radiation Design

In using an IC with large current flow such as power amp, regulator or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature (T_J) at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
 automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
 safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative.
- · Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without
 limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
 technology products (mass destruction weapons). Product and related software and technology may be controlled under the
 applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the
 U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited
 except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Toshiba:

 $\mathsf{TB6586AFG}(\mathsf{O},\mathsf{EL},\mathsf{DRY}\ \mathsf{TB6586FG}(\mathsf{O},\mathsf{EL},\mathsf{DRY})\ \mathsf{TB6586FG}(\mathsf{O},\mathsf{EL},\mathsf{DRY}\ \mathsf{TB6586FG},\mathsf{C8},\mathsf{EL},\mathsf{HZ})$

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9