

# NOT RECOMMENDED

# NM232DDC Series

FOR NEW DESIGNS



| ELECTRICAL CHARACTERISTIC                   | CS                                                              |     |      |      |       |
|---------------------------------------------|-----------------------------------------------------------------|-----|------|------|-------|
| Parameter                                   | Test conditions                                                 | Min | Тур. | Max. | Units |
| High threshold input logic, V <sub>IH</sub> | TX <sub>IN</sub> , SHUTDOWN, ENABLE                             |     | 1.8  | 2.4  | V     |
| Low threshold input logic, V <sub>L</sub>   | TX <sub>IN</sub> , SHUTDOWN, ENABLE                             | 0.8 | 1.3  |      | V     |
| Input Hysteresis, ΔVτ                       | TXin                                                            |     | 0.5  |      | V     |
| Leakage Current, I∟                         | $TX_{IN}$ , SHUTDOWN or $\overline{ENABLE} = V_{CC}$            |     |      | 10   | μA    |
| Input capacitance, C <sub>IN</sub>          | TXin                                                            |     | 5.0  |      | pF    |
| Low level output voltage, Vol               | Ιουτ = 3.2mA                                                    |     |      | 0.4  | V     |
| High level output voltage, Vон              | lо∪т = -1.0mA                                                   | 2.4 |      |      | V     |
| Input pull up current                       | $V_{IN} = OV$                                                   |     | 4.0  | 20   | μA    |
| ±VREF Current                               | $T$ Xου $\tau = 3$ k $\Omega$ , $R$ Xου $\tau = 2.2$ k $\Omega$ |     |      | 3.0  | mA    |

| ATURES                                                                            | ELECTRICAL CHARACTERISTICS - EIA-232-D    |                                                                   |      |      |      |       |
|-----------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------|------|------|------|-------|
| oHS compliant                                                                     | Parameter                                 | Test conditions                                                   | Min  | Тур. | Max. | Units |
| ingle 5V supply                                                                   | Positive going threshold, V <sub>T+</sub> | RXIN                                                              |      | 1.8  | 3.0  | V     |
| ingle 5v Supply                                                                   | Negative going threshold, V <sub>T-</sub> | RXIN                                                              | 0.6  | 1.2  |      | V     |
| 0μW low power shutdown                                                            | Input Hysteresis, ΔVτ                     | RXIN                                                              |      | 0.6  |      | V     |
| TL/CMOS Logic compatible                                                          | Input resistance                          | RXIN                                                              | 3.0  |      | 7.0  | kΩ    |
|                                                                                   | Output voltage, VPP                       | TXουτ, RL=3kΩ to ISO GND                                          | ±5.0 | ±7.0 |      | V     |
| IA-232-D/E and CCITT V.28 compatible                                              | Output leakage current, I∟                | SHUTDOWN=Vcc, TXouT=±15V                                          | -10  |      | 10   | μА    |
| ual transmitters and receivers                                                    | Output slew rate, S <sub>R</sub>          | $R_L=3k\Omega$ , $C_L=2500pF$                                     |      | 3.0  | 30   | V/µs  |
|                                                                                   | Propagation delay, TL                     | Logic to RS232                                                    |      | 20   |      | μs    |
| .5kVrms Isolation                                                                 | Propagation delay, T <sub>R</sub>         | RS232 to logic                                                    |      | 10   |      | μs    |
|                                                                                   | Transmission rate                         | RL= $3k\Omega$ , CL= $2500pF$                                     |      |      | 9.6  | kbps  |
| SCRIPTION                                                                         | Supply voltage, Vcc                       |                                                                   | 4.5  |      | 5.5  | V     |
| NM232DDC is an electrically isolated dual smitter and receiver designed to inter- | Supply current, Icc                       | TXIN=0.8V, TXOUT= $3k\Omega$ , RXIN= $3.0V$ , RXOUT= $2.2k\Omega$ |      | 53   |      | mA    |
| data terminal equipment (DTE) with data                                           | Shutdown current Icc                      | SHUTDOWN=1                                                        |      | 1.0  | 10   | μA    |
| munications equipment (DCE). The device                                           | ENABLE input current, IEN                 | ENABLE=0V to Vcc                                                  |      |      | 1.0  | μΑ    |
| ides two data receive channels and two data                                       | Shutdown input current, Ізнитроми         | SHUTDOWN=OV to Vcc                                                |      |      | 1.0  | μА    |
| smit channels. Each channel is EIA-232-D,                                         | MTTF <sup>1</sup>                         |                                                                   | 187  |      |      | kHrs  |

| TEMPERATURE CHARACTERISTICS          |     |      |      |       |
|--------------------------------------|-----|------|------|-------|
| Parameter                            | Min | Тур. | Max. | Units |
| Operating free-air temperature range | 0   |      | 70   | °C    |
| Storage temperature range            | -55 |      | 125  | °C    |

| ABSOLUTE MAXIMUM RATINGS                                         |                                       |                      |
|------------------------------------------------------------------|---------------------------------------|----------------------|
| Supply voltage Vcc with respect to pin 10                        |                                       | -0.3V to +6V         |
| Input voltage to logic pins 3, 7, 8, & 11 with respect to pin 10 |                                       | -0.3V to<br>Vcc+0.3V |
|                                                                  | EIA-232-D input voltage, pins 17 & 18 | -30V to +30V         |
| Voltages with respect to ISO GND pin 22                          | EIA-232-D input voltage, pins 19 & 20 | -15V to +15V         |
|                                                                  | Positive input voltage, pins 16 & 21  | +14V                 |
|                                                                  | Negative input voltage, pin 23        | -14V                 |
| Short circuit on pins 19 & 20                                    |                                       | Indefinite           |
| Power dissipation                                                |                                       | 700mW                |
| NM232DDC maximum data rate                                       |                                       | 9.6kbps              |
| Lead case temperature 1.5mm from case for 10 seconds             |                                       | 300°C                |

| ISOLATION CHARACTERISTICS |                           |      |      |      |       |
|---------------------------|---------------------------|------|------|------|-------|
| Parameter                 | Conditions                | Min  | Тур. | Max. | Units |
| Isolation test voltage    | Flash tested for 1 second | 1500 |      |      | Vrms  |

<sup>1.</sup> Calulated using MIL-HDBK-217F. All data taken at T<sub>A</sub>=25°C, V<sub>CC</sub>=5V.

#### **FEAT**

| RoHS | compliant |
|------|-----------|
|------|-----------|

Sir

**5**0

■ TT

EIA

Du

**1.5** 

#### DES(

The N transn face d comm provid transmit channels. Each channel is EIA-232-D, EIA-232-E and CCITT V.28 compatible at the interface boundary and TTL/CMOS compatible at the logic connections. No external components are needed and a single 5V input supply powers all functions either side of the isolation boundary. A low-power shutdown mode and high impedance state for receiver outputs is effected via two pins, SHUTDOWN and ENABLE. The device is supplied in a low profile 24 pin DIL package.



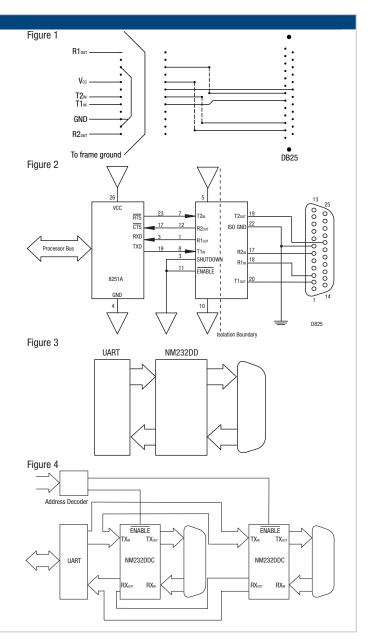


### Isolated Dual EIA-232-D Transmitter and Receiver

#### APPLICATION NOTES

The NM232DDC is an isolated interface device providing EIA-232-D compatibility. A single supply from the logic side provides all necessary power for the device. The isolation feature allows the protective or frame ground of DTEs or DCEs to be isolated from each other, eliminating ground loop currents and inherently long noise paths. The voltage level between different ground points can be up to  $\pm 5 \text{V}$  or  $\pm 6 \text{V}$  and this level flucuates as the power taken varies. This voltage appears, in non-isolated equipment, as normal mode noise on the signals. With such high noise levels present it is clearly very difficult with single ended signals to have reliable communication. Isolating the input from output so that one side floats relative to the other allows reliable communication in environments with considerable degrees of noise between equipments.

Figure 1 shows a typical pcb track layout with a clear separation between the logic pin connections (pins 1-12) and the EIA-232-D connections (pins 13-24). Between the two sides of the layout is a track which can be connected to frame or equipment ground, this can be seen as the boundary between the logic and EIA-232-D side of the device. No other rules or speed conditions need to be applied other than to keep the two halves' separation to a maximum.


An example of a DTE application circuit is shown in figure 2. The schematic is illustrative of the way the NM232DDC may be connected to implement an isolated EIA-232-D interface with a typical UART and processor bus. Precise circuitry will depend on the application and in particular the use of the control lines shown will need to be altered to suit the situation.

The ENABLE control line (pin 11), puts the receiver output pins 1 and 12 into a high impedance state when set to a high level. The shutdown control line (pin 3) sets the device into a shutdown power mode when it is at high logic level. The maximum power drawn in shutdown mode is 50µW, a low enough level for consideration in battery powered equipment.

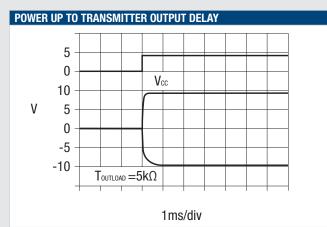
#### Where to use the NM232DDC

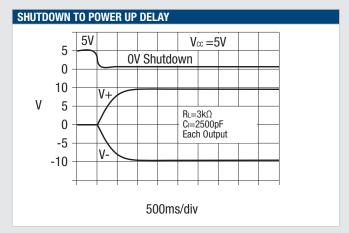
The function of the NM232DDC is to provide an isolated signal path between a UART or similar device and the EIA-232-D interface 'D' connector, providing two receivers and two transmitters which can be used in a number of handshake modes. One receiver and transmitter will normally be used for the signal lines and the remaining pair will act as handshake lines. Figure 3 shows simply where the device will be connected.

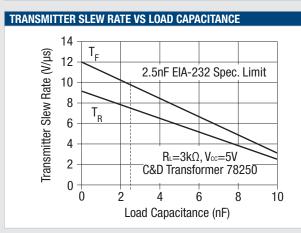
More complicated schemes for controlled signal interchange will require two or more such devices. As the devices are self contained no external DC/DC converter is required. The enable line provides a means for creating a communications bus where each NM232DDC can have a different logical address via a decoder. This would allow one UART to talk with many EIA-232-D connected interfaces (see figure 4).

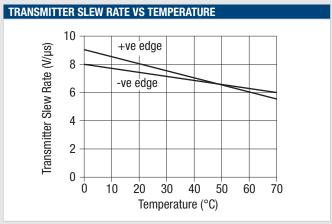


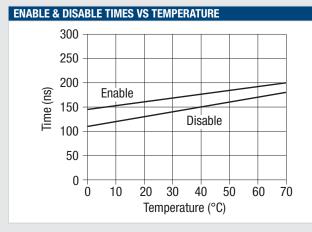
### **ROHS COMPLIANCE INFORMATION**

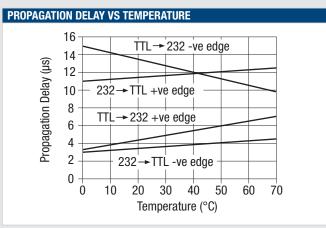




This series is compatible with RoHS soldering systems with a peak wave solder temperature of 300°C for 10 seconds. The pin termination finish on this product series is Matte Tin over Nickel Preplate. The series is backward compatible with Sn/Pb soldering systems.

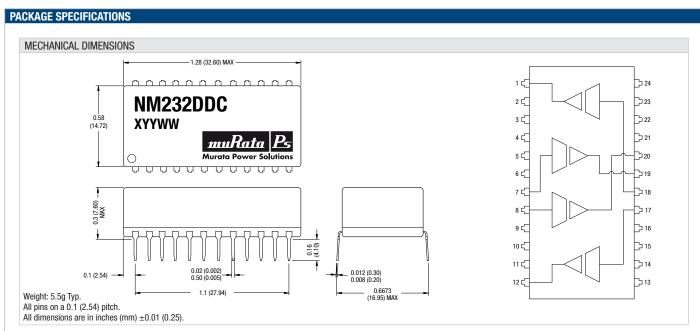

For further information, please visit www.murata-ps.com/rohs


Isolated Dual EIA-232-D Transmitter and Receiver

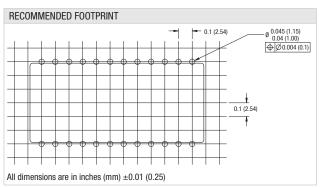

### TYPICAL OPERATING CHARACTERISTICS

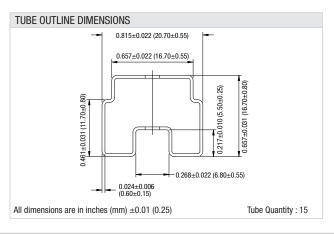







Isolated Dual EIA-232-D Transmitter and Receiver



| PIN ( | PIN CONNECTIONS   |                                                            |  |  |  |
|-------|-------------------|------------------------------------------------------------|--|--|--|
| Pin   | Function          | Description                                                |  |  |  |
| 1     | R1 оит            | Receiver output number 1, TTL/CMOS logic                   |  |  |  |
| 2     | NC                | No internal connection                                     |  |  |  |
| 3     | SHUTDOWN          | SHUTDOWN input, High=SHUTDOWN, Low=normal operation        |  |  |  |
| 4     | NC                | No internal connection                                     |  |  |  |
| 5     | Vcc               | +5V supply                                                 |  |  |  |
| 6     | NC                | No internal connection                                     |  |  |  |
| 7     | T2 <sub>IN</sub>  | Transmitter input number 2, TTL/CMOS logic                 |  |  |  |
| 8     | T1 <sub>IN</sub>  | Transmitter input number 1, TTL/CMOS logic                 |  |  |  |
| 9     | NC                | No internal connection                                     |  |  |  |
| 10    | GND               | Ground                                                     |  |  |  |
| 11    | ENABLE            | Output ENABLE, High-Hi Z on R1/R2out, low-normal operation |  |  |  |
| 12    | R2оит             | Receiver output number 2, TTL/CMOS logic                   |  |  |  |
| 13    | NC                | No internal connection                                     |  |  |  |
| 14    | NC                | No internal connection                                     |  |  |  |
| 15    | NC                | No internal connection                                     |  |  |  |
| 16    | +V <sub>REF</sub> | Isolated+V supply out internally connected to pin 21       |  |  |  |
| 17    | R2IN              | Receiver input number 2, RS232 levels                      |  |  |  |
| 18    | R1 <sub>IN</sub>  | Receiver input number 1, RS232 levels                      |  |  |  |
| 19    | Т2оит             | Transmitter output number 2, RS232 levels                  |  |  |  |
| 20    | Т1 оит            | Transmitter output number 1, RS232 levels                  |  |  |  |
| 21    | +V <sub>REF</sub> | Isolated +V supply out internally connected to pin 16      |  |  |  |
| 22    | ISO GND           | Isolated ground                                            |  |  |  |
| 23    | -V <sub>REF</sub> | Isolated +V supply out-                                    |  |  |  |
| 24    | NC                | No internal connection                                     |  |  |  |







### Isolated Dual EIA-232-D Transmitter and Receiver

### **TECHNICAL NOTES**

#### **ISOLATION VOLTAGE**

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions NM232DDC series of DC/DC converters are all 100% production tested at their stated isolation voltage. This is 1.5kVrms for 1 second.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

For a part holding no specific agency approvals, such as the NM232DDC series, both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier; but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements.

#### REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The NM232DDC series has toroidal isolation transformers, with no additional insulation between primary and secondary windings of enameled wire. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyurethane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

Murata Power Solutions, Inc.
11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A.
ISO 9001 and 14001 REGISTERED



This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>:

Refer to: http://www.murata-ps.com/requirements/

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical Information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not influe granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

### **ПОСТАВКА** ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

# Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

### http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

### Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru\_6 moschip.ru 4 moschip.ru 9