Evaluation Board for the ADG5249F, Overvoltage Protected Dual 4:1 Multiplexer

FEATURES

Supply voltages

Dual supply: $\pm 5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
Single supply: 8 V to 44 V
Protected against overvoltage on source pins
Signal voltages up to - $\mathbf{5 5} \mathrm{V}$ and +55 V
LEDs for visual overvoltage indication
Parallel interface compatible with 3 V logic
On-board LDO regulator for digital supply and control, if required

EVALUATION KIT CONTENTS

EVAL-ADG5249FEBZ evaluation board

DOCUMENTS NEEDED

ADG5249F data sheet
EVAL-ADG5249FEBZ user guide

EQUIPMENT NEEDED

DC voltage source

$\pm 22 \mathrm{~V}$ for dual supply
44 V for single supply
Optional digital logic supply: 3 V to 5 V
Analog signal source
Method to measure voltage, such as a digital multimeter (DMM)

GENERAL DESCRIPTION

The EVAL-ADG5249FEBZ is the evaluation board for the ADG5249F, which features an overvoltage protected dual 4:1 multiplexer. The ADG5249F has overvoltage detection and protection circuitry on the source pins and is protected against signals up to -55 V and +55 V in both the powered and unpowered states.

Figure 1 shows the EVAL-ADG5249FEBZ in a typical evaluation setup. The ADG5249F is soldered to the center of the evaluation board and wire screw terminals are provided to connect to each of the source and drain pins. Three screw terminals power the device, with a fourth terminal used to provide a user defined digital logic supply voltage, if required. Alternatively, a low dropout (LDO) regulator is provided for 5 V digital logic supply and to supply the LEDs, which are mounted to provide visual indication of the fault status of the switch.

Full specifications on the ADG5249F are available in the product data sheet, which should be consulted in conjunction with this user guide when using the evaluation board.

TABLE OF CONTENTS

Features 1
Evaluation Kit Contents 1
Documents Needed 1
Equipment Needed 1
General Description 1
Revision History 2
Evaluation Board Connection Diagram 3
Getting Started 4
Evaluation Board Setup Procedure 4
Evaluation Board Hardware 5
Power Supply 5
Input Signals. 5
Output Signals 5
Jumper Settings 6
Switches and 0Ω Resitors 6
SMB Connectors. 6
Evaluation Baord Schematics and Artwork 7
Ordering Information 15
Bill of Materials 15

REVISION HISTORY

9/15—Revision 0: Initial Version

EVALUATION BOARD CONNECTION DIAGRAM

Figure 1. The EVAL-ADG5249FEBZ (on the Right), Power Supply (on the Top Right), and Signal Generator (on the Left)

GETTING STARTED

EVALUATION BOARD SETUP PROCEDURE

The EVAL-ADG5249FEBZ evaluation board is designed to operate independently and does not require any additional evaluation boards or software to operate. An on-board LDO regulator is provided as the digital power supply for the LEDs and to manually control the ADG5249F.
Supply the evaluation board with a dual supply power source of up to $\pm 22 \mathrm{~V}$ or a single supply power source of up to 44 V by connecting VSS and GND.

A simple functionality test can be set up as follows:

1. Connect a power supply to J5. Connect VSS and GND together if a single supply is required.
2. Ensure a 0Ω resistor is inserted into R18 to use the on-board LDO regulator and that a 0Ω resistor is inserted into R20.
3. SW1 through SW3 control the digital signals for the ADG5249F.
4. LED1 and LED3 illuminate green, indicating that the mux is operating normally.

Figure 2. EVAL-ADG5249FEBZ Block Diagram

EVALUATION BOARD HARDWARE

Evaluate the operation of the ADG5249F using the EVALADG5249FEBZ. Figure 1 shows a typical evaluation setup where only a power supply and signal generator are required. Figure 2 shows the block diagram of the main components of the evaluation board.
In this evaluation board, the ADG5249F is used to pass signals from either the source or drain connectors. The source pins have fault detection circuitry that react to an overvoltage event. During an overvoltage event, the channel where the fault occurs turns off, and the FF pin pulls low. When an overvoltage event occurs on the selected source of A0/F0, A1/F1, and EN/F2, the SF pin pulls low. See the ADG5249F data sheet for more details.

POWER SUPPLY

Connector J5 provides access to the supply pins of the ADG5249F. VDD, GND, and VSS link to the appropriate pins on the ADG5249F. For dual supply voltages, the evaluation board can be powered from $\pm 5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$. For single supply voltages, the GND and VSS terminals must be connected together and power the evaluation board with 8 V to 44 V . Additionally, an on-board LDO regulator is provided for digital control voltage. If necessary, a secondary voltage source can connect to EXT_VL and control the digital voltages. To use EXT_VL, move the 0Ω resistor from R20 to R21. Do not expose the on-board LDO regulator to voltages greater than 28 V . Remove R18 and supply an alternative digital voltage via EXT_VL, if required.

INPUT SIGNALS

Two screw connectors are provided to connect to both the source and drain pins of the ADG5249F. Additional subminiature version B (SMB) connector pads are available if extra connections are required. The ADG5249F is overvoltage protected on the source side and each source terminal (S 1 to S 8) is protected against voltages greater than the secondary supply rails, up to +55 V or -55 V . See the ADG5249F data sheet for more details.

Each trace on the source and drain side includes two sets of 0603 pads, which can place a load on the signal path to ground. A 0Ω resistor is placed in the signal path and can be replaced with a user defined value. The resistor combined with the 0603 pads can create a simple resistor/capacitor (RC) filter.
The ADG5249F uses a parallel interface to control the operation of the switches. The switch operation can be manually controlled using the switches SW1 to SW3. However, an external controller can be interfaced directly to the control pins using the SMB connectors A0/F0, A1/F1, and EN/F2 by removing the 0Ω resistors R38, R51, and R52.

OUTPUT SIGNALS

There are two outputs on the ADG5249F. The FF pin indicates when the device is operating normally or whether there is an overvoltage fault on one of the source pins. The SF pin also indicates when an overvoltage occurs on one of the source pins and transitions low only when an overvoltage occurs on the channel selected by the A0/F0, A1/F1, and EN/F2 inputs.
For visual indication, LEDs are mounted on the evaluation board. When the device is operating normally, the FF and SF pins remain high and LED1 and LED3 are illuminated green. If an overvoltage occurs at any of the source pins, the FF pin pulls low and LED2 illuminates red. If an overvoltage occurs at the source pin selected by A0/F0, A1/F1, and EN/F2, the SF pin pulls low and LED4 illuminates red.

SMB connectors are provided to interface the evaluation board with external controllers.

JUMPER SETTINGS

SWITCHES AND 0Ω RESITORS

The switches control the ADG5249F manually and 0Ω resistors configure the digital control voltage, the voltage present on POSFV and NEGFV, and isolate the LED from the rest of the system. Table 2 shows a summary of the switches and 0Ω resistors and how they are used on the evaluation board.

Use SW2 to SW4 to control the switches of the ADG5249F.
Position L is tied to GND and sets the logic low, and Position H is tied to VL and sets the logic high.
Use SW1 to enable or disable the device. Position DIS is tied to GND and disables the device, and Position EN is tied to VL and enables the device.

Table 1. ADG5249F Switch Selection Truth Table

SW1 (EN)	SW2 (A0)	SW3 (A1)	On Switch Pair
DIS	X 1	X 1	All switches off
EN	L	L	S1x
EN	H	L	S2x
EN	L	H	S3x
EN	H	H	S4x

${ }^{1} \mathrm{X}$ means don't care.
R18 connects the on-board LDO regulator to the VDD supply. Remove this header to protect the LDO regulator from voltages higher than 28 V . Move the 0Ω resistors, R20 and R21, to use an alternative digital voltage connected to EXT_VL.
Resistors R14, R36, R47, and R48 connect the LEDs to the digital power supply; R37 and R50 connect the FF and SF pins of the ADG5249F to the LED controls.

Resistors R34, R39, and R41 configure POSFV to either the voltage present on POSFV on J6, VDD, or VL. Resistors R35, R40, and R42 configure NEGFV to either VSS, the voltage present on NEGFV on J6, or GND.

SMB CONNECTORS

The parallel interface of the ADG5249F is controlled manually using the link headers of SW1 to SW3, or it can be accessed using the SMB connectors, EN/F2, A $0 / \mathrm{F} 0$, and A1/F1. To use the SMB connectors, remove the 0Ω resistors R54, R57, and R55. The FF/SF SMB connectors access the FF/SF digital outputs from the ADG5249F.

Table 2. Switch and 0Ω Resistor Descriptions

Label	Position	Description
SW1	EN	Logic 1 on EN/F2 pin
	DIS	Logic 0 on EN/F2 pin
SW2	L	Logic 0 on A0/FO pin
	H	Logic 1 on A0/F0 pin
SW3	L	Logic 0 on A1/F1 pin
	H	Logic 1 on A1/F1 pin
$\begin{aligned} & \text { R35/R40/ } \\ & \text { R42 } \end{aligned}$	R35	NEGFV set to VSS
	R40	NEGFV set to voltage on J6 NEGFV screw terminal
	R42	NEGFV set to GND
$\begin{aligned} & \text { R34/R39/ } \\ & \text { R41 } \end{aligned}$	R34	POSFV set to voltage on J6 POSFV screw terminal
	R39	POSFV set to VDD
	R41	POSFV set to VL
R20/R21	R20	On-board LDO regulator digital voltage
	R21	EXT_VL digital voltage
R18	Inserted	LDO regulator powered up
	Removed	LDO regulator unpowered
R37 and R50	Inserted	FF/SF pin connected to LED
	Removed	FF/SF pin disconnected from LED
R14, R36, R47 and R48	Inserted	LED connected to digital supply
	Removed	LED isolated

EVALUATION BAORD SCHEMATICS AND ARTWORK

Figure 3. ADG5249F Evaluation Board Schematic (Part 1)

Figure 4. ADG5249F Evaluation Board Schematic (Part 2)

EVAL-ADG5249FEBZ User Guide UG-878

Figure 5. ADG5249F Evaluation Board Schematic (Part 3)

Figure 6. EVAL-ADG5249FEBZ Silk Screen

Figure 7. EVAL-ADG5249FEBZ Top Layer

Figure 8. EVAL-ADG5249FEBZ Layer 2

Figure 9. EVAL-ADG5249FEBZ Layer 3

Figure 10. EVAL-ADG5249FEBZ Bottom Layer

ORDERING INFORMATION

BILL OF MATERIALS

Table 3.

Legal Terms and Conditions
By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY.THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED"AS IS"AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KINDWITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENTWILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:
105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»
Телефон: +7 495 668-12-70 (многоканальный)
Факс: +7 495 668-12-70 (доб.304)
E-mail: info@moschip.ru
Skype отдела продаж:
moschip.ru
moschip.ru_6
moschip.ru_4
moschip.ru_9

