

- Integrated pressure, humidity and temperature sensor
- QFN package 5 x 3 x 1 mm³
- Operating range: 10 to 2000 mbar, 0%RH to 100%RH, -40 to 85 °C
- High-resolution module: 0.016 mbar, 0.04%RH, 0.01°C
- Supply voltage: 1.5 to 3.6 V
- Fully factory calibrated sensor
- I²C interface

DESCRIPTION

The MS8607 is the novel digital combination sensor of MEAS providing 3 environmental physical measurements all-in-one: pressure, humidity and temperature (PHT). This product is optimal for applications in which key requirements such as ultra low power consumption, high PHT accuracy and compactness are critical. High pressure resolution combined with high PHT linearity makes the MS8607 an ideal candidate for environmental monitoring and altimeter in smart phones and tablet PC, as well as PHT applications such as HVAC and weather stations. This new sensor module generation is based on leading MEMS technologies and latest benefits from Measurement Specialties proven experience and know-how in high volume manufacturing of sensor modules, which has been widely used for over a decade.

FEATURES

TECHNICAL DATA

Sensor Performances (V _{DD} = 3 V)										
Characteristics	Pressure [mbar]			Rela	Relative Humidity [%RH]			Temperature [°C]		
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Max. Operating Range	10		2000	0		100	-40		+85	
		3001100mb	ar		2080%RH		@ 25°C			
Absolute Accuracy @25°C	-2		2	-3		3	-1		1	
Resolution (highest mode)		0.016			0.04			0.01		

FIELD OF APPLICATION

- Smart phones and Tablet PCs
- HVAC applications
- Weather station
- Printers
- Home Appliance and humidifiers

PERFORMANCE SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage	V _{DD}		-0.3		3.6	V
Storage temperature	Ts		-20		85	°C
Overpressure	P _{max}			6		bar
Maximum Soldering Temperature	T _{max}	40 sec max			250	°C
ESD rating		Human Body Model	-2		2	kV
Latch up		JEDEC standard No 78	-100		100	mA

ELECTRICAL CHARACTERISTICS

Parameter		General	electrical ch	naracteristics		
	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Supply voltage	V _{DD}		1.5	3.0	3.6	V
Operating Temperature	Т		-40	+25	+85	°C
VDD to GND Capacitor			220	470		nF
Supply current P or T (1 Pressure or temperature conversion per sec.)	Ірт	OSR 8192 4096 2048 1024 512 256		20.09 10.05 5.02 2.51 1.26 0.63		μΑ
Supply current H (1 humidity conversion per sec.)	I _H	OSR 8192 4096 2048 1024		6.22 3.11 1.56 0.78		μΑ
Peak supply current (during P or T conversion)				1.25		mA
Peak supply current (during humidity conversion)				0.45		mA
Standby supply current		@ 25°C, V _{DD} = 3V		0.03	0.24	μA

	Press	ure and	temperatu	ire		Relative hu	midity		
	Condition	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	
ADC Output Word			24			16		bit	
	OSR 8192		16.44	17.2		13.82	15.89		
	4096		8.22	8.61		6.98	8.03		
ADC Conversion time ⁽³⁾	2048		4.13	4.32		3.55	4.08		
	1024		2.08	2.17		1.84	2.12	ms	
	512		1.06	1.10		-	-		
	256		0.54	0.56		-	-		
Heater: power dissipation and temperature increase over humidity sensor						2 - 13 0.5 - 1.5		mW °C	
Low battery indicator accuracy		±50 (Typ.)							

(3): Maximum values must be applied to determine waiting times in I2C communication

PERFORMANCE SPECIFICATIONS (CONTINUED)

PHT CHARACTERISTICS (V_{DD} = 3.0 V, T = 25 °C UNLESS OTHERWISE NOTED)

		I	Pressure [mba	ır]	Relativ	e Humidity	/ [%RH]	Т	emperature [°C]	
		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Operating R Extended Ra	ange ange ⁽⁴⁾	300 10		1200 2000	0		100	-40		85	
Absolute Ac	curacy	:	3001100 mba	ar	2	20 …80%R	H		@25°C		
@25°C		-2		2	-3		3	-1		1	
Absolute Ac	curacy	3001100mbar, -2085°C				595%R⊦	l		-2085°C		
Absolute Ac	curacy	-4		4	-5	-5 5		-2		2	
Relative Acc	curacy	7	001000 mbai	r ⁽⁵⁾							
@25°C			±0.1 ⁽⁶⁾								
	OSR 8192		0.016			0.04			0.002		
	4096		0.021			-			0.003		
Resolution	2048		0.028			-			0.004		
RMS ⁽⁷⁾	1024		0.039			0.7			0.006		
	512		0.062						0.009		
	256		0.11						0.012		
Maximum er supply voltage			±0.5			±0.25			±0.3		
(Condition)	ye				(V _{DI}	₀= 1.5 V …	. 3.6 V)				
Long-term s	tability		±1 / year			±0.5 / year	r		±0.3 / year		
Reflow solde	ering impact		-0.6			2			·		
Recovering reflow ⁽⁸⁾	time after		5 days			5 days					
Response T	ime		< 5ms			5 sec.					
(Condition)						6 of signal re 33%RH to 7	• •				
(Condition)						3m/s air flo					

(4): Linear range of ADC

(5): Auto-zero at one pressure point(6): Characterized value performed on qualification devices

(7): Characterization performed sequentially (P&T conversion followed by H conversion)

(8): Recovering time at least 66% of the reflow impact

DIGITAL INPUTS (SDA, SCL)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Serial data clock	SCL				400	kHz
Input high voltage	V _{IH}		80% V _{DD}		100% V _{DD}	V
Input low voltage	VIL		0% V _{DD}		20% V _{DD}	V

DIGITAL OUTPUTS (SDA)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Output high voltage	V _{OH}	I _{source} = 1 mA	80% V _{DD}		$100\% V_{DD}$	V
Output low voltage	V _{OL}	I _{sink} = 1 mA	0% V _{DD}		20% V _{DD}	V
Load Capacitance	C _{LOAD}			16		pF

PERFORMANCE CHARACTERISTICS

PHT ACCURACY AND PHT ERROR VERSUS SUPPLY VOLTAGE (TYPICAL)

FUNCTIONAL DESCRIPTION

GENERAL

The MS8607 includes two sensors with distinctive MEMS technologies to measure pressure, humidity and temperature. The first sensor is a piezo-resistive sensor providing pressure and temperature. The second sensor is a capacitive type humidity sensor providing relative humidity. Each sensor is interfaced to a $\Delta\Sigma$ ADC integrated circuit for the digital conversion. The MS8607 converts both analog output voltages to a 24-bit digital value for the pressure and temperature measurements, and a 12-bit digital value for the relative humidity measurement.

SERIAL I²C INTERFACE

The external microcontroller clocks in the data through the input SCL (Serial CLock) and SDA (Serial DAta). Both sensors respond on the same pin SDA which is bidirectional for the I^2C bus interface. Two distinct I^2C addresses are used (one for pressure and temperature, the other for relative humidity, see Figure 2).

Module reference	Mode	Pins used
MS860702BA01	I ² C	SDA, SCL

Figure 1: Communication Protocol and pins

Sensor type	I ² C address (binary value)	I ² C address (hex. value)
Pressure and Temperature P&T	1110110	0x76
Relative Humidity RH	100000	0x40

Figure 2: I²C addresses

COMMANDS FOR PRESSURE AND TEMPERATURE

For pressure and temperature sensing, five commands are possible:

- 1. Reset
- 2. Read PROM P&T (112 bit of calibration words)
- 3. D1 conversion
- 4. D2 conversion
- 5. Read ADC (24 bit pressure / temperature)

Each command is represented over 1 byte (8 bits) as described in Figure 3. After ADC read commands, the device will return 24 bit result and after the PROM read 16 bit results. The address of the PROM is embedded inside of the read PROM P&T command using the a2, a1 and a0 bits.

	Comma	and byte							hex value
Bit number	7	6	5	4	3	2	1	0	
Bit name	PROM	CONV	-	Тур	Ad2/ Os2	Ad1/ Os1	Ad0/ Os0	Stop	
Command									
Reset	0	0	0	1	1	1	1	0	0x1E
Convert D1 (OSR=256)	0	1	0	0	0	0	0	0	0x40
Convert D1 (OSR=512)	0	1	0	0	0	0	1	0	0x42
Convert D1 (OSR=1024)	0	1	0	0	0	1	0	0	0x44
Convert D1 (OSR=2048)	0	1	0	0	0	1	1	0	0x46
Convert D1 (OSR=4096)	0	1	0	0	1	0	0	0	0x48
Convert D1 (OSR=8192)	0	1	0	0	1	0	1	0	0x4A
Convert D2 (OSR=256)	0	1	0	1	0	0	0	0	0x50
Convert D2 (OSR=512)	0	1	0	1	0	0	1	0	0x52
Convert D2 (OSR=1024)	0	1	0	1	0	1	0	0	0x54
Convert D2 (OSR=2048)	0	1	0	1	0	1	1	0	0x56
Convert D2 (OSR=4096)	0	1	0	1	1	0	0	0	0x58
Convert D2 (OSR=8192)	0	1	0	1	1	0	1	0	0x5A
ADC Read	0	0	0	0	0	0	0	0	0x00
PROM Read P&T	1	0	1	0	Ad2	Ad1	Ad0	0	0xA0 to 0xAE

Figure 3: Command structure for pressure and temperature sensing

COMMANDS FOR RELATIVE HUMIDITY

For relative humidity sensing, six commands are possible:

- 1. Reset
- 2. Write user register
- 3. Read user register
- 4. Measure RH (Hold master)
- 5. Measure RH (No Hold master)
- 6. PROM read RH

Each I2C communication message starts with the start condition and it is ended with the stop condition. The I²C address for humidity sensing is 1000000. The address of the PROM is embedded inside of the PROM read command using the a2, a1 and a0 bits. Figure 4 shows the commands with their respective code:

	8 bi	ts Co	mman	d					hex value
Bit number	7	6	5	4	3	2	1	0	
Command :									
1. Reset	1	1	1	1	1	1	1	0	0xFE
2. Write user register	1	1	1	0	0	1	1	0	0xE6
3. Read user register	1	1	1	0	0	1	1	1	0xE7
4. Measure RH (Hold master)	1	1	1	0	0	1	0	1	0xE5
5. Measure RH (No Hold master)	1	1	1	1	0	1	0	1	0xF5
6. PROM read RH	1	0	1	0	adr2	adr1	adr0	0	0xA0 to 0xAE

Figure 4: command structure for relative humidity sensing

USER REGISTER

The user register is used to configure several operating modes of the humidity sensor (resolution measurements, heater) and monitor the battery state. The possible configurations of the user register are described in the table below.

User register Bit	Bit Confi	guration/Cod	ing		Default value
bit 7, bit 0	Measure	ment resolution	on		,00,
	Bit 7	Bit 0	OSR	Resolution	
	0	0	4096	Highest	
	0	1	2048		
	1	0	1024		
	1	1	256	Lowest	
bit 6	Battery st	tate:			·(0,
Sit 0	'0' VDD>				0
	'1' VDD<	-			
bit 3,4,5	Reserved	ł			'000'
bit 2	on-chip h	eater:			
	'0' heater	disabled			ʻ0'
	'1' heater	enabled			
bit 1	Reserved	ł			·O'

Figure 5: description of the user register

- Bit 7 and bit 0 configure the measurement resolution (highest resolution OSR 4096, lowest OSR 256).
- Bit 6 refers to the "Battery state", which can be monitored.
- Bits 1,3,4,5 are reserved bits, which must not be changed and default values of respective reserved bits may change over time without prior notice. Therefore, for any writing to user register, default values of reserved bits must be read first.
- Bit 2 configures the heater. It can be used for functionality diagnosis: relative humidity drops upon rising temperature. The heater consumes about 5.5mW and provides a temperature increase of approximatively 0.5-1.5°C over the humidity sensor.

PRESSURE AND TEMPERATURE CALCULATION

		a (factory calibrat	ed) from P	ROM										
Variable	Description Equation	Recommended	Size [1]	Va	alue	Example /								
Variable		variable type	[bit]	min	max	Typical								
C1 Pressure sensitivity SENS T1 unsigned int 16 16 0 65535														
C2	Pressure offset OFF T1	unsigned int 16	16	0	65535	43981								
C2 Pressure offset OFF _{T1} unsigned int 16 16 0 65535 C3 Temperature coefficient of pressure sensitivity TCS unsigned int 16 16 0 65535														
C4	Temperature coefficient of pressure offset TCO	unsigned int 16	16	0	65535	27842								
C5	Reference temperature T REF	unsigned int 16	16	0	65535	31553								
C6	Temperature coefficient of the temperature TEMPSENS	unsigned int 16	16	0	65535	28165								
	Read digital pre	ssure and tempe	rature data	a										
D1	Digital pressure value	unsigned int 32	24	0	16777215	6465444								
D2	Digital temperature value	unsigned int 32	24	0	16777215	8077636								

Start Maximum values for calculation results:

	Calcı	late temperature)			
dT	Difference between actual and reference temperature $^{[2]}$ dT = D2 - T _{REF} = D2 - C5 * 2 ⁸	signed int 32	25	-16776960	16777215	68
TEMP	Actual temperature (-4085°C with 0.01°C resolution) $TEMP = 20°C + dT * TEMPSENS = 2000 + dT * C6 / 2^{23}$	signed int 32	41	-4000	8500	2000 = 20.00 °C

Ţ

	Calculate tempera	ture compensat	ed pres	sure		
OFF	Offset at actual temperature ^[3] $OFF = OFF_{T1} + TCO^* dT = C2^* 2^{17} + (C4^* dT)/2^6$	signed int 64	41	-17179344900	25769410560	5764707214
SENS	Sensitivity at actual temperature ^[4] SENS = SENS _{T1} + TCS * dT = $C1 * 2^{16} + (C3 * dT)/2^7$	signed int 64	41	-8589672450	12884705280	3039050829
Ρ	Temperature compensated pressure (101200mbar with 0.01mbar resolution) $P = D1 * SENS - OFF = (D1 * SENS / 2^{21} - OFF) / 2^{15}$	signed int 32	58	1000	120000	110002 = 1100.02 mbar

Pressure and temperature value first order

Notes [1] [2] [3] [4]

- Maximal size of intermediate result during evaluation of variable min and max have to be defined
- min and max have to be defined
- min and max have to be defined

Figure 6: Flow chart for pressure and temperature reading and software compensation.

PRESSURE COMPENSATION (SECOND ORDER OVER TEMPERATURE)

In order to optimize the accuracy over temperature range at low temperature, it is recommended to compensate the pressure non-linearity over the temperature. This can be achieved by correcting the calculated temperature, offset and sensitivity by a second-order correction factor. The second-order factors are calculated as follows:

Figure 7: Flow chart for pressure and temperature to the optimum accuracy.

RELATIVE HUMIDITY CALCULATION


```
Notes
[1]
```

Maximal size of intermediate result during evaluation of variable

Figure 8: Flow chart for humidity reading.

To accommodate any process variation (nominal capacitance value of the humidity sensor), tolerances of the sensor above 100%RH and below 0%RH must be considered. As a consequence:

- 118%RH corresponds to 0xFF which is the maximum RH digital output that can be sent out from the ASIC. RH output can reach 118%RH and above this value, there will have a clamp of the RH output to this value.
- -6%RH corresponds to 0x00 which is the minimum RH digital output that can be sent out from the ASIC. RH output can reach -6%RH and below this value, there will have a clamp of the RH output to this value.

The relative humidity is obtained by the following formula (result in %RH):

$$RH = \left(-6 + 125 \cdot \frac{D3}{2^{16}}\right)$$

As example, the transferred 16-bit relative humidity data 0x7C80: 31872 corresponds to a relative humidity of 54.8%RH.

Finally, 1st order temperature compensation is computed for optimal accuracy over $[0...+85^{\circ}C]$ temperature range. The final compensated relative humidity value $RH_{compensated}$ is calculated as:

$$RH_{compensated} = RH + (20 - TEMP) \cdot T_{coeff}$$

TEMP	Temperature calculated on p.9	unit [°C]
T_{coeff}	Temperature correction coefficient	unit [%RH / °C]

Optimal relative humidity accuracy over $[0...+85^{\circ}C]$ temperature range is obtained with $T_{coeff} = -0.18$

APPLICATION CIRCUIT

The MS8607 is a circuit that can be used in conjunction with a microcontroller by I2C protocol interface. It is designed for low-voltage systems with a supply voltage of 3 V and can be used in industrial pressure / humidity / temperature applications.

I²C protocol communication

Figure 9: Typical application circuit

I²C INTERFACE: PRESSURE AND TEMPERATURE

COMMANDS

Each I^2C communication message starts with the start condition and it is ended with the stop condition. The I^2C address for pressure and temperature sensing is 1110110. The description of the commands related to pressure and temperature sensing is detailed on p. 5.

RESET SEQUENCE

The Reset sequence shall be sent once after power-on to make sure that the calibration PROM gets loaded into the internal register. It can be also used to reset the device PROM from an unknown condition.

The reset can be sent at any time. In the event that there is not a successful power on reset this may be caused by the SDA being blocked by the module in the acknowledge state. The only way to get the ASIC to function is to send several SCLs followed by a reset sequence or to repeat power on reset.

PROM READ P&T SEQUENCE

The read command for PROM shall be executed once after reset by the user to read the content of the calibration PROM and to calculate the calibration coefficients. There are in total 7 addresses resulting in a total memory of 112 bit. The addresses contain factory data and the setup, calibration coefficients, the serial code and CRC (see details on p. 15, Figure 22). The command sequence is 8 bits long with a 16 bit result which is clocked with the MSB first. The PROM Read command consists of two parts. First command sets up the system into PROM read mode (Figure 11). The second part gets the data from the system (Figure 12).

	1					1 ess		0	0	1	0			0 nar		1	0	0										
		_		-									_	-						_								
S		De	evic	e A	ddr	ess		W	Α			С	md	byt	е			Α	۱ŀ	<u> </u>								
	Fro	om	Ma	ster			S =	St	art	Cor	ndit	ion				W	= \	Nrit	te		А	= /	Ack	no	wle	edge	Э	
	Fro	om	Sla	ve			P =	St	ор (Cor	nditi	on				R =	= R	eac	t		Ν	=	Not	: Ao	ckn	owl	ed	ge

Figure 11: I²C Command to read P&T memory PROM address 0xA6

		x x x x x	X X X 0	X X X X X X X X	0									
Device Address data data S Device Address R A Memory bit 15 - 8 A Memory bit 7 - 0 N F														
From Master From Slave	S = Start P = Stop	Condition Condition	W = Wri R = Rea		age									

CONVERSION SEQUENCE

The conversion command is used to initiate uncompensated pressure (D1) or uncompensated temperature (D2) conversion. After the conversion, using ADC read command the result is clocked out with the MSB first. If the conversion is not executed before the ADC read command, or the ADC read command is repeated, it will give 0 as the output result. If the ADC read command is sent during conversion the result will be 0, the conversion will not stop and the final result will be wrong. Conversion sequence sent during the already started conversion process will yield incorrect result as well. A conversion can be started by sending the command to the ASIC. When the command is sent to the system it stays busy until conversion is done. When conversion is finished, the data can be accessed by sending a Read command. When the Acknowledge bit is sent from the ASIC, 24 SCL cycles may be sent to receive all result bits. Every 8 bits the system waits for the Acknowledge bit.

1 1 1 0 1 1	000	0 1 0 0 1 0	0 0 0	
Device Addres	s	command		
S Device Addres	ss W A	cmd byte	A P	
From Master From Slave	S = Start P = Stop		W = Write R = Read	A = Acknowledge N = Not Acknowledge

Figure 13: I²C command to initiate a pressure conversion (OSR=4096, typ=D1)

1 1 1 Devic	0 1 e Addres		0	0	0 0		0 omr			0	0	0		_	
S Devic	e Addres	SS	W	Α		С	md	byt	е			Α	Ρ		
From Ma					Condi Condi					W R =	-		-		A = Acknowledge N = Not Acknowledge

Figure 14: I²C ADC read sequence

1 1 1 0 1	1 0 1	0	Х	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х	Х	Х	Х	X	X	0

Device Addres	6								
S Device Addres	s R	А	Data 23 -	16	А	Data 15 - 8	Α	Data 7 - 0	NP
From Master	-		t Condition	W = V R = R		A = Acknowledge N = Not Acknowle			

Figure 15: I²C answer from the ASIC

I²C INTERFACE: RELATIVE HUMIDITY

COMMANDS

Each I2C communication message starts with the start condition and it is ended with the stop condition. The I2C address for humidity sensing is 1000000. The description of the commands related to humidity sensing is detailed on p. 6.

RESET SEQUENCE

This command is used for rebooting the humidity sensor by switching the power off and on again. Upon reception of this command, the humidity sensor system reinitializes and starts operation according to the default settings with the exception of the heater bit in the user register. The reset takes less than 15ms.

	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0						
		Dev	vice	A	ddre	ess						С	omr	mar	nd									
S		Dev	vice	A e	ddre	ess		W	А			С	md	by	te			А	Ρ					
	Fr	om	Ма	ste	r		S	= S	tart	Co	ond	itio	n			W	= \	N rit	te	A = A	ckno	wled	lge	
	Fr	om	Sla	ve			P	= S	top	Сс	ond	itio	n			R :	= R	ead	d	N = Nc	ot Ad	ckno	wlec	lge

Figure 16: I²C Reset Command

READ AND WRITE USER REGISTER SEQUENCE

The following sequence illustrates how to read and write the user register. First, it reads the content of the user register. Then it writes the user register for configuring the humidity sensor to 8 bits measurement resolution from the default configuration.

	1	0	0	0	0	0	0	0	0	1	1	1	0	0	1	1	1	0										
		De	evic	e A	ddr	ess						С	omr	nar	nd													
S		De	evic	e A	ddr	ess		W	Α			С	md	by	te			А										
										-																		
	1	0	0	0	0	0	0	1	0	Х	Х	Х	Х	Х	Х	Х	Х	0										
		De	evic	e A	ddr	ess																						
S		De	evic	e A	ddr	ess		R	А	Us	er	Reg	giste	er D	Data	a 7	- 0	Ν										
	1	0	0	0	0	0	0	0	0	1	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	
		De	evic	e A	ddr	ess						С	omr	nar	nd													
S		De	evic	e A	ddr	ess		W	Α			С	md	by	te			А	Us	er l	Reg	gist	er D	Data	a 7	- 0	А	Р
	Fr	om	M	aste	er		S	= S	tar	t Co	ond	litio	n			W	= \	N rit	е		A :	= A	ckr	now	/led	ge		
	Fr	om	ı Sl	ave			P	= S	top	Co	ond	itio	n			R	= R	ead	ł		N :	= N	ot /	Ack	nov	wle	dge	÷

	2			
Liaura 17	14C rood	and write	user register	, aammanda
FIGURE 17	т с. геао	and write	user redister	commanos
i iguio i i .	101000		abor regiotor	oominanao

MEASURE RH HOLD/NO HOLD SEQUENCE

MS8607 has two different operation modes to measure relative humidity (RH): Hold Master mode and No Hold Master mode.

No Hold Master mode allows for processing other I²C communication tasks on a bus while the humidity sensor is measuring. Figure 18 and 19 illustrate the communication sequence of both modes. In the Hold Master mode, the humidity sensor pulls down the SCK line while measuring to force the master into a wait state. By releasing the SCK line, the humidity sensor indicates that internal processing is completed and that transmission may be continued.

In the No Hold Master mode, the MCU has to poll for the termination of the internal processing of the humidity sensor. This is done by sending a start condition followed by the I²C header (0x81) as shown below. If the internal processing is finished, the humidity sensor acknowledges the poll of the MCU and data can be read by the MCU. If the measurement processing is not finished, the humidity sensor answers the Not Acknowledge bit and start condition must be issued once more.

For both modes, the measurement is stored into 14 bits. The two remaining least significant bits (LSBs) are used for transmitting status information. Bit1 of the two LSBs must be set to '1'. Bit0 is currently not assigned.

1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 Device Address command	0										
S Device Address W A cmd byte	A										
1 0 0 0 0 0 0 1 0 Device Address Hold during measurement	x x x x x x x x x 0 x x x x x x 1 0 0										
S Device Address R A	Data 15 - 8 A Data 7 - 2 Status A										
From Slave	$ S = Start \ Condition W = Write A = Acknowledge \\ P = Stop \ Condition R = Read N = Not \ Acknowledge $										
Checksum NP On hold Figure 18: I ² C Measure RH Hold Master communication sequence											

10000000	1 1 1 1 0 1 0 1 0									
Device Address	command									
S Device Address W	cmd byte A									
1 0 0 0 0 0 1) X X X X X X X 0 X X X X X X 1 0 0 1 0 0 1 0 1	1 0								
Device Address										
S Device Address R	A Data 15 - 8 A Data 7 - 2 Status A Checksum	NP								
From Master S = Start Condition W = Write A = Acknowledge From Slave P = Stop Condition R = Read N = Not Acknowledge										

Figure 19: I²C Measure RH No Hold Master communication sequence

For Hold Master sequence, the Acknowledge bit that follows the Status bit may be changed to Not Acknowledge bit followed by a stop condition to omit checksum transmission.

For No Hold Master sequence, if measurement is not completed upon "read" command, sensor does not provide ACK on bit 27 (more of these iterations are possible). If bit 45 is changed to NACK followed by stop condition, checksum transmission is omitted.

Regarding the calculation of the relative humidity value, the Status bits must be set to '0'. Refer to "Conversion of signal outputs" section p. 10. The maximum duration for measurement depends on the type of measurement and resolution chosen. Maximum values shall be chosen for the communication planning of the MCU.

I²C communication allows for repeated start conditions without closing prior sequence with stop condition.

PROM READ RH SEQUENCE

The RH PROM memory contains 7 addresses resulting in a total memory of 112 bit. The addresses contain factory defined data and CRC (see details on p. 17, Figure 23). The command sequence is 8 bits long with a 16 bit result which is clocked with the MSB first. The RH PROM Read command consists of two parts. First command sets up the system into PROM read mode (Figure 20). The second part gets the data from the system (Figure 21).

	1	1	1	0	1	1	0	0	0	1	0	1	0	0	1	1	0	0						
		De	vice	e A	ddr	ess						СС	omr	nar	nd									
	S	De	vice	e A	ddr	ess		W	Α			C	md	byt	e			Α	Ρ					
Г		om l	Mag	tor			S =	. C+	art	Cor	adit	ion				۱۸/	_ \	Vrit	~	A = A	ckn	owlo	dao	
	Fro	om :	Slav	/e			3 = P =											ead		N = N			5	e

Figure 20: I²C Command to read memory address 0xA6

	1						0	1	0	Х	Х	Х		Х	Х	Х	0	Х	Х	Х		Х	Х	Х	0
Device Address data data S Device Address R A Memory bit 15 - 8 A Memory bit 7 - 0 N										ΝP															
	From Master $S = Si$ From Slave $P = Si$														W R =	-		-					ledo nov	,	lage

Figure 21: I²C answer from ASIC (Pressure and temperature)

CYCLIC REDUNDANCY CHECK (CRC)

MS8607 contains two separate PROM memories with identical size (112-Bit): one for pressure and temperature P&T (Figure 22), the other for relative humidity RH (Figure 23). Each PROM memory can be accessed using the I^2C commands PROM Read P&T and PROM Read RH (p. 6).

Address (Hex.)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xA0		CRC Factory defined														
0xA2		C1														
0xA4		C2														
0xA6								С	3							
0xA8								С	4							
0xAA		C5														
0xAC		C6														

Figure 22: P&T Memory PROM mapping for pressure and temperature

Address (Hex.)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xA0		Factory defined														
0xA2		Factory defined														
0xA4		Factory defined														
0xA6		Factory defined														
0xA8							Fa	ctory	defir	ned						
0xAA		Factory defined														
0xAC		Factory defined CRC														

Figure 23: RH Memory PROM mapping for relative humidity

A 4-bit CRC has been implemented to check the data integrity in both PROM memories. The C code below describes the CRC calculation for P&T Memory PROM and for RH Memory PROM.

C CODE EXAMPLE FOR CRC-4 CALCULATION (P&T MEMORY PROM)

```
unsigned char crc4_PT(unsigned int n_prom[])
                                                                      // n_prom defined as 8x unsigned int (n_prom[8])
int cnt;
                                                                      // simple counter
unsigned int n_rem=0;
                                                                      // crc remainder
unsigned char n_bit;
          n_prom[0]=((n_prom[0]) & 0x0FFF);
                                                                      // CRC byte is replaced by 0
          n_prom[7]=0;
                                                                      // Subsidiary value, set to 0
                                                                      // operation is performed on bytes
          for (cnt = 0; cnt < 16; cnt++)
                                                                      // choose LSB or MSB
                   {
                    if (cnt%2==1)
                                       n_rem ^= (unsigned short) ((n_prom[cnt>>1]) & 0x00FF);
                                        n_rem ^= (unsigned short) (n_prom[cnt>>1]>>8);
                    else
                    for (n_bit = 8; n_bit > 0; n_bit-)
                              if (n_rem & (0x8000))
                                                            n rem = (n rem << 1) ^ 0x3000;
                              else
                                                            n_rem = (n_rem << 1);
                              }
          n_rem= ((n_rem >> 12) & 0x000F);
                                                                      // final 4-bit remainder is CRC code
          return (n_rem ^ 0x00);
```

}

C CODE EXAMPLE FOR CRC-4 CALCULATION (RH MEMORY PROM)

```
unsigned char crc4_RH(unsigned int n_prom[])
                                                                      // n_prom defined as 8x unsigned int (n_prom[8])
{
int cnt;
                                                                       // simple counter
unsigned int n_rem=0;
                                                                      // crc remainder
unsigned char n_bit;
          n_prom[6]=((n_prom[6]) & 0xFFF0);
                                                                      // CRC byte is replaced by 0
          n_prom[7]=0;
                                                                      // Subsidiary value, set to 0
                                                                      // operation is performed on bytes
          for (cnt = 0; cnt < 16; cnt++)
                                                                      // choose LSB or MSB
                                        n_rem ^= (unsigned short) ((n_prom[cnt>>1]) & 0x00FF);
                    if (cnt%2==1)
                                        n_rem ^= (unsigned short) (n_prom[cnt>>1]>>8);
                    else
                    for (n_bit = 8; n_bit > 0; n_bit--)
                              if (n_rem & (0x8000))
                                                            n_rem = (n_rem << 1) ^ 0x3000;
                                                            n_{rem} = (n_{rem} << 1);
                              else
                              }
          n_rem= ((n_rem >> 12) & 0x000F);
                                                                      // final 4-bit remainder is CRC code
          return (n_rem ^ 0x00);
}
```


PIN CONFIGURATION

Pin	Nam	Туре	Function
1	VDD	Р	Positive supply voltage
3	GND	G	Ground
7	SDA	ю	I ² C data IO
8	SCL	I	Serial data clock
2,4,5,6	NC		

DEVICE PACKAGE OUTLINE

RECOMMENDED PAD LAYOUT

Pad layout for bottom side of the MS8607-02BA01 soldered onto printed circuit board.

SHIPPING PACKAGE

MOUNTING AND ASSEMBLY CONSIDERATIONS

SOLDERING

Please refer to the application note AN808 available on our website for all soldering issues.

MOUNTING

The MS8607 can be placed with automatic Pick & Place equipment using vacuum nozzles. It will not be damaged by the vacuum. Due to the low stress assembly the sensor does not show pressure hysteresis effects. It is important to solder all contact pads.

CONNECTION TO PCB

The package outline of the module allows the use of a flexible PCB for interconnection. This can be important for applications in watches and other special devices.

CLEANING

The MS8607 has been manufactured under cleanroom conditions. It is therefore recommended to assemble the sensor under class 10'000 or better conditions. Should this not be possible, it is recommended to protect the sensor opening during assembly from entering particles and dust. To avoid cleaning of the PCB, solder paste of type "no-clean" shall be used. Cleaning might damage the sensor!

ESD PRECAUTIONS

The electrical contact pads are protected against ESD up to 2 kV HBM (human body model). It is therefore essential to ground machines and personnel properly during assembly and handling of the device. The MS8607 is shipped in antistatic transport boxes. Any test adapters or production transport boxes used during the assembly of the sensor shall be of an equivalent antistatic material.

DECOUPLING CAPACITOR

Particular care must be taken when connecting the device to the power supply. A minimum 220nF ceramic capacitor must be placed as close as possible to the MS8607 VDD pin. This capacitor will stabilize the power supply during data conversion and thus, provide the highest possible accuracy.

ORDERING INFORMATION

Part Number / Art. Number	Product	Delivery Form
MS860702BA01-50	PHT Combination Sensor Module 5x3mm	Tape & Reel

FACTORY CONTACTS

EUROPE

MEAS Switzerland Sàrl Ch. Chapons-des-Prés 11 CH-2022 Bevaix

Tel: +41 32 847 9550 Fax: + 41 32 847 9569 e-mail: sales.ch@meas-spec.com Website: <u>www.meas-spec.com</u>

ASIA

Measurement Specialties (China), Ltd. No. 26 Langshan Road Shenzhen High-Tech Park (North) Nanshan District, Shenzhen, 518057 China Tel: +86 755 3330 5088 Fax: +86 755 3330 5099 e-mail: pfg.cs.asia@meas-spec.com Website: www.meas-spec.com

NORTH AMERICA

Measurement Specialties 45738 Northport Loop West Fremont, CA 94538

Tel: +1 800 767 1888 Fax: +1 510 498 1578 e-mail: pfg.cs.amer@meas-spec.com Website: <u>www.meas-spec.com</u>

The information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of such devices any license under the patent rights to the manufacturer. Measurement Specialties, Inc. reserves the right to make changes without further notice to any product herein. Measurement Specialties, Inc. makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does Measurement Specialties, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications. All operating parameters must be validated for each customer application by customer's technical experts. Measurement Specialties, Inc. does not convey any license under its patent rights nor the rights of others.

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9