General Description

The MAX35102 is a time-to-digital converter with built-in amplifier and comparator targeted as a low-cost, analog front-end solution for the ultrasonic heat meter and flow meter markets. It is similar to the MAX35101, but with a reduced feature set and without a real-time clock (RTC). The package size has been reduced to 4mm x 4mm x 0.75mm with 0.4mm pin pitch.

With a time measurement accuracy of 20ps and automatic differential time-of-flight (ToF) measurement, this device makes for simplified computation of liquid flow.

Power consumption is the lowest available with ultra-low 5.5μA ToF measurement and < 125nA duty-cycled temperature measurement.

Applications

- Ultrasonic Heat Meters
- **Ultrasonic Water Meters**
- **Ultrasonic Gas Meters**

• -40°C to +85°C Operation *[Ordering Information](#page-35-0) appears at end of data sheet.*

System Block Diagram

Features and Benefits

- High-Accuracy Flow Measurement for Billing and Leak Detection
	- Time-to-Digital Accuracy Down to 20ps
	- Measurement Range Up to 8ms
	- 2 Channels—Single-Stop Channel
- High-Accuracy Temperature Measurement for Precise Heat and Flow Calculations
	- Up to Four 2-Wire Sensors
	- PT1000 and PT500 RTD Support
	- 40mK Accuracy
- Maximizes Battery Life with Low Device and Overall System Power
	- Ultra-Low 5.5μA ToF measurement and < 125nA Duty-Cycled Temperature Measurement
	- 2.3V to 3.6V Single-Supply Operation
- High-Integration Solution Minimizes Parts Count and Reduces BOM Cost
	- Small, 4mm x 4mm, 32-Pin TQFN Package
	-

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these
or any other conditions beyond those in *device reliability.*

Package Thermal Characteristics (Note 1)

TQFN
Junction-to-Ambient Thermal Resistance (θ_{JA})34°C/W

Junction-to-Case Thermal Resistance (θ_{JC}).....................3°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to **www.maximintegrated.com/thermal-tutorial**.

Recommended Operating Conditions

 $(T_A = -40^{\circ}$ C to +85°C, unless otherwise noted.) (Notes 2, 3)

Electrical Characteristics

(V_{CC} = 2.3V to 3.6V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = 3.0V and T_A = +25°C.) (Notes 2, 3)

Electrical Characteristics (continued)

(V_{CC} = 2.3V to 3.6V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = 3.0V and T_A = +25°C.) (Notes 2, 3)

Electrical Characteristics (continued)

(V_{CC} = 2.3V to 3.6V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = 3.0V and T_A = +25°C.) (Notes 2, 3)

Recommended External Crystal Characteristics

Note 2: All voltages are referenced to ground. Current entering the device are specified as positive and currents exiting the device are negative.

Note 3: Limits are 100% production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.

Note 4: Currents are specified as individual block currents. Total current for a point in time can be calculated by taking the standby current and adding any block currents that are active at that time.

Note 5: Receiver sensitivity includes performance degradation contributed by STOP_UP and STOP_DN device pin input offset voltage and common mode drift.

Timing Diagrams

Figure 1. SPI Timing Diagram Read

Figure 2. SPI Timing Diagram Write

Typical Operating Characteristics

 $(V_{CC} = 3.3V$ and $T_A = +25^{\circ}$ C, unless otherwise noted.)

Average ICC vs. TOF Rate Configuration Settings

Notes

1. This data is valid for the ceramic resonator. 2. Crystal oscillator startup adds ~0.5µA per TOFDiff.

3. Since the TOF cycle time is long the 4MHz oscillator powers up twice.

Pin Configuration

Pin Description

Pin Description (continued)

Block Diagram

Detailed Description

The MAX35102 is a time-to-digital converter with built-in amplifier and comparator targeted as a complete analog front-end solution for the ultrasonic heat meter and flow meter markets.

With automatic differential time-of-flight (TOF) measurement, this device makes for simplified computation of liquid flow. Early edge detection ensures measurements are made with consistent wave patterns to greatly improve accuracy and eliminate erroneous measurements. Built-in arithmetic logic unit provides TOF difference measurements. A programmable receiver hit accumulator can be utilized to minimize the host microprocessor access.

Multihit capability with stop-enable windowing allows the device to be fine-tuned for the application. Internal analog switches, an autozero amplifier/comparator, and programmable receiver sensisitivity provide the analog interface and control for a minimal electrical bill of material solutions.

For temperature measurement, the MAX35102 supports up to four 2-wire PT1000/500 platinum resistive temperature detectors (RTD).

A simple opcode based 4-Wire SPI interface allows any microcontroller to effectively configure the device for its intended measurement.

Time-of-Flight (ToF) Measurement Operations

TOF is measured by launching pulses from one piezoelectric transducer and receiving the pulses at a second transducer. The time between when the pulses are launched and received is defined as the time of flight. The MAX35102 contains the functionality required to create a string of pulses, sense the receiving pulse string, and measure the time of flight. The MAX35102 can measure two separate TOFs, which are defined as TOF up and TOF down.

Figure 3. Time-of-Flight Sequence

A TOF up measurement has pulses launched from the LAUNCH_UP pin, which is connected to the downstream transducer. The ultrasonic pulse is received at the upstream transducer, which is connected to the STOP_ UP pin. A TOF down measurement has pulses launched from the LAUNCH_DN pin, which is connected to the upstream transducer. The ultrasonic pulse is received at the downstream transducer, which is connected to the STOP_DN pin.

TOF measurements can be initiated by sending either the TOF_UP, TOF_DN, or TOF_DIFF commands.

The steps involved in a single TOF measurement are described here and shown in [Figure 3.](#page-9-0)

- 1) The 4MHz oscillator and LDO is enabled with a programmable settling delay time set by the CLK_S[2:0] bits in Calibration and Control register.
- 2) A common-mode bias is enabled on the STOP pin. This bias charge time is set by the CT[1:0] bits in the TOF1 register.
- 3) Once the bias charge time has expired, the pulse launcher drives the appropriate LAUNCH pin with a programmable sequence of pulses. The number of pulses launched is set by the PL[7:0] bits in the TOF1 register. The frequency of these 50% dutycycle pulses is set by the DPL[3:0] bits, also in the TOF1 register. The start of these launch pulses gen-

erates a start signal for the time-to-digital converter (TDC) and is considered to be time zero for the TOF measurement. This is denoted by the start signal in the start/stop TDC timing ([Figure 3\)](#page-9-0).

- 4) After a programmable delay time set in TOF Measurement Delay register, the comparator and hit detector at the appropriate STOP pin are enabled. This delay allows the receiver to start recording hits when the received wave is expected, eliminating possible false hits from noise in the system.
- 5) Stop hits are detected according to the programmed preferred edge of the acoustic signal sequence received at the STOP pin according to the setting of the STOP_POL bit in the TOF1 register. The first stop hit is detected when a wave received at the STOP pin exceeds the comparator offset voltage, which is set in the TOF6 and TOF7 registers. This first detected wave is wave number 0. The width of the wave's pulse that exceeds the comparator offset voltage is measured and stored as the t1 time.
- 6) The offset of the comparator then automatically and immediately switches to 0.
- 7) The t_2 wave is detected and the width of the t_2 pulse is measured and stored as the $t₂$ time. The wave number for the measurement of the t_2 wave width is set by the T2WV[5:0] bits in the TOF2 register.

- 8) Following the t_2 wave, 1 to 3 consecutive stop hits are then detected. For each hit, the measured TOF is stored in the appropriate HITxUPINT and HITxUPFrac or HITxDNINT and HITxDNFRAC registers. The number of hits to detect is set by the STOP[1:0] bits in the TOF2 register.
- 9) After receiving all of the programmed hits, the MAX35102 calculates the average of the recorded hits and stores this to AVGUPINT and AVGUPFrac or AVGDNInt and AVGDNFrac. The ratio of t_1/t_2 and t₂/t_{ideal} are calculated and stored in the WVRUP or WVRDN register.
- 10) Once all of the hit data, wave ratios, and averages become available in the Results registers, the TOF bit in the Interrupt Status register is set and the INT pin is asserted (if enabled) and remains asserted until the Interrupt Status register is accessed by the microprocessor with a Read Register command.

The computation of the total time of flight is performed by counting the number of full and fractional 4MHz clock cycles that elapsed between the launch start and a hit stop as shown in [Figure 4.](#page-10-0)

Each TOF measurement result is comprised of an integer portion and a fractional portion. The integer portion is a binary representation of the number of t_{4MHz} periods that contribute to the time results. The fractional portion is a binary representation of one t_{4MHz} period quantized to a 16-bit resolution. The maximum size of the integer is 7FFFh or $(2^{15}-1)$ x t_{4MHz} or ~ 8.19 ms. The maximum size of the fraction is:

FFFFh or
$$
\frac{2^{16}-1}{2^{16}} \times t_{4MHz}
$$
. or ~ 249.9961 ns.

Table 1. Two's Complement TOF_DIFF Conversion Example

Figure 4.Start/Stop for Time-to-Digital Timing

Early Edge Detect

This early edge detect method of measuring the TOF of acoustic waves is used for all of the TOF commands including TOF_UP, TOF_DN, and TOF_DIFF. This method allows the MAX35102 to automatically control the input offset voltage of the receiver comparator so that it can provide advanced measurement accuracy. The input offset of the receiver comparator can be programmed with a range +31 LSBs if triggering on a positive edge and -32 LSBs if triggering on a negative edge, with 1 LSB $= V_{\text{CC}}/3072$. Separate input offset settings are available for the upstream received signal and the downstream received signal. The input offset for the upstream received signal is programmed using the C_OFFSETUP[4:0] bits in the TOF6 register. The input offset for the downstream received signal is programmed using the C_ OFFSETDN[4:0] bits in the TOF7 register. Once the first hit is detected, the time t1 equal to the width of the earliest detectable edge is measured. The input offset voltage is then automatically and immediately returned to 0.

The MAX35102 is now ready to measure the successive hits. The next selected wave that is measured is the $t₂$ wave. In the example in [Figure 5](#page-11-0), this is the 7th wave after the early edge detect wave. The selection of the t_2 wave is made with the T2WV[5:0] bits in the TOF2 register.

With reference to [Figure 5,](#page-11-0) the ratio t_1/t_2 is calculated and registered for the user. This ratio allows determination of abrupt changes in flow rate, received signal strength, partially filled tube detection, and empty tube. It also provides noise suppression to prevent erroneous edge detection. Also, the ratio t_2/t_{ideal} is calculated and registered for the user. For this calculation, t_{ideal} is 1/2 the period of launched pulse. This ratio adds confirmation that the t wave is a strong signal, which provides insight into the common mode offset of the received acoustic wave.

TOF Error Handling

Any of the TOF measurements can result in an error. If an error occurs during the measurement, all of the associated registers report FFFFh. If a TOF_DIFF is being performed, the TOF_DIFFInt and TOF_DIF_Frac registers report 7FFFh and FFFFh, respectively. If the measurement error is caused by the time measurement exceeding the timeout set by the TIMOUT[2:0] bits in the TOF2 register, then the TO bit in the Interrupt Status register is set and the $\overline{\text{INT}}$ pin asserts (if enabled).

Figure 5. Early Edge Detect Received Wave Example

Temperature Measurement Operations

A temperature measurement is a time measurement of the RC circuit connected to the temperature port device pins T1 through T4 and TC. The TC device pin has a driver to charge the timing capacitor. The ports that are measured and the order in which the measurement is performed is selected with the TP[1:0] bits in the Temperature register.

[Figure 6](#page-12-0) depicts a 1000Ω platinum RTD with a 100nF NPO COG 30ppm/°C capacitor. It shows two dummy cycles with 4 temperature port evaluation measurements and 4 real temperature port measurements. This occurs when setting the TP[1:0] bits in the Temperature register to 11b.

The dummy 1 and dummy 2 cycles represent preamble measurements that are intended to eliminate the dielectric absorption of the temperature measurement capacitor. These dummy cycles are executed using a RTD Emulation resistor of 1000Ω internal to the MAX35102. This dummy path allows the dielectric absorption effects of the capacitor to be eliminated without causing any of the RTDs to be unduly self-heated. The number of dummy measurements to be taken ranges from 0 to 7. This parameter is configured by setting the PRECYC[2:0] bits in the Temperature register.

Following the dummy cycles, an evaluation, TXevaluate, is performed. This measurement allows the MAX35102 to maximize power efficiency by evaluating the temperature of the RTDs with a coarse measurement prior to a real measurement. The coarse measurement provides an approximation to the TDC converter. During the real measurement, the TDC can then optimize its measurement parameters to use power efficiently. These evaluate cycles are automatically inserted according to the order of ports selected with the of the Temperature Port bits. The time from the start of one port's temperature measurement to the next port's temperature measurement is set using with the PORTCYC[1:0] bits in the Temperature register.

Once all the temperature measurements are completed, the times measured for each port are reported in the corresponding TxInt and TxFrac Results registers. The TE bit in the Interrupt Status register is also set and the INT pin asserts (if enabled).

Actual temperature is determined by a ratiometric calculation. If T1 and T2 are connected to platinum RTDs and T3 and T4 are connected to the same reference resistor (as shown in the System Diagram), then the ratio of T1/T3 = $R_{\text{RTD1}}/R_{\text{REF}}$ and T2/T4 = $R_{\text{RTD2}}/R_{\text{REF}}$. The ratios $R_{\text{RTD1}}/R_{\text{RTD1}}$ RRFF and RRTD2/RRFF can be determined by the host microprocessor and the temperature can be derived from a look-up table of Temperature vs. Resistance for each of the RTDs utilizing interpolation of table entries if required.

Figure 6. Temperature Command Execution Cycle Example

Temperature Error Handling

The temperature measurement unit can detect open and/ or short-circuit temperature probes. If the resultant temperature reading in less than 8µs, then the MAX35102 writes a value of 0000h to the corresponding Results registers to indicate a short-circuit temperature probe. If the measurement process does not discharge the TC pin below the threshold of the internal temperature comparator within 2µs of the time set by the PORTCYC[1:0] bits in the Temperature register, then an open circuit temperature probe error is declared. The MAX35102 writes a value of FFFFh to the corresponding results registers to indicate an open circuit temperature probe, the TO bit in the Interrupt Status register is set, and the $\overline{\text{INT}}$ pin asserts (if enabled). If the temperature measurement error is caused by any other problems, then the MAX35102 writes a value of FFFFh to each of the temperature port results registers indicating that all of the temperature port measurements are invalid.

Calibration Operation

For more accurate results, calibration of the TDC can be performed. Calibration allows the MAX35102 to perform a calibration measurement that is based upon the 32.768kHz crystal, which is the most accurate clock in the system. This calibration is used when a ceramic oscillator is used in place of an AT-cut crystal for the 4MHz reference. The MAX35102 automatically generates START and STOP signals based upon edges of the 32.768kHz clock. The number of 32.768kHz clock periods that are used and then averaged are selected with the CAL_ PERIOD[3:0] bits in the Calibration and Control register. The TDC measures the number of 4MHz clock pulses that occur during the 32.768kHz pulses. The measured time of a 32.768kHz clock pulse is reported in the CalibrationInt and CalibrationFrac Results registers.

Following is a description of an example calibration. Each TDC measurement is a 15-bit fixed-point integer value concatenated with a 16-bit fractional value binary representation of the number of t_{4MHz} periods that contribute to the time result, the actual period of t_{4MHz} needs to be known. If the CAL_PERIOD[3:0] bits in the Calibration and Control register are set to 6, then 6 measurements of 32.768kHz periods are measured by the TDC and then averaged. The expected measured value would be 30.5176µs/250ns = 122.0703125 t_{4MHz} periods. Assume that the 4MHz ceramic resonator is actually running at 4.02MHz. The TDC measurement unit would then measure 30.5176µs/248.7562ns $= 122.6806641$ t_{4MHz} periods and this result would be

returned in the Calibration Results register. For all TDC measurements, a gain value of 122.0703125/122.6806641 $= 0.995024876$ would then be applied.

Calibration is performed when the Calibration command is sent to the MAX35102. At the completion of this calibration, the CAL bit in the Interrupt Status register and the INT pin asserts (if enabled).

Error Handling During Calibration

Any errors that occur during the Calibrate command stop the CalibrationInt and the CalibrationFrac Results registers from being updated with new calibration coefficients. The results for the previous Calibration data remain in these two registers and are used for scaling measured results. If the calibration error is caused by the internal calibration time measurement exceeding the time set by the TIMOUT[2:0] bits in the TOF2 register, then the TO bit in the Interrupt Status register is set and the INT pin asserts (if enabled).

Device Interrupt Operations

The MAX35102 is designed to optimize the power efficiency of a flow metering application by allowing the host microprocessor to remain in a low-power sleep mode, instead of requiring the microprocessor to keep track of complex real-time events being performed by the MAX35102. Upon completion of any command, the MAX35102 alerts the host microprocessor using the $\overline{\text{INT}}$ pin. The assertion of the $\overline{\text{INT}}$ pin can be used to awaken the host microprocessor from its low power mode. Upon receiving an interrupt on the $\overline{\text{INT}}$ pin, the host microprocessor should read the Interrupt Status Register to determine which tasks were completed.

Interrupt Status Register

The interrupt status register contains flags for all for all commands and events that occur within the MAX35102. These flags are set when the event occurs or at the completion of the executing command. When the Interrupt Status Register is read, all asserted bits are cleared. If another interrupt source has generated an interrupt during the read, these new flags assert following the read.

INT Pin

The INT pin asserts when any of the bits in the Interrupt Status register are set. The INT pin remains asserted until the Interrupt Status register is read by the user and all bits in this register are clear. In order for the $\overline{\text{INT}}$ pin to operate, it must first be enabled by setting the INT_EN bit in the Calibration and Control register.

Serial Peripheral Interface Operation

Four pins are used for SPI-compatible communications: DOUT (serial-data out), DIN (serial-data in), CE (chip enable), and SCK (serial clock). DIN and DOUT are the serial data input and output pins for the devices, respectively. The \overline{CE} input initiates and terminates a data transfer. SCK synchronizes data movement between the master (microcontroller) and the slave (MAX35102). The SCK, which is generated by the microcontroller, is active only when CE is low and during opcode and data transfer to any device on the SPI bus. The inactive clock polarity is logic-low. DIN is latched on the falling edge of SCK. There is one clock for each bit transferred. Opcode bits are transferred in groups of eight, MSB first. Data bits are transferred in groups of sixteen, MSB first.

The serial peripheral interface is used to access the features and memory of the MAX35102 using an opcode/ command structure.

Opcode Commands

[Table 2](#page-14-0) shows the opcode/commands that are supported by the device.

Execution Opcode Commands

The device supports several single byte opcode commands that cause the MAX35102 to execute various routines. All commands have the same SPI protocol sequence as shown in [Figure 7.](#page-14-1) Once all 8 bits of the opcode are received by the MAX35102 and the $\overline{\text{CE}}$ device pin is deasserted, the MAX35102 begins execution of the specified command as described in that Command's description.

TOF_UP Command (00h)

The TOF UP command generates a single TOF measurement in the upstream direction. Pulses launch from the LAUNCH_UP pin and are received by the STOP_UP pin. The measured hit results are reported in the HITxUPInt and HITxUPFrac registers, with the calculated average of all the measured hits being reported in the AVGUPInt and AVGUPFrac register. The t_1/t_2 and t_2/t ideal wave ratios are reported in the WVRUP register. Once all these results are stored, then the TOF bit in the Interrupt Status register is set and the $\overline{\text{INT}}$ pin asserts (if enabled).

Note: The TOF_UP command yields a result that is only of use when used in conjunction with the TOF_DN command. Absolute TOF measurements include circuit delays and cannot be considered accurate.

Table 2. Opcode Commands

Figure 7. Execution Opcode Command Protocol

TOF_Down Command (01h)

The TOF DOWN command generates a single TOF measurement in the downstream direction. Pulses launch from the LAUNCH_DN pin and are received by the STOP DN pin. The measured hit results are reported in the HITxDnInt and HITxDnFrac registers, with the calculated average of all the measured hits being reported in the AVGDNInt and AVGDNFrac register. The t_1/t_2 and $t_2/$ t_{ideal} wave ratios are reported in the WVRDN register. Once all these results are stored, then the TOF bit in the Interrupt Status register is set and the INT pin asserts (if enabled).

Note: The TOF_Down command yields a result that is only of use when used in conjunction with the TOF_UP command. Absolute TOF measurements include circuit delays and cannot be considered accurate.

TOF_DIFF Command (02h)

The TOF DIFF command performs back-to-back TOF UP and TOF DN measurements as required for a metering application. The TOF_UP sequence is followed by the TOF_DN sequence. The time between the start of the TOF UP measurement and the start of the TOF DN measurement is set by the TOF_CYC[2:0] bits in the TOF2 register. Upon completion of the TOF_DN measurement, the results of AVGUP minus AVGDN is computed and stored at the TOF_DIFFInt and TOF_DIFFFrac Results register locations. Once these results are stored, then the TOF bit in the Interrupt Status register is set and the INT pin asserts (if enabled).

Temperature Command (03h)

The temperature command initiates a temperature measurement sequence as described in the *[Temperature](#page-12-1) [Measurement Operations](#page-12-1)* section. The characteristics the temperature measurement sequence depends upon the settings in the Temperature register. Once all the measurements are completed, the times measured for each port are reported in the corresponding TxInt and TxFrac Results registers. The TE bit in the Interrupt Status register also is set and the $\overline{\text{INT}}$ pin asserts (if enabled).

Reset Command (04h)

The reset command essentially performs the same function as a power-on reset (POR), and causes all of the Configuration registers to be set to their power-on reset values and all of the Results registers and the Interrupt Status register to be cleared and set to zero.

Initialize Command (05h)

The initialize command must be executed before any configuration of the device is done. This initializes the time-todigital converter so that TOF and temperature commands can be executed. The MAX35102 sets the INIT bit in the Interrupt Status register and asserts the INT device pin (if enabled) to tell the host microprocessor that the initialize command has completed and the next desired command can be sent to the MAX35102.

Calibrate Command (0Eh)

The calibrate command performs the calibration routine as described in the calibration operation section. When the calibrate command has completed the measurement, the Calibration Results register contains the measured 32kHz period measurement value, the MAX35102 sets the calibration bit in the Interrupt Status register and then asserts the INT device pin (if enabled). The host microprocessor reads the Interrupt Status register to determine the interrupt source and then read the Calibration Results register to be able to calculate the 4MHz ceramic oscillator gain factor.

Register Opcode Commands

To manipulate the register memory, there are two commands supported by the device: Read Register and Write register. Each register accessed with these commands is 16 bits in length. These commands are used to access all sections of the memory map including the Configuration registers, Conversion Results registers, and Status registers. The Conversion Results registers and the Interrupt Status register of the Status registers are all read only.

Read Register Command

The opcode must be clocked into the DIN device pin before the DOUT device pin produces the register data. The SPI protocol sequence is shown in [Figure 8.](#page-16-0)

The read register command can also be used to read consecutive addresses. In this case, the data bits are continuously delivered in sequence starting with the MSB of the data register that is addressed in the opcode, and continues with each SCK rising edge until the CE device pin is deasserted as shown in [Figure 9](#page-16-1). The address counter automatically increments.

Figure 8. Read Register Opcode Command Protocol

Figure 9. Continuous Read Register Opcode Command Protocol

Write Register Command

This command applies to all writable registers. See the *[Register Memory Map](#page-17-0)* for more detail. The SPI protocol sequence is shown in [Figure 10.](#page-17-1)

The write register command can also be used to write consecutive addresses. In this case, the data bits are continuously received on the DIN device pin and bound for the initial starting address register that is addressed in the opcode. The address counter automatically increments

after each 16 bits of data if the SCK device pin is continually clocked and the \overline{CE} device pin remain asserted as shown in [Figure 11](#page-17-2).

Register Memory Map

These registers are accessed by the read register command and the Write Register command: X represents a reserved bit. All addresses omitted are reserved

The Results, Interrupt Status, and Control registers are all 0000h following a reset.

Figure 10. Write Register Opcode Command Protocol

Figure 11. Continuous Write Register Opcode Command Protocol

Table 3. Register Memory Map

Table 3. Register Memory Map

Table 3. Register Memory Map (continued) **Table 3. Register Memory Map (continued)**

 $\overline{1}$

 \mathbf{I}

 I

 \mathbf{I}

 \mathbf{I}

 \mathbf{I}

 $\sqrt{ }$

MAX35102 Time-to-Digital Converter Without RTC

Τ

 \mathbf{I}

 \mathbf{I}

 \mathbf{I}

Configuration Register Descriptions

Table 4. TOF1 Register

Table 4. TOF1 Register (continued)

Table 5. TOF2 Register

Table 5. TOF2 Register (continued)

Table 6. TOF6 Register

Table 7. TOF7 Register

Table 8. Temperature Register

Table 9. ToF Measurement Delay Register

Table 10. Calibration and Control Register

Table 10. Calibration and Control Register (continued)

Table 11. Oscillator Register

Status Register Descriptions

Table 12. Interrupt Status Register

Table 12. Interrupt Status Register (continued)

Conversion Results Register Descriptions

The devices conversion results registers are all read-only volatile SRAM. The POR value for all registers is 0000h.

Table 13. Conversion Results Registers Description

Table 13. Conversion Results Registers Description (continued)

Table 13. Conversion Results Registers Description (continued)

Table 19. Conversion Results Registers Description (continued)

Typical Application Circuit

Ordering Information

+*Denotes a lead(Pb)-free/RoHS-compliant package.*

T = Tape and reel.

Chip Information

PROCESS: CMOS

Package Information

For the latest package outline information and land patterns (footprints), go to **www.maximintegrated.com/packages**. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Revision History

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) *shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.*

info@moschip.ru

 $\circled{1}$ +7 495 668 12 70

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

 Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@[moschip](mailto:info@moschip.ru).ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9