

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

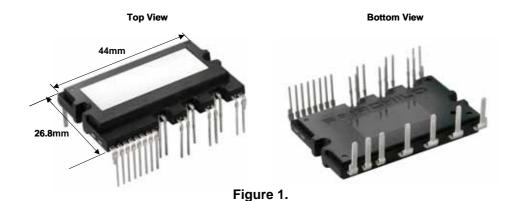
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

FCBS0550

Smart Power Module (SPM)

Features


- UL Certified No.E209204(SPM27-BA package)
- 500V-5A 3-phase MOSFET inverter bridge including control ICs for gate driving and protection
- Divided negative dc-link terminals for inverter current sensing applications
- Single-grounded power supply due to built-in HVIC
- · Isolation rating of 2500Vrms/min.
- · Very low leakage current due to using ceramic substrate

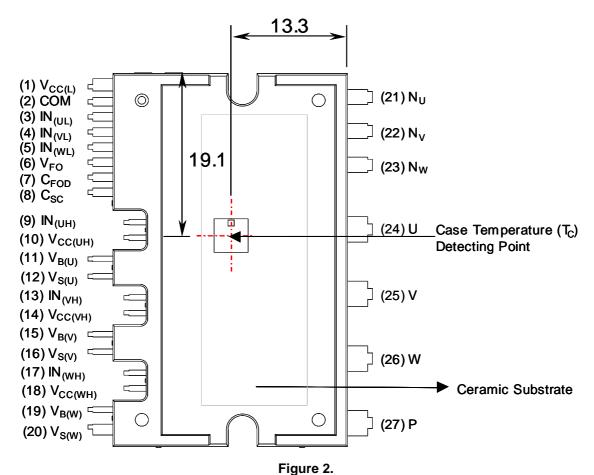
Applications

- AC 200V three-phase inverter drive for small power ac motor drives
- Home appliances applications like refrigerator.

General Description

It is an advanced smart power module (SPM) that Fairchild has newly developed and designed to provide very compact and high performance ac motor drives mainly targeting low-power inverter-driven application like refrigerator. It combines optimized circuit protection and drive matched to low-loss MOS-FETs. System reliability is further enhanced by the integrated under-voltage lock-out and short-circuit protection. The high speed built-in HVIC provides opto-coupler-less single-supply MOSFET gate driving capability that further reduce the overall size of the inverter system design. Each phase current of inverter can be monitored separately due to the divided negative dc terminals.

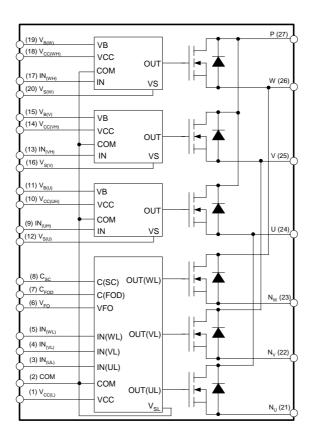
Integrated Power Functions


• 500V-5A MOSFET inverter for three-phase DC/AC power conversion (Please refer to Fig. 3)

Integrated Drive, Protection and System Control Functions

- For inverter high-side MOSFETs: Gate drive circuit, High voltage isolated high-speed level shifting
 Control circuit under-voltage (UV) protection
 Note) Available bootstrap circuit example is given in Figs. 10 and 11.
- For inverter low-side MOSFETs: Gate drive circuit, Short circuit protection (SC)
 Control supply circuit under-voltage (UV) protection
- Fault signaling: Corresponding to a UV fault (Low-side supply), SC fault
- Input interface: 3.3/5V CMOS/LSTTL compatible, Schmitt trigger input

Pin Configuration


Top View

Pin Descriptions

Pin Name	Pin Description
V _{CC(L)}	Low-side Common Bias Voltage for IC and MOSFETs Driving
COM	Common Supply Ground
IN _(UL)	Signal Input for Low-side U Phase
IN _(VL)	Signal Input for Low-side V Phase
IN _(WL)	Signal Input for Low-side W Phase
V _{FO}	Fault Output
C _{FOD}	Capacitor for Fault Output Duration Time Selection
C _{SC}	Capacitor (Low-pass Filter) for Short-Current Detection Input
IN _(UH)	Signal Input for High-side U Phase
V _{CC(UH)}	High-side Bias Voltage for U Phase IC
	High-side Bias Voltage for U Phase MOSFET Driving
	High-side Bias Voltage Ground for U Phase MOSFET Driving
	Signal Input for High-side V Phase
	High-side Bias Voltage for V Phase IC
	High-side Bias Voltage for V Phase MOSFET Driving
	High-side Bias Voltage Ground for V Phase MOSFET Driving
IN _(WH)	Signal Input for High-side W Phase
V _{CC(WH)}	High-side Bias Voltage for W Phase IC
V _{B(W)}	High-side Bias Voltage for W Phase MOSFET Driving
V _{S(W)}	High-side Bias Voltage Ground for W Phase MOSFET Driving
N _U	Negative DC-Link Input for U Phase
N _V	Negative DC–Link Input for V Phase
N _W	Negative DC-Link Input for W Phase
U	Output for U Phase
V	Output for V Phase
W	Output for W Phase
Р	Positive DC-Link Input
	V _{CC(L)} COM IN _(UL) IN _(VL) IN _(VL) IN _(WL) V _{FO} C _{FOD} C _{SC} IN _(UH) V _{S(U)} IN _(VH) V _{S(U)} IN _(VH) V _{S(V)} IN _(WH) V _{S(V)} IN _(WH) V _{S(W)} V _{S(W)} N _U N _V N _W U V W

Internal Equivalent Circuit and Input/Output Pins

- 1. Inverter low-side is composed of three MOSFETs, and one control IC. It has gate driving and protection functions.
- 2. Inverter power side is composed of four inverter dc-link input terminals and three inverter output terminals.
- 3. Inverter high-side is composed of three MOSFETs and three drive ICs for each MOSFET.

Figure 3.

Absolute Maximum Ratings ($T_J = 25$ °C, Unless Otherwise Specified)

Inverter Part

Symbol	Parameter	Conditions	Rating	Units
V _{PN}	Supply Voltage	Applied between P- N _U , N _V , N _W	400	V
V _{PN(Surge)}	Supply Voltage (Surge)	Applied between P- N _U , N _V , N _W	450	V
V _{DSS}	Drain-Source Voltage		500	V
± I _D	Each MOSFET Drain Current	T _C = 25°C, Peak Sinusoidal Current	5	А
± I _{DP}	Each MOSFET Drain Current (Peak)	T _C = 25°C, Under 1ms Pulse Width	7	Α
P _C	Collector Dissipation	T _C = 25°C per One Chip	25	W
TJ	Operating Junction Temperature	(Note 1)	-20 ~ 125	°C

Note

Control Part

Symbol	Parameter	Conditions	Rating	Units
V _{CC}	Control Supply Voltage	Applied between $V_{CC(UH)}$, $V_{CC(VH)}$, $V_{CC(WH)}$, $V_{CC(L)}$ - COM	20	V
V _{BS}	High-side Control Bias Voltage	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	20	V
V _{IN}	Input Signal Voltage	Applied between $IN_{(UH)}$, $IN_{(VH)}$, $IN_{(WH)}$, $IN_{(UL)}$, $IN_{(VL)}$, $IN_{(WL)}$ - COM	-0.3~17	V
V _{FO}	Fault Output Supply Voltage	Applied between V _{FO} - COM	-0.3~V _{CC} +0.3	V
I _{FO}	Fault Output Current	Sink Current at V _{FO} Pin	5	mA
V _{SC}	Current Sensing Input Voltage	Applied between C _{SC} - COM	-0.3~V _{CC} +0.3	V

Total System

Symbol	Parameter	Conditions	Rating	Units
T _{SC}	Short Circuit Withstanding Time	$V_{CC} = V_{BS} = 13.5 \sim 16.5 \text{V}, T_J = 125 ^{\circ}\text{C}, \text{ Non-repetitive, } V_{PN} = 400 \text{V}, R_{Shunt} = 0 \text{m}$	10	μ\$
T _C	Module Case Operation Temperature	$-20^{\circ}C \le T_{J} \le 125^{\circ}C$, See Figure 2	-20 ~ 100	°C
T _{STG}	Storage Temperature		-40 ~ 125	°C
V _{ISO}	Isolation Voltage	60Hz, Sinusoidal, AC 1 minute, Connection Pins to ceramic substrate	2500	V _{rms}

Thermal Resistance

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
R _{th(j-c)}	Junction to Case Thermal Resistance	Inverter MOSFET part (per 1/6 module)	i	-	4	°C/W

Note

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FCBS0550	FCBS0550	SPM27BA	-	=	10

^{1.} The maximum junction temperature rating of the power chips integrated within the SPM is 150 °C(@ $T_C \le 100$ °C). However, to insure safe operation of the SPM, the average junction temperature should be limited to $T_{J(ave)} \le 125$ °C (@ $T_C \le 100$ °C)

^{2.} For the measurement point of case temperature ($T_{\mbox{\scriptsize C}}$), please refer to Figure 2.

Electrical Characteristics (T_J = 25°C, Unless Otherwise Specified)

Inverter Part

S	mbol	Parameter		Condi	itions	Min.	Тур.	Max.	Units
R	DS(ON)	Static Drain-Source (Resistance	On	$V_{CC} = V_{BS} = 15V$ $I_{D} = 2.5A, T_{J} = 25^{\circ}C$ $V_{IN} = 5V$		-	1.35	1.75	
	V_{SD}	Drain-Source Diode Fe ward Voltage	or-	$V_{CC} = V_{BS} = 15V$ $V_{IN} = 0V$	I _D =2.5A, T _J = 25°C	-	-	1.20	٧
HS	t _{ON}	Switching Times		$V_{PN} = 300 \text{V}, V_{CC} = V_{BS}$	_S = 15V	-	0.51	-	μS
	t _{C(ON)}			$I_D = 2.5A$ $V_{IN} = 0V \leftrightarrow 5V$, Inducti	ve I nad	-	0.16	-	μS
	t _{OFF}			(Note 3)	ve Load	-	0.72	-	μS
	t _{C(OFF)}					-	0.10	-	μS
	t _{rr}					-	0.16	-	μS
LS	t _{ON}			$V_{PN} = 300V, V_{CC} = V_{BS}$	S = 15V	-	0.52	-	μS
	t _{C(ON)}			$I_D = 2.5A$ $V_{IN} = 0V \leftrightarrow 5V$, Inducti	ve Load	-	0.18	-	μS
	t _{OFF}			(Note 3)	ve Load	-	0.74	-	μS
	t _{C(OFF)}					-	0.10	-	μS
	t _{rr}					-	0.16	-	μS
	I _{DSS}	Drain - Source Leakage Current		$V_{DS} = V_{DSS}$		-	-	250	μΑ

^{3.} t_{ON} and t_{OFF} include the propagation delay time of the internal drive IC. $t_{C(ON)}$ and $t_{C(OFF)}$ are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Figure 4.

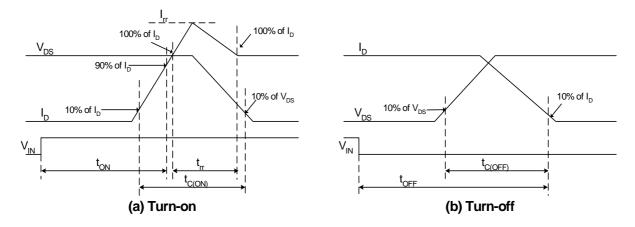


Figure 4. Switching Time Definition

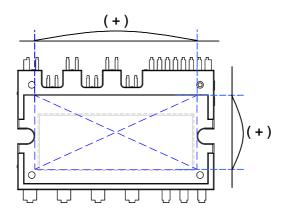
$\textbf{Electrical Characteristics} \ \, (T_J = 25^{\circ}C, \, \text{Unless Otherwise Specified})$

Control Part

Symbol	Parameter	Co	nditions	Min.	Тур.	Max.	Units
I _{QCCL}	Quiescent V _{CC} Supply Current	V _{CC} = 15V IN _(UL, VL, WL) = 0V	V _{CC(L)} - COM	-	-	23	mA
I _{QCCH}		V _{CC} = 15V IN _(UH, VH, WH) = 0V	V _{CC(UH)} , V _{CC(VH)} , V _{CC(WH)} - COM	-	-	100	μА
I_{QBS}	Quiescent V _{BS} Supply Current	V _{BS} = 15V IN _(UH, VH, WH) = 0V	$egin{array}{c} V_{B(U)} - V_{S(U)}, V_{B(V)} - V_{S(V)}, \ V_{B(W)} - V_{S(W)} \end{array}$	-	-	500	μА
V_{FOH}	Fault Output Voltage	V _{SC} = 0V, V _{FO} Circu	it: 4.7kΩ to 5V Pull-up	4.5	-	-	V
V_{FOL}		V _{SC} = 1V, V _{FO} Circu	it: 4.7kΩ to 5V Pull-up	-	-	0.8	V
V _{SC(ref)}	Short Circuit Trip Level	V _{CC} = 15V (Note 4)		0.45	0.5	0.55	V
UV _{CCD}	Supply Circuit Under-	Detection Level		10.7	11.9	13.0	V
UV _{CCR}	Voltage Protection	Reset Level		11.2	12.4	13.2	V
UV _{BSD}		Detection Level		10.1	11.3	12.5	V
UV _{BSR}		Reset Level		10.5	11.7	12.9	V
t _{FOD}	Fault-out Pulse Width	C _{FOD} = 33nF (Note	C _{FOD} = 33nF (Note 5)		1.8	-	ms
V _{IN(ON)}	ON Threshold Voltage	Applied between IN	Applied between IN _(UH) , IN _(VH) , IN _(WH) , IN _(UL) ,		-	-	V
V _{IN(OFF)}	OFF Threshold Voltage	\square $IN_{(VL)}$, $IN_{(WL)}$ - COM		-	-	0.8	V

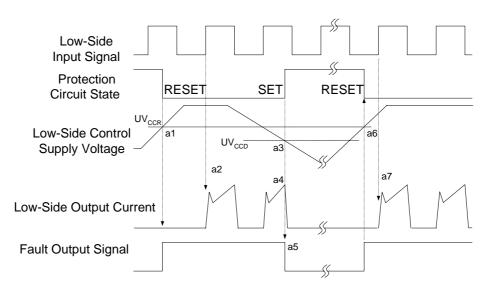
Note:

Recommended Operating Conditions

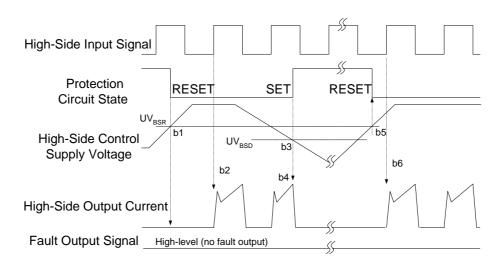

Symbol	Parameter	Conditions	Value			Units	
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
V _{PN}	Supply Voltage	Applied between P - N _U , N _V , N _W	-	300	400	V	
V _{CC}	Control Supply Voltage	Applied between $V_{CC(UH)}$, $V_{CC(VH)}$, $V_{CC(WH)}$, $V_{CC(WH)}$,	13.5	15	16.5	V	
V _{BS}	High-side Bias Voltage	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	13.0	15	18.5	V	
dV _{CC} /dt, dV _{BS} /dt	Control supply variation		-1	-	1	V/µs	
t _{dead}	Blanking Time for Preventing Arm-short	For Each Input Signal	2	-	-	μS	
f _{PWM}	PWM Input Signal	$-20^{\circ}C \leq T_{C} \leq 100^{\circ}C, \ -20^{\circ}C \leq T_{J} \leq 125^{\circ}C$	-	-	20	kHz	
V _{SEN}	Voltage for Current Sensing	Applied between N _U , N _V , N _W - COM (Including surge voltage)	-4		4	V	

^{4.} Short-circuit current protection is functioning only at the low-sides.

^{5.} The fault-out pulse width t_{FOD} depends on the capacitance value of C_{FOD} according to the following approximate equation: $C_{FOD} = 18.3 \times 10^{-6} \times t_{FOD}[F]$


Mechanical Characteristics and Ratings

Parameter	Co	nditions			Units	
Parameter		nutions	Min.	Тур.	Max.	Ullits
Mounting Torque	Mounting Screw: - M3	Recommended 0.62N•m	0.51	0.62	0.72	N•m
Device Flatness		Note Fig. 5	0	-	+120	μm
Weight			-	15.4	-	g


Figure 5. Flatness Measurement Position

Time Charts of SPMs Protective Function

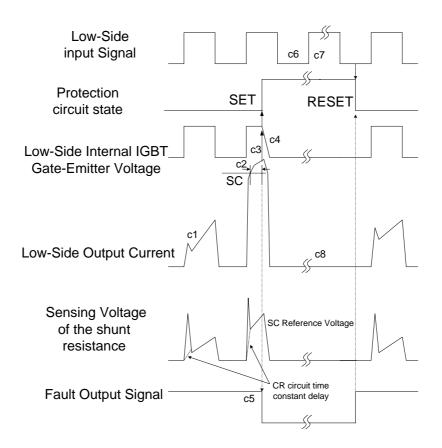
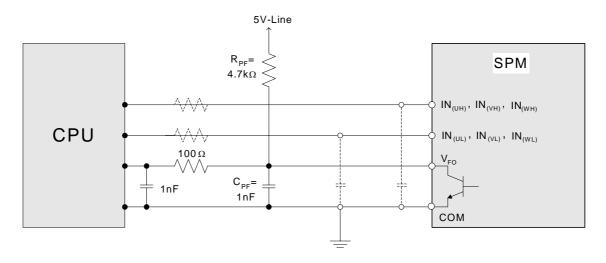

- a1 : Control supply voltage rises: After the voltage rises UV_{CCR}, the circuits start to operate when next input is applied.
- a2: Normal operation: MOSFET ON and carrying current.
- a3 : Under voltage detection (UV_{CCD}).
- a4: MOSFET OFF in spite of control input condition.
- a5: Fault output operation starts.
- a6: Under voltage reset (UV_{CCR}).
- a7: Normal operation: MOSFET ON and carrying current.

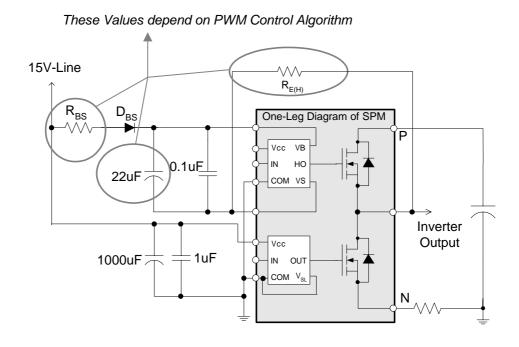
Figure 6. Under-Voltage Protection (Low-side)

- b1 : Control supply voltage rises: After the voltage reaches UV_{BSR}, the circuits start to operate when next input is applied.
- b2: Normal operation: MOSFET ON and carrying current.
- b3 : Under voltage detection (UV_{BSD}).
- b4 : MOSFET OFF in spite of control input condition, but there is no fault output signal.
- b5 : Under voltage reset (UV_{BSR})
- b6: Normal operation: MOSFET ON and carrying current


Figure 7. Under-Voltage Protection (High-side)

(with the external shunt resistance and CR connection)

- c1: Normal operation: MOSFET ON and carrying current.
- c2 : Short circuit current detection (SC trigger).
- c3: Hard MOSFET gate interrupt.
- c4: MOSFET turns OFF.
- c5 : Fault output timer operation starts: The pulse width of the fault output signal is set by the external capacitor C_{FO}.
- c6: Input "L": MOSFET OFF state.
- c7 : Input "H": MOSFET ON state, but during the active period of fault output the MOSFET doesn't turn ON.
- c8: MOSFET OFF state


Figure 8. Short-Circuit Current Protection (Low-side Operation only)

Note:

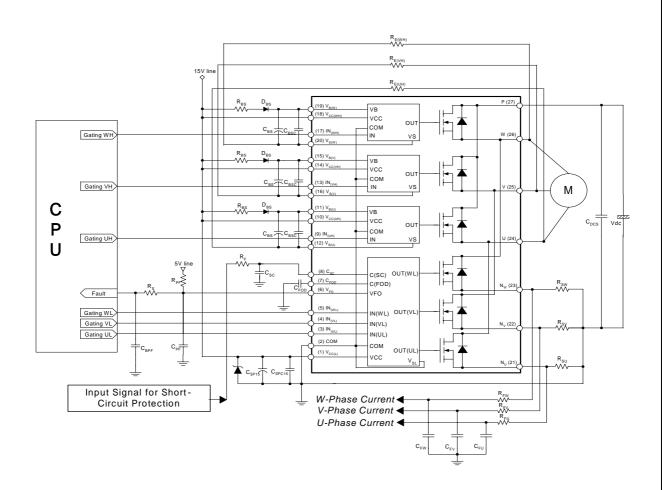
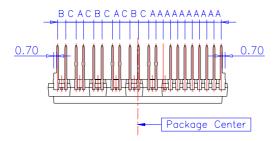
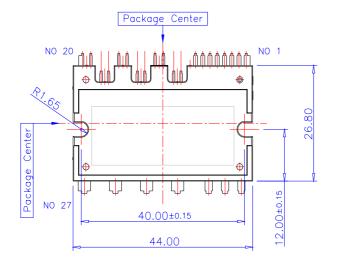

- 1. RC coupling at each input (parts shown dotted) might change depending on the PWM control scheme used in the application and the wiring impedance of the application's printed circuit board. The SPM input signal section integrates 3.3kΩ (typ.) pull-down resistor. Therefore, when using an external filtering resistor, please pay attention to the signal voltage drop at input terminal.
- 2. The logic input is compatible with standard CMOS or LSTTL outputs.

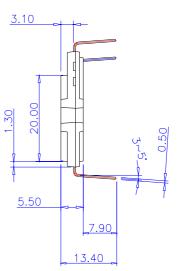
Figure 9. Recommended CPU I/O Interface Circuit

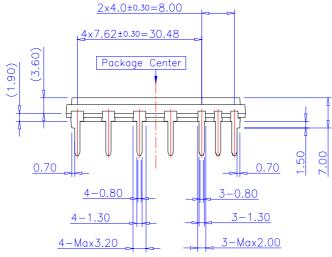
- 1. It would be recommended that the bootstrap diode, D_{BS} , has soft and fast recovery characteristics.
- 2. The bootstrap resistor (R_{BS}) should be 3 times greater than R_{E(H)}. The recommended value of R_{E(H)} is 5.6Ω, but it can be increased up to 20Ω (maximum) for a slower dv/dt of high-side
- 3. The ceramic capacitor placed between V_{CC}-COM should be over 1uF and mounted as close to the pins of the SPM as possible.


Fig. 10. Recommended Bootstrap Operation Circuit and Parameters

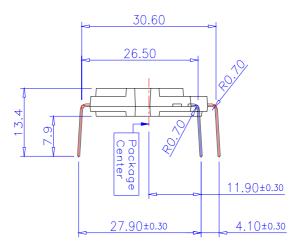
- 1. To avoid malfunction, the wiring of each input should be as short as possible. (less than 2-3cm)
- 2. By virtue of integrating an application specific type HVIC inside the SPM, direct coupling to CPU terminals without any opto-coupler or transformer isolation is possible.
- 3. V_{FO} output is open collector type. This signal line should be pulled up to the positive side of the 5V power supply with approximately 4.7k Ω resistance. Please refer to Figure 9.
- 4. C_{SP15} of around 7 times larger than bootstrap capacitor C_{BS} is recommended.
- 5. V_{FO} output pulse width should be determined by connecting an external capacitor(C_{FOD}) between C_{FOD} (pin7) and COM(pin2). (Example : if C_{FOD} = 33 nF, then t_{FO} = 1.8ms (typ.)) Please refer to the note 5 for calculation method.
- 6. Input signal is High-Active type. There is a 3.3kΩ resistor inside the IC to pull down each input signal line to GND. When employing RC coupling circuits, set up such RC couple that input signal agree with turn-off/turn-on threshold voltage.
- 7. To prevent errors of the protection function, the wiring around R_{F} and C_{SC} should be as short as possible.
- 8. In the short-circuit protection circuit, please select the $R_F C_{SC}$ time constant in the range 1.5~2 μs .
- 9. Each capacitor should be mounted as close to the pins of the SPM as possible.
- 10. To prevent surge destruction, the wiring between the smoothing capacitor and the P&COM pins should be as short as possible. The use of a high frequency non-inductive capacitor of around 0.1~0.22μF between the P&COM pins is recommended.
- 11. Relays are used at almost every systems of electrical equipments of home appliances. In these cases, there should be sufficient distance between the CPU and the relays.
- 12. $C_{\mbox{\footnotesize SPC15}}$ should be over $1\mu\mbox{\footnotesize F}$ and mounted as close to the pins of the SPM as possible.

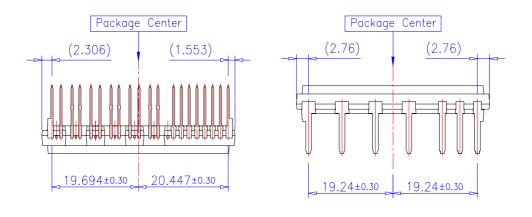

Fig. 11. Typical Application Circuit


Detailed Package Outline Drawings

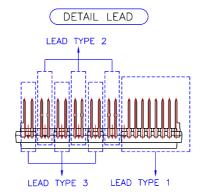


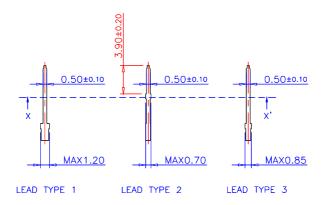
Lead Pitch : ± 0.30

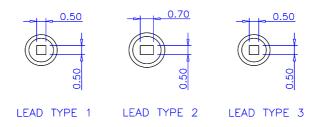

A: 1.778
B: 2.050
C: 2.531



Detailed Package Outline Drawings (Continued)




Lead Forming Dimension



PKG Center to Lead Distance

Detailed Package Outline Drawings (Continued)

LEAD SECTION X-X'

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx TM ActiveArray TM Bottomless TM CoolFET TM CROSSVOLT TM DOME TM EcoSPARK TM E ² CMOS TM EnSigna TM FACT TM FACT Quiet Series TM	FAST® FASTr™ FPSTM FRFETTM GlobalOptoisolator™ GTOTM HiSeCTM I²CTM i-LoTM ImpliedDisconnect™	IntelliMAXTM ISOPLANARTM LittleFETTM MICROCOUPLERTM MicroFETTM MicroPakTM MICROWIRETM MSXTM MSXTM MSXProTM OCXTM OCXProTM	POPTM Power247TM PowerEdgeTM PowerSaverTM PowerTrench® QFET® QSTM QT OptoelectronicsTM Quiet SeriesTM RapidConfigureTM RapidConnectTM	SPM TM Stealth TM SuperFET TM SuperSOT TM -3 SuperSOT TM -6 SuperSOT TM -8 SyncFET TM TinyLogic [®] TINYOPTO TM TruTranslation TM UHC TM
Across the board. Around the world. TM The Power Franchise [®] Programmable Active Droop TM		OPTOLOGIC [®] OPTOPLANAR [™] PACMAN [™]	μSerDes TM SILENT SWITCHER [®] SMART START TM	UltraFET [®] UniFET [™] VCX [™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I15

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

FCBS0550

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9