Diodes, Dual 40 Watt Peak Power, High Temperature

SC-70 Dual Common Anode Zeners

MMBZHxxVAWT1G Series, SZMMBZHxxVAWT1G Series

These dual monolithic silicon Zener diodes are designed for applications requiring transient overvoltage ESD protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Their dual junction common anode design protects two separate lines using only one package. These devices are high temperature rated and ideal for use in high reliability applications where board space is at a premium.

Features

- SC-70 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration
- Standard Zener Breakdown Voltage Range: 12 33 V
- Peak Power 40 W @ 1.0 ms (Unidirectional), per Figure 5 Waveform
- ESD Rating:
 - Class 3B (> 16 kV) per the Human Body Model
 - Class C (> 400 V) per the Machine Model
- Low Leakage < 5.0 μA
- Flammability Rating UL 94 V-0
- 175°C T_{J(MAX)} Rated for High Temperature, Mission Critical Applications
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These are Pb-Free Devices*

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic case

FINISH: Corrosion resistant finish, easily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

1

260°C for 10 Seconds

Package designed for optimal automated board assembly Small package size for high density applications Available in 8 mm Tape and Reel

Use the Device Number to order the 7 inch/3,000 unit reel.

ON Semiconductor®

www.onsemi.com

SC-70 CASE 419 STYLE 4

MARKING DIAGRAM

XX = Specific Device Code

M = Date Code

■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBZHxxVAWT1G	SC-70 (Pb-Free)	3,000 / Tape & Reel
SZMMBZHxxVAWT1G	SC-70 (Pb-Free)	3,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

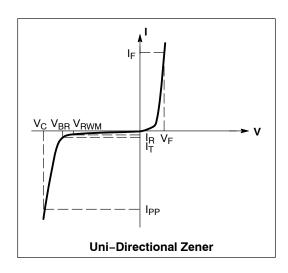
DEVICE MARKING INFORMATION

See specific marking information in the device marking column of the table on page 2 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation @ 1.0 ms (Note 1) @ T _L ≤ 25°C	P _{pk}	40	W
Total Power Dissipation on FR–5 Board (Note 2) @ T _A = 25°C Derate above 25°C	P _D	225 1.5	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	605	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	– 55 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Non-repetitive current pulse per Figure 5 and derate above $T_A = 25^{\circ}C$ per Figure 6.
- 2. $FR-5 = 1.0 \times 0.75 \times 0.62$ in.

ELECTRICAL CHARACTERISTICS

(T_A = 25°C unless otherwise noted)

UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or 2 and 3)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
I _T	Test Current
ΘV _{BR}	Maximum Temperature Coefficient of V _{BR}
I _F	Forward Current
V _F	Forward Voltage @ I _F
Z _{ZT}	Maximum Zener Impedance @ I _{ZT}
I _{ZK}	Reverse Current
Z _{ZK}	Maximum Zener Impedance @ I _{ZK}

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) **UNIDIRECTIONAL** (Circuit tied to Pins 1 and 3 or Pins 2 and 3)

 $(V_F = 0.9 \text{ V Max } @ I_F = 10 \text{ mA})$

			I _R @	Breakdown Voltage			V _C @ I _{PP} (Note 4)			
	Device	V _{RWM}	V _{RWM}	V _{BR} (Note 3) (V)		@ I _T	V _C	I _{PP}	ΘV_{BR}	
Device*	Marking	Volts	nA	Min	Nom	Max	mA	V	Α	mV/°C
MMBZH12VAWT1G	CK	8.5	200	11.40	12	12.60	1.0	17	2.35	7.5
MMBZH15VAWT1G	AJ	12	50	14.25	15	15.75	1.0	21	1.9	12.3
MMBZH20VAWT1G**	_	17	50	19.00	20	21.00	1.0	28	1.4	17.2
MMBZH27VAWT1G**	_	22	50	25.65	27	28.35	1.0	40	1.0	24.3
MMBZH33VAWT1G**	_	26	50	31.35	33	34.65	1.0	46	0.87	30.4

^{3.} V_{BR} measured at pulse test current I_{T} at an ambient temperature of 25°C.

^{4.} Surge current waveform per Figure 5 and derate per Figure 6.

^{*}Includes SZ prefix devices where applicable.

^{**}AEC-Q release available upon request.

TYPICAL CHARACTERISTICS

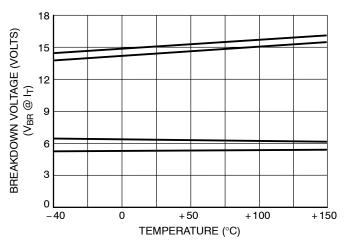


Figure 1. Typical Breakdown Voltage versus Temperature

(Upper curve for each voltage is bidirectional mode, lower curve is unidirectional mode)

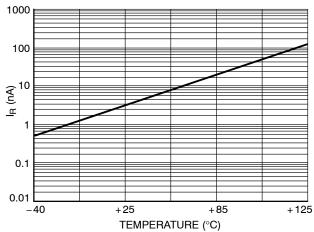


Figure 2. Typical Leakage Current versus Temperature

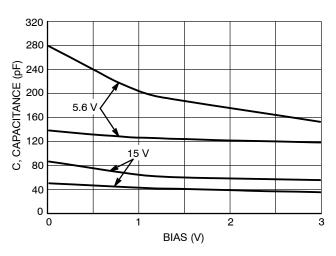


Figure 3. Typical Capacitance versus Bias Voltage (Upper curve for each voltage is unidirectional mode, lower curve is bidirectional mode)



Figure 4. Steady State Power Derating Curve

TYPICAL CHARACTERISTICS

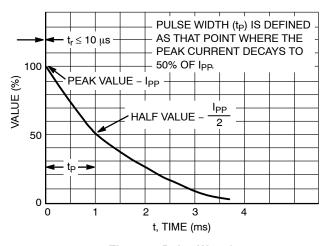


Figure 5. Pulse Waveform

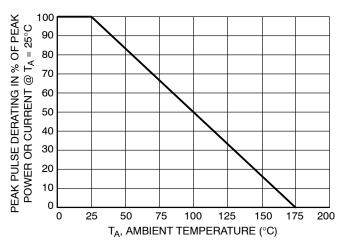


Figure 6. Pulse Derating Curve

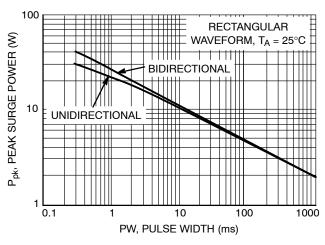
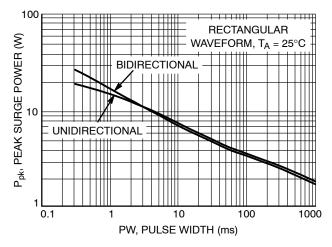
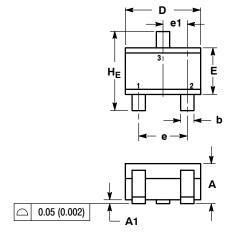
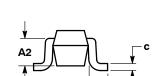


Figure 7. Maximum Non-repetitive Surge Power, P_{pk} versus PW

Power is defined as $V_{RSM} \, x \, I_Z(pk)$ where V_{RSM} is the clamping voltage at $I_Z(pk).$


Figure 8. Maximum Non-repetitive Surge Power, Ppk (NOM) versus PW

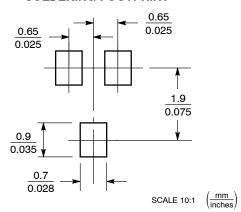
Power is defined as $V_Z(NOM) \times I_Z(pk)$ where $V_Z(NOM)$ is the nominal Zener voltage measured at the low test current used for voltage classification.

PACKAGE DIMENSIONS

SC-70 (SOT-323) CASE 419-04 ISSUE N

OTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.


	М	ILLIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.80	0.90	1.00	0.032	0.035	0.040	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
A2		0.70 REF		0.028 REF			
q	0.30	0.35	0.40	0.012	0.014	0.016	
С	0.10	0.18	0.25	0.004	0.007	0.010	
D	1.80	2.10	2.20	0.071	0.083	0.087	
Е	1.15	1.24	1.35	0.045	0.049	0.053	
е	1.20	1.30	1.40	0.047	0.051	0.055	
e1	0.65 BSC			0.026 BSC			
Ĺ	0.20	0.38	0.56	0.008	0.015	0.022	
HE	2.00	2.10	2.40	0.079	0.083	0.095	

STYLE 4:

PIN 1. CATHODE

2. CATHODE 3. ANODE

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor, "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products or any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semicon

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9