

40V DUAL N-CHANNEL ENHANCEMENT MODE MOSFET

Product Summary

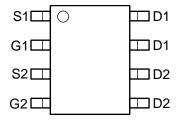
V _{(BR)DSS}	R _{DS(on)}	I _D T _A = 25°C
40V	34mΩ @ V _{GS} = 10V	6.3A
40 V	59m $Ω$ @ V _{GS} = 4.5V	4.8A

Description and Applications

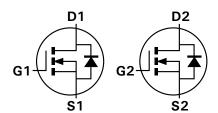
This MOSFET has been designed to minimize the on-state resistance and yet maintain superior switching performance, making it ideal for high efficiency power management applications.

- Motor control
- Backlighting
- DC-DC Converters
- Power management functions

Features and Benefits

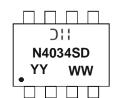

- 100% Unclamped Inductive Switch (UIS) test in production
- Low on-resistance
- Fast switching speed
- Max Q_q rated
- "Green" component and RoHS compliant (Note 1)
- Qualified to AEC-Q101 Standards for High Reliability

Mechanical Data


- Case: SO-8
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0 (Note 1)
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals Connections: See diagram below
- Terminals: Finish Matte Tin annealed over Copper lead frame.
 Solderable per MIL-STD-202, Method 208
- Weight: 0.074 grams (approximate)

Top View

Equivalent Circuit


Ordering Information (Note 1)

Product	Marking	Reel size (inches)	Tape width (mm)	Quantity per reel
DMN4034SSD-13	N4034SD	13	12	2,500

1. Diodes, Inc. defines "Green" products as those which are RoHS compliant and contain no halogens or antimony compounds; further information about Diodes Inc.'s "Green" Policy can be found on our website. For packaging details, go to our website.

Marking Information

Notes:

DII = Manufacturer's Marking N4034SD = Product Type Marking Code YYWW = Date Code Marking YY = Year (ex: 09 = 2009) WW = Week (01 - 53)

Maximum Ratings @T_A = 25°C unless otherwise specified

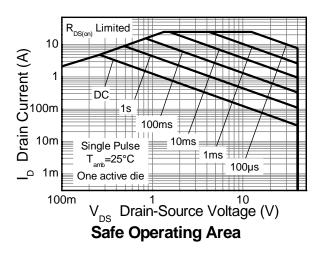
	Characteristic		Symbol	Value	Unit
Drain-Source voltage			V _{DSS}	40	V
Gate-Source voltage		(Note 2)	V_{GS}	±20	V
Single Pulsed Avalanche Energy		(Note 9)	E _{AS}	27	mJ
Single Pulsed Avalanche Current		(Note 9)	I _{AS}	15.25	Α
Continuous Drain current		(Note 4)		6.3	
	$V_{GS} = 10V$	$T_A = 70$ °C (Note 4)	I_{D}	5.0	Α
		(Note 3)		4.8	
Pulsed Drain current	nt $V_{GS} = 10V$ (Note 5)		I _{DM}	24.8	Α
Continuous Source current (ntinuous Source current (Body diode) (Note 4)		I _S	3.3	Α
Pulsed Source current (Body diode)		(Note 5)	I _{SM}	24.8	Α

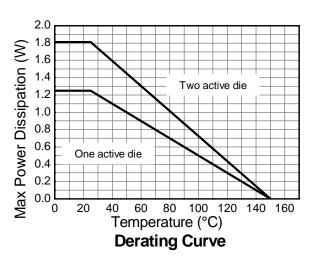
Thermal Characteristics @TA = 25°C unless otherwise specified

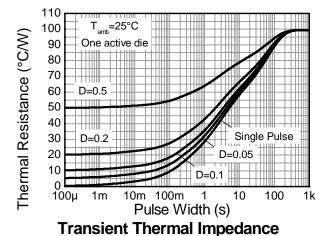
Characteristic	Symbol	Value	Unit		
	(Notes 3 & 6)		1.25 10.0		
Power dissipation Linear derating factor	(Notes 3 & 7)	P_{D}	1.80 14.3	W mW/°C	
	(Notes 4 & 6)		2.14 17.2		
	(Notes 3 & 6)		100		
Thermal Resistance, Junction to Ambient	(Notes 3 & 7)	R _θ JA	70	20044	
	(Notes 4 & 6)		58	°C/W	
Thermal Resistance, Junction to Lead	(Notes 6 & 8)	$R_{ hetaJL}$	55		
Operating and storage temperature range	•	T _J , T _{STG}	-55 to 150	°C	

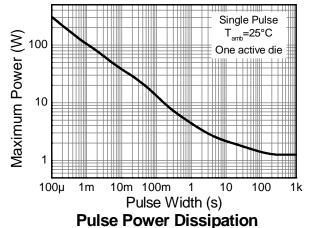
Notes:

- 2. AEC-Q101 V_{GS} maximum is $\pm 16V$.
- 3. For a device surface mounted on 25mm x 25mm x 1.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions; the device is measured when operating in a steady-state condition.
- 4. Same as note (3), except the device is measured at t \leq 10 sec.
- 5. Same as note (3), except the device is measured at t ≥ 10 sec.


 5. Same as note (3), except the device is pulsed with D = 0.02 and pulse width 300μs. The pulse current is limited by the maximum junction temperature.

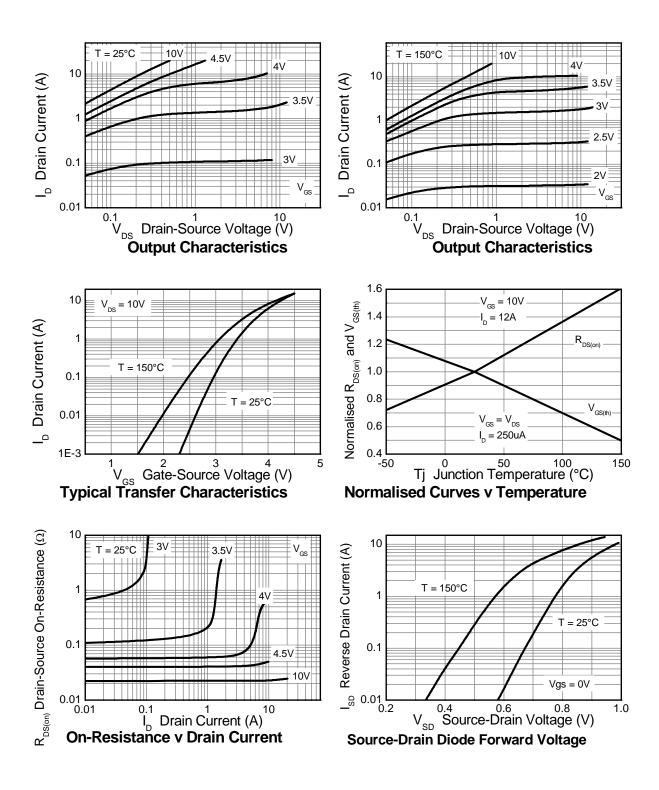

 6. For a dual device with one active die.
- 7. For a device with two active die running at equal power.
- 8. Thermal resistance from junction to solder-point (at the end of the drain lead).
- 9. UIS in production with $L = 100 \mu H$, $V_{DD} = 40 V$.





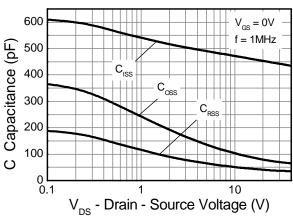
Thermal Characteristics

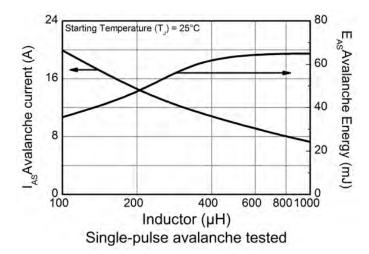
Electrical Characteristics @T_A = 25°C unless otherwise specified


Characteristic	Symbol	Min	Тур	Max	Unit	Test Co	ondition
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage	BV _{DSS}	40	_	_	V	$I_D = 250 \mu A, V_{GS} = 0 V$	
Zero Gate Voltage Drain Current	I _{DSS}	_	_	1	μΑ	V _{DS} = 40V, V _{GS} :	= 0V
Gate-Source Leakage	I _{GSS}	_	_	±100	nA	$V_{GS} = \pm 20V, V_{DS}$	s = 0V
ON CHARACTERISTICS				•	•	•	
Gate Threshold Voltage	V _{GS(th)}	1.0		3.0	V	$I_D = 250 \mu A$, V_{DS}	= V _G S
Static Drain Source On Decistones (Note 10)	5		0.023	0.034	Ω	$V_{GS} = 10V, I_D = 0$	6A
Static Drain-Source On-Resistance (Note 10)	R _{DS (ON)}		0.039	0.059	12	$V_{GS} = 4.5V, I_{D} =$	5A
Forward Transconductance (Notes 10 & 11)	9fs		20.5	_	S	$V_{DS} = 15V, I_{D} = 6$	6A
Diode Forward Voltage (Note 10)	V_{SD}	_	0.87	1.1	V	$I_S = 6A, V_{GS} = 0$	/
Reverse recovery time (Note 11)	t _{rr}		11.2	_	ns	I _S = 2A, di/dt= 100A/μs	
Reverse recovery charge (Note 11)	Q _{rr}		4.8	_	nC		
DYNAMIC CHARACTERISTICS (Note 11)							
Input Capacitance	C _{iss}		453	_	pF	.,	
Output Capacitance	Coss		79.1	_	рF	$V_{DS} = 20V, V_{GS} = 0V$ f = 1MHz	
Reverse Transfer Capacitance	Crss		40.5	_	pF	1 = 1101112	
Total Gate Charge (Note 12)	Q_g	_	4.9	8	nC	$V_{GS} = 4.5V$	
Total Gate Charge (Note 12)	Qg	_	10	18	nC		$V_{DS} = 20V$
Gate-Source Charge (Note 12)	Q _{gs}	_	1.8	_	nC	$V_{GS} = 10V$	$I_D = 6A$
Gate-Drain Charge (Note 12)	Q_{gd}	_	2.4	_	nC	1	
Turn-On Delay Time (Note 12)	t _{D(on)}		2.7	_	ns		
Turn-On Rise Time (Note 12)	t _r	_	2.7	_	ns	V _{DD} = 20V, V _{GS} = 10V	
Turn-Off Delay Time (Note 12)	t _{D(off)}	_	14	_	ns	$I_D = 1A, R_G \cong 6.0\Omega$	
Turn-Off Fall Time (Note 12)	t _f		6	_	ns		

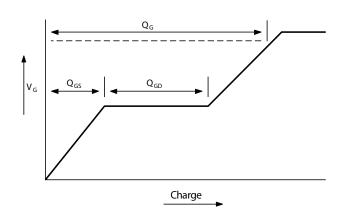
Notes:

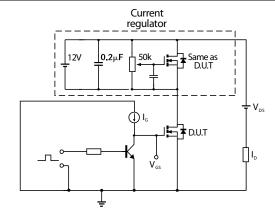
^{10.} Measured under pulsed conditions. Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$ 11. For design aid only, not subject to production testing. 12. Switching characteristics are independent of operating junction temperatures.

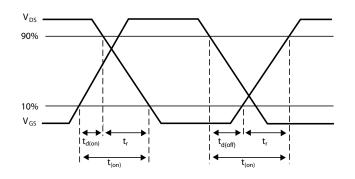

Typical Characteristics

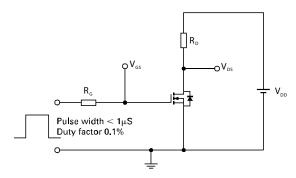

Typical Characteristics – continued

Capacitance v Drain-Source Voltage


Gate-Source Voltage v Gate Charge

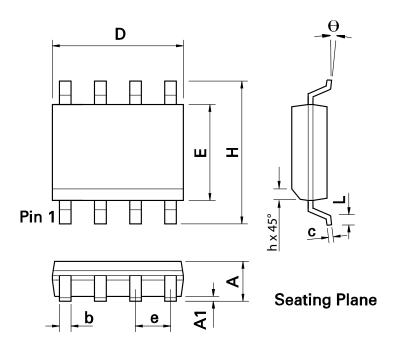



Test Circuits



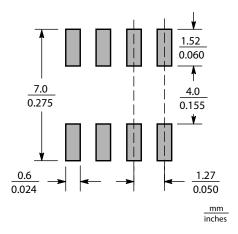
Basic gate charge waveform

Gate charge test circuit



Switching time waveforms

Switching time test circuit



Package Outline Dimensions

DIM	Inches		Millimeters		DIM	Inches		Millimeters	
	Min.	Max.	Min.	Max.		Min.	Max.	Min.	Max.
Α	0.053	0.069	1.35	1.75	е	0.050 BSC		1.27 BSC	
A1	0.004	0.010	0.10	0.25	b	0.013	0.020	0.33	0.51
D	0.189	0.197	4.80	5.00	С	0.008	0.010	0.19	0.25
Н	0.228	0.244	5.80	6.20	θ	0°	8°	0°	8°
Е	0.150	0.157	3.80	4.00	h	0.010	0.020	0.25	0.50
L	0.016	0.050	0.40	1.27	-	-	-	-	-

Suggested Pad Layout

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2012, Diodes Incorporated

www.diodes.com

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9