

Vishay Semiconductors

Schottky Diodes

Features

- For general purpose applications
- These diodes feature very low turn-on voltage and fast guard ring against excessive voltage, such as electrostatic discharges

 Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

Case: DO35 Glass Case Weight: approx. 125 mg Cathode Band Color: black Packaging Codes/Options:

TR/10 k per 13" reel (52 mm tape), 50 k/box TAP/10 k per Ammo tape (52 mm tape), 50 k/box

Parts Table

Part	Ordering code	Type Marking	Remarks
BAT42	BAT42-TR or BAT42-TAP	BAT42	Tape and Reel/Ammopack
BAT43	BAT43-TR or BAT43-TAP	BAT43	Tape and Reel/Ammopack

Absolute Maximum Ratings

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit
Repetitive peak reverse voltage		V_{RRM}	30	V
Forward continuous current	T _{amb} = 25 °C	I _F	200 ¹⁾	mA
Repetitive peak forward current	t_p < 1 s, δ < 0.5, T_{amb} = 25 °C	I _{FRM}	500 ¹⁾	mA
Surge forward current	t_p < 10 ms, T_{amb} = 25 °C	I _{FSM}	4 ¹⁾	Α
Power dissipation ¹⁾	T _{amb} = 65 °C	P _{tot}	200 ¹⁾	mW

¹⁾ Valid provided that leads at a distance of 4 mm from case are kept at ambient temperature

Document Number 85660 www.vishay.com
Rev. 1.5, 27-Feb-07 1

Vishay Semiconductors

Thermal Characteristics

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit
Thermal resistance junction to ambient air		R _{thJA}	300 ¹⁾	K/W
Junction temperature		T _j	125	°C
Ambient operating temperature range		T _{amb}	- 65 to + 125	°C
Storage temperature range		T _{stg}	- 65 to +150	°C

¹⁾ Valid provided that leads at a distance of 4 mm from case are kept at ambient temperature

Electrical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Reverse breakdown voltage	I _R = 100 μA (pulsed)		V _(BR)	30			V
Leakage current ¹⁾	V _R = 25 V		I _R			0.5	μΑ
	$V_R = 25 \text{ V}, T_j = 100 ^{\circ}\text{C}$		I _R			100	μΑ
Forward voltage ¹⁾	I _F = 200 mA		V_{F}			1000	mV
	I _F = 10 mA	BAT42	V_{F}			400	mV
	I _F = 50 mA	BAT42	V_{F}			650	mV
	I _F = 2 mA	BAT43	V_{F}	260		330	mV
	I _F = 15 mA	BAT43	V_{F}			450	mV
Diode capacitance	V _R = 1 V, f = 1 MHz		C _D		7		pF
Reverse recovery time	$I_F = 10 \text{ mA}, I_R = 10 \text{ mA},$ $I_R = 1 \text{ mA}, R_L = 100 \Omega$		t _{rr}			5	ns
Rectification efficieny	$R_L = 15 \text{ k}\Omega, C_L = 300 \text{ pF},$ f = 45 MHz, $V_{RF} = 2 \text{ V}$		ην	80			%

 $^{^{1)}}$ Pulse test $t_{p} < 300~\mu s,\,t_{p}/T < 0.02$

Typical Characteristics

T_{amb} = 25 °C, unless otherwise specified

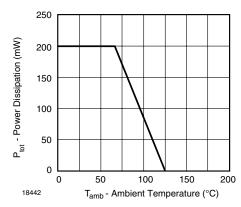


Figure 1. Admissible Power Dissipation vs. Ambient Temperature

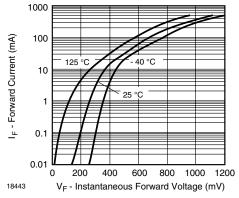


Figure 2. Typical Reverse Characteristics

Vishay Semiconductors

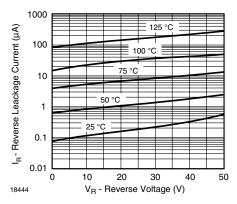


Figure 3. Typical Reverse Characteristics

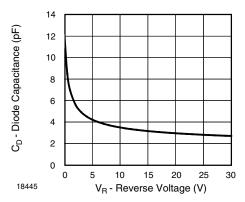
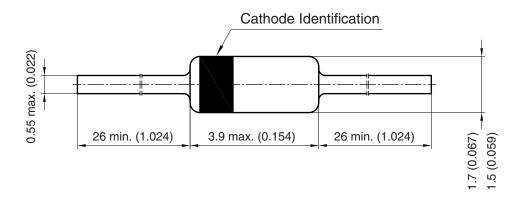



Figure 4. Typical Capacitance vs. Reverse Voltage

Package Dimensions in millimeters (inches): DO35

Rev. 6 - Date: 29. January 2007 Document no.: 6.560-5004.02-4

94 9366

BAT42/BAT43

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

> We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

www.vishay.com Document Number 85660 Rev. 1.5, 27-Feb-07

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9