Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

General Description

The MAX9985 high-linearity, dual-channel downconversion mixer is designed to provide approximately 6 dB gain, +28.5 dBm of IIP3, and 10.5 dB of noise figure (NF) ideal for diversity receiver applications. With a 700 MHz to 1000 MHz RF frequency range and a 570 MHz to 865 MHz LO frequency range, this mixer is ideal for lowside LO injection architectures. In addition, the broad frequency range makes the MAX9985 ideal for GSM 850/950, 2G/2.5G EDGE, WCDMA, cdma2000®, and iDEN ${ }^{\circledR}$ base-station applications.
The MAX9985 dual-channel downconverter achieves a high level of component integration. The MAX9985 integrates two double-balanced active mixer cores, two LO buffers, a dual-input LO selectable switch, and a pair of differential IF output amplifiers. In addition, integrated on-chip baluns at the RF and LO ports allow for singleended RF and single-ended LO inputs. The MAX9985 requires a typical OdBm LO drive. Supply current is adjustable up to 400 mA .
The MAX9985 is available in a 36 -pin thin QFN package ($6 \mathrm{~mm} \times 6 \mathrm{~mm}$) with an exposed paddle. Electrical performance is guaranteed over the extended temperature range, from $\mathrm{T} \mathrm{C}=-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.

Applications

850MHz WCDMA Base Stations
GSM 850/GSM 950, 2G/2.5G EDGE Base Stations
cdmaOne ${ }^{\text {TM }}$ and cdma2000 Base Stations iDEN Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Digital and Spread-Spectrum Communication Systems
Microwave Links
cdma2000 is a registered trademark of Telecommunications Industry Association.
iDEN is a registered trademark of Motorola, Inc. cdmaOne is a trademark of CDMA Development Group.

Features
-700MHz to 1000 MHz RF Frequency Range

- 570 MHz to 865 MHz LO Frequency Range
- 50 MHz to $\mathbf{2 5 0 M H z}$ IF Frequency Range
- 6dB Typical Conversion Gain
- 10.5dB Typical Noise Figure
- +28.5dBm Typical Input IP3
- +16.2dBm Typical Input 1dB Compression Point
- 77dBc Typical 2RF-2LO Spurious Rejection at $P_{R F}=-10 d B m$
- Dual Channels Ideal for Diversity Receiver Applications
- 47dB Typical Channel-to-Channel Isolation
- -3dBm to +3dBm LO Drive
- Integrated LO Buffer
- Internal RF and LO Baluns for Single-Ended Inputs
- Built-In SPDT LO Switch with 43dB LO1-to-LO2 Isolation and 50ns Switching Time
- Pin-Compatible with MAX9995 1700MHz to 2200MHz Mixer
- Lead(Pb)-Free Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX9985ETX +	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	36 Thin QFN-EP* $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$, lead free, bulk	T3666-2
MAX9985ETX +T	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	36 Thin QFN-EP* $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$, lead free, T/R	T3666-2

*EP = Exposed paddle.
T = Tape-and-reel package.
+Denotes lead(Pb)-free and RoHS compliant.

MAX9985

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

ABSOLUTE MAXIMUM RATINGS

$V_{C C}$ to GND ..-0.3V to +5.5 V
LO1, LO2 to GND .. $\pm 0.3 \mathrm{~V}$
Any Other Pins to GND...............................-0.3V to (VCC + 0.3V)
RFMAIN, RFDIV, and LO_ Input Power+20dBm
RFMAIN, RFDIV Current (RF is DC shorted to GND through balun)
. .50 mA
Continuous Power Dissipation (Note 1)6.75W

Operating Case Temperature Range (Note 2) $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Junction Temperature ... $+150^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$ Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

Note 1: Based on junction temperature $T_{J}=T_{C}+\left(\theta_{J C} \times V_{C C} \times I_{C C}\right)$. This formula can be used when the temperature of the exposed pad is known while the device is soldered down to PCB. See the Application Information section for details. The junction temperature must not exceed $+150^{\circ} \mathrm{C}$.
Note 2: T_{C} is the temperature on the exposed pad of the package. T_{A} is the ambient temperature of the device and PCB.

PACKAGE THERMAL CHARACTERISTICS

Junction-to-Ambient Thermal Resistance (θ_{JA})
(Notes 3, 4).. C
Junction-to-Board Thermal Resistance $\left(\theta_{\mathrm{JB}}\right) \ldots12 .2^{\circ} \mathrm{C} / \mathrm{W}$

Junction-to-Case Thermal Resistance (θ_{JC})
(Notes 1, 4)
$7.4^{\circ} \mathrm{C} / \mathrm{W}$

Note 3: Junction temperature $T_{J}=T_{A}+\left(\theta_{J A} \times V_{C C} \times I_{C C}\right)$. This formula can be used when the ambient temperature of the $P C B$ is known. The junction temperature must not exceed $+150^{\circ} \mathrm{C}$.
Note 4: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(Using the Typical Application Circuit, no input RF or LO signals applied, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC		4.75	5	5.25	V
Supply Current	Icc	Total supply current (see Table 1 for lower current settings)		400	440	mA
		$\mathrm{V}_{\text {CC }}$ ((in 16)		80		
		$\mathrm{V}_{\text {CC }}($ pin 30$)$		80		
		IFM+/IFM- (total of both)		105		
		IFD+/IFD- (total of both)		105		
LOSEL Input High Voltage	V_{IH}		2			V
LOSEL Input Low Voltage	$\mathrm{V}_{\text {IL }}$				0.8	V
LOSEL Input Current	$\mathrm{IIH}^{\text {and ILL }}$		-10		+10	$\mu \mathrm{A}$

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

AC ELECTRICAL CHARACTERISTICS

(Using the Typical Application Circuit, VCC $=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to +3 dBm , $P_{R F}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=820 \mathrm{MHz}$ to $920 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=670 \mathrm{MHz}$ to $865 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=100 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}>\mathrm{f}_{\mathrm{LO}}, \mathrm{T} \mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=870 \mathrm{MHz}, \mathrm{fLO}=770 \mathrm{MHz}, \mathrm{fIF}=100 \mathrm{MHz}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 5)

MAX9985

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

AC ELECTRICAL CHARACTERISTICS (continued)

(Using the Typical Application Circuit, VCC $=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to +3 dBm , $P_{R F}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=820 \mathrm{MHz}$ to $920 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=670 \mathrm{MHz}$ to $865 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=100 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}>\mathrm{f}_{\mathrm{LO}}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=870 \mathrm{MHz}, \mathrm{fLO}=770 \mathrm{MHz}, \mathrm{fIF}=100 \mathrm{MHz}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 5)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :--- | :--- | :---: | UNITS

Note 5: All limits reflect losses of external components. Output measurements taken at IF outputs of the Typical Application Circuit.
Note 6: Performance is guaranteed for $f_{R F}=820 \mathrm{MHz}$ to $920 \mathrm{MHz}, \mathrm{fLO}_{\mathrm{LO}}=670 \mathrm{MHz}$ to 865 MHz , and $f_{\mathrm{f}} \mathrm{F}=100 \mathrm{MHz}$. Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics.
Note 7: Guaranteed by design and characterization.
Note 8: Performance at $\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ is guaranteed by design.
Note 9: Measured with external LO source noise filtered so the noise floor is $-174 \mathrm{dBm} / \mathrm{Hz}$. This specification reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Maxim Application Note 2021.
Note 10: Measured at IF port at IF frequency. LOSEL may be in any logic state.

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics

(Using the Typical Application Circuit, VCC $=5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{fRF}>\mathrm{fLO}, \mathrm{fIF}=100 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX9985

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Using the Typical Application Circuit, VCC $=5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{fRF}>\mathrm{fLO}, \mathrm{fIF}=100 \mathrm{MHz}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Using the Typical Application Circuit, VCC $=5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{fRF}>\mathrm{fLO}, \mathrm{fIF}=100 \mathrm{MHz}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX9985

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Using the Typical Application Circuit, VCC $=5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{fRF}>\mathrm{fLO}, \mathrm{fIF}=100 \mathrm{MHz}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Using the Typical Application Circuit, VCC $=5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{fRF}>\mathrm{fLO}, \mathrm{fIF}=100 \mathrm{MHz}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX9985

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Using the Typical Application Circuit, VCC $=5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{fRF}>\mathrm{fLO}, \mathrm{fIF}=100 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Table 1. DC Current vs. Bias Resistor
Settings

BIAS CONDITION	DC CURRENT (mA)	R1 AND R4 VALUES $(\boldsymbol{\Omega})$	R2 AND R5 VALUES (Ω)
0	397.8	1070	1100
1	345.0	1400	1100
2	316.5	1400	1620
3	297.5	1400	2210
4	301.2	1910	1100
5	271.7	1910	1620
6	252.2	1910	2210
7	260.1	2800	1100
8	230.5	2800	1620
9	211.5	2800	2210

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Pin Description

PIN	NAME	FUNCTION
1	RFMAIN	Main Channel RF input. Internally matched to 50Ω. Requires an input DC-blocking capacitor.
2	TAPMAIN	Main Channel Balun Center Tap. Bypass to GND with capacitors close to the pin.
$\begin{aligned} & 3,5,7,12, \\ & 20,22,24, \\ & 25,26,34 \end{aligned}$	GND	Ground
$4,6,10,16,$	VCC	Power Supply. Connect bypass capacitors as close to the pin as possible (see the Typical Application Circuit).
8	TAPDIV	Diversity Channel Balun Center Tap. Bypass to GND with capacitors close to the pin.
9	RFDIV	
11	IFDBIAS	IF Diversity Amplifier Bias Control. Connect a $1.07 \mathrm{k} \Omega$ resistor from this pin to ground to set the bias current for the diversity IF amplifier (see the Typical Operating Characteristics for typical performance versus resistor value).
13, 14	IFD+, IFD-	Diversity Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit).
15	LEXTD	Connect a 30 nH inductor from this pin to ground to increase the RF-to-IF and LO-to-IF isolation. Connect this pin to ground if isolations can be degraded (see the Typical Operating Characteristics for typical degradation).
17	LODBIAS	LO Diversity Amplifier Bias Control. Connect a $1.1 \mathrm{k} \Omega$ resistor from this pin to ground to set the bias current for the diversity LO amplifier (see the Typical Operating Characteristics for typical performance versus resistor value).
18, 28	N.C.	No Connection. Not internally connected.
19	LO1	Local Oscillator 1 Input. This input is internally matched to 50Ω. Requires an input DC-blocking capacitor.
23	LOSEL	Local Oscillator Select. Set this pin to high to select LO1. Set low to select LO2.
27	LO2	Local Oscillator 2 Input. This input is internally matched to 50Ω. Requires an input DC-blocking capacitor.
29	LOMBIAS	LO Main Amplifier Bias Control. Connect a $1.1 \mathrm{k} \Omega$ resistor from this pin to ground to set the bias current for the main LO amplifier (see the Typical Operating Characteristics for typical performance versus resistor value).
31	LEXTM	Connect a 30nH inductor from this pin to ground to increase the RF-IF and LO-IF isolation. Connect this pin to ground if isolations can be degraded (see the Typical Operating Characteristics for typical degradation).
32, 33	IFM-, IFM+	Main Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit).
35	IFMBIAS	IF Main Amplifier Bias Control. Connect a $1.07 \mathrm{k} \Omega$ resistor from this pin to ground to set the bias current for the main IF amplifier (see the Typical Operating Characteristics for typical performance vs. resistor value).
-	EP	Exposed Paddle. Solder the exposed paddle to the ground plane using multiple vias. This paddle affects RF performance and provides heat dissipation.

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Detailed Description

The MAX9985 is a dual-channel downconverter designed to provide 6 dB of conversion gain, +28.5 dBm input IP3, and +16.2 dBm 1 dB input compression point, with a 10.5 dB NF.
In addition to its high-linearity performance, the MAX9985 achieves a high level of component integration. The device integrates two double-balanced active mixers for two-channel downconversion. Both the main and diversity channels include a balun and matching circuitry to allow 50Ω single-ended interfaces to the RF ports and the two LO ports. An integrated single-pole, double-throw (SPDT) switch provides 50 ns switching time between the two LO inputs with 43dB of LO-to-LO isolation and a -40 dBm of LO leakage at the RF port. Furthermore, the integrated LO buffers provide a high drive level to each mixer core, reducing the LO drive required at the MAX9985's inputs to a -3 dBm to +3 dBm range. The IF ports for both channels incorporate differential outputs for downconversion, which is ideal for providing enhanced IIP2 performance.
Dual-channel downconversion makes the MAX9985 ideal for diversity receiver applications. In addition, specifications are guaranteed over broad frequency ranges to allow for use in GSM 850/950, 2G/2.5G EDGE, WCDMA, cdma2000, and iDEN base stations. The MAX9985 is specified to operate over a 700 MHz to 1000 MHz RF input range, a 570 MHz to 865 MHz LO range, and a 50 MHz to 250 MHz IF range. The external IF components set the lower frequency range (see the Typical Operating Characteristics for details).

RF Port and Balun
The RF input ports to both the main and diversity channels are internally matched to 50Ω, requiring no external matching components. A DC-blocking capacitor is required as the input is internally DC-shorted to ground through the on-chip balun. The RF port return loss is typically 15 dB over the entire 700 MHz to 1000 MHz RF frequency range.

LO Inputs, Buffer, and Balun

The MAX9985 is optimized for a 570 MHz to 865 MHz LO frequency range. As an added feature, the MAX9985 includes an internal LO SPDT switch for use in frequency-hopping applications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching time is typically less than 50 ns , which is more than adequate for typical GSM applications. If frequency hopping is not employed, simply set the switch to either of the LO inputs. The switch is controlled by a digital input
(LOSEL), where logic-high selects LO1 and logic-low selects LO2. LO1 and LO2 inputs are internally matched to 50Ω, requiring only an 82 pF DC-blocking capacitor. To avoid damage to the part, voltage MUST be applied to Vcc before digital logic is applied to LOSEL. Alternatively, a $1 \mathrm{k} \Omega$ resistor can be placed in series at the LOSEL to limit the input current in applications where LOSEL is applied before Vcc.
The main and diversity channels incorporate a twostage LO buffer that allows for a wide-input power range for the LO drive. All guaranteed specifications are for an LO signal power from -3 dBm to +3 dBm . The on-chip low-loss baluns, along with LO buffers, drive the double-balanced mixers. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.

High-Linearity Mixer The core of the MAX9985 dual-channel downconverter consists of two double-balanced, high-performance passive mixers. Exceptional linearity is provided by the large LO swing from the on-chip LO buffers. When combined with the integrated IF amplifiers, the cascaded IIP3, 2RF-2LO rejection, and NF performance are typically $+28.5 \mathrm{dBm}, 77 \mathrm{dBc}$, and 10.5 dB , respectively.

Differential IF
The MAX9985 has a 50 MHz to 250 MHz IF frequency range, where the low-end frequency depends on the frequency response of the external IF components. Note that these differential ports are ideal for providing enhanced IIP2 performance. Single-ended IF applications require a $4: 1$ (impedance ratio) balun to transform the 200Ω differential IF impedance to a 50Ω singleended system. After the balun, the IF return loss is better than 20dB. The user can use a differential IF amplifier on the mixer IF ports, but a DC block is required on both IFD+/IFD- and IFM+/IFM- ports to keep external DC from entering the IF ports of the mixer.

Applications Information

Input and Output Matching

The RF and LO inputs are internally matched to 50Ω. No matching components are required. Return loss at the RF port is typically 15 dB over the entire input range and return loss at the LO ports are typically 25 dB . RF and LO inputs require only DC-blocking capacitors for interfacing.
The IF output impedance is 200Ω (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance to a 50Ω single-ended output (see the Typical Application Circuit).

Dual, SiGe, High-Linearity, 700MHz to 1000 MHz Downconversion Mixer with LO Buffer/Switch

LO Buffer Bias Resistors

Bias currents for the two on-chip LO buffers is optimized by fine-tuning the off-chip resistors on LODBIAS (pin 17) and LOMBIAS (pin 29). The current in the buffer amplifiers is reduced by increasing the value of these resistors, but performance may degrade. See the Typical Operating Characteristics for key performance parameters versus this resistor value. Doubling the value of these resistors reduces the total chip current by approximately 50 mA (see Table 1).

IF Amplifier Bias Resistors

 Bias currents for the two on-chip IF amplifiers are optimized by fine-tuning the off-chip resistors on IFDBIAS (pin 11) and IFMBIAS (pin 35). The current in the IF amplifiers is decreased by raising the value of these resistors, but performance may degrade. See the Typical Operating Characteristics for key performance parameters versus this resistor value. Doubling the value of this resistor reduces the current in each IF amplifier from 100 mA to approximately 50 mA (see Table 1).LEXT Inductor
Short LEXT_ to ground using a 0Ω resistor. For applications requiring improved RF-to-IF and LO-to-IF isolation, LEXT_ can be used by connecting a low-ESR inductor from LEXT_ to GND. See the Typical Operating Characteristics on RF-to-IF port isolation and LO-to-IF port leakage for various inductor values. The load impedance presented to the mixer must be such that any capacitance from both IF- and IF+ to ground do not exceed several picofarads to ensure stable operating conditions.
Approximately 100 mA flows through LEXT_, so it is important to use a low-DCR wire-wound inductor.

Layout Considerations

A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed paddle under the package. The PCB exposed paddle MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this paddle to the lower-level ground planes. This method provides a good RF/ther-mal-conduction path for the device. Solder the exposed paddle on the bottom of the device package to the PCB. Refer to the MAX9985 Evaluation Kit as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.

Power-Supply Bypassing

Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCc pin and TAPMAIN/TAPDIV with the capacitors shown in the Typical Application Circuit (see Table 2 for component values). Place the TAPMAIN/TAPDIV bypass capacitor to ground within 100 mils of the pin.

Table 2. Component Values

COMPONENT	VALUE	DESCRIPTION
C1, C2, C7, C8	$39 p F$	Microwave capacitors (0402)
C3, C6	$0.033 \mu F$	Microwave capacitors (0603)
C4, C5	-	Not used
C9, C13, C15, C17, C18	$0.01 \mu F$	Microwave capacitors (0402)
C10, C11, C12, C19, C20, C21	150 pF	Microwave capacitors (0603)
C14, C16	82 pF	Microwave capacitors (0402)
L1, L2, L4, L5	560 nH	Wire-wound high-Q inductors (0805)
L3, L6	30 nH	Wire-wound high-Q inductors (0603)
R1, R4	$1.07 \mathrm{k} \Omega$	$\pm 1 \%$ resistors (0402)
R2, R5	$1.1 \mathrm{k} \Omega$	$\pm 1 \%$ resistors (0402)
R3, R6	0Ω	Resistors (1206)
T1, T2	$4: 1$	Transformers (200:50) Mini-Circuits TC4-1W-7A
U1	-	MAX9985 IC

Exposed Paddle RF/Thermal
Considerations
The exposed paddle (EP) of the MAX9985's 36-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX9985 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.

MAX9985

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Typical Application Circuit

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Pin Configuration/Functional Diagram

Chip Information

PROCESS: SiGe BiCMOS

Lead-Free/RoHS Considerations
http://www.maximintegrated.com/emmi/faq.cfm
Reliability Information:
http://www.maximintegrated.com/reliability/product/ MAX9985.pdf

Package Information
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status

MAX9985

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$12 / 06$	Initial release	-
1	$1 / 07$	Updated Electrical Characteristics table	2,3
2	$12 / 12$	Updated Electrical Characteristics table, Absolute Maximum Ratings, and Ordering Information	$1-4,15$

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:
105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»
Телефон: +7 495 668-12-70 (многоканальный)
Факс: +7 495 668-12-70 (доб.304)
E-mail: info@moschip.ru
Skype отдела продаж:
moschip.ru
moschip.ru_6
moschip.ru_4
moschip.ru_9

