Low Skew, 1-to-4 LVCMOS/LVTTL-to-3.3V LVPECL Fanout Buffer DATA SHEET ### **General Description** The ICS8535-01 is a low skew, high performance 1-to-4 LVCMOS/LVTTL-to-3.3V LVPECL fanout buffer. The ICS8535- 01 has two single ended clock inputs. the single ended clock input accepts LVCMOS or LVTTL input levels and translate them to 3.3V LVPECL levels. The clock enable is internally synchronized to eliminate runt clock pulses on the output during asynchronous assertion/deassertion of the clock enable pin. Guaranteed output and part-to-part skew characteristics make the ICS8535-01 ideal for those applications demanding well defined performance and repeatability. ### **Pin Assignment** ICS8535-01 20-Lead TSSOP 4.4mm x 6.5mm x 0.92 body package **G** Package **Top View** ICS8535-01 20-Lead VFQFN 4mm x 4mm x 0.9 body package K Package **Top View** #### **Features** - Four differential 3.3V LVPECL outputs - Selectable CLK0 or CLK1 inputs for redundant and multiple frequency fanout applications - CLK0 or CLK1 can accept the following input levels: LVCMOS or LVTTL - · Maximum output frequency: 266MHz - Translates LVCMOS and LVTTL levels to 3.3V LVPECL levels - · Output skew: 30ps (maximum) - Part-to-part skew: 250ps (maximum) - Propagation delay: 1.9ns (maximum) - Additive phase jitter, RMS: < 0.09ps (typical) - · 3.3V operating supply - 0°C to 70°C ambient operating temperature - Lead-free (RoHS 6) packaging ### **Block Diagram** 1 ## **Pin Descriptions and Characteristics** Table 1. Pin Descriptions¹ | Name | Ту | ре | Description | |-----------------|--------|----------|---| | V _{EE} | Power | | Negative supply pin. | | CLK_EN | Input | Pullup | Synchronizing clock enable. When HIGH, clock outputs follow clock input. When LOW, Q outputs are forced low, nQ outputs are forced high. LVCMOS / LVTTL interface levels. | | CLK_SEL | Input | Pulldown | Clock select input. When HIGH, selects CLK1 input. When LOW, selects CLK0 input. LVCMOS / LVTTL interface levels. | | CLK0 | Input | Pulldown | LVCMOS / LVTTL clock input. | | CLK1 | Input | Pulldown | LVCMOS / LVTTL clock input. | | nc | Unused | | No connect | | V _{CC} | Power | | Positive supply pins | | nQ3, Q3 | Output | | Differential output pair. LVPECL interface levels. | | nQ2, Q2 | Output | | Differential output pair. LVPECL interface levels. | | nQ1, Q1 | Output | | Differential output pair. LVPECL interface levels. | | nQ0, Q0 | Output | | Differential output pair. LVPECL interface levels. | NOTE 1: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values. #### **Table 2. Pin Characteristics** | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|-------------------------|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | 4 | | pF | | R _{PULLUP} | Input Pullup Resistor | | | 51 | | kΩ | | R _{PULLDOWN} | Input Pulldown Resistor | | | 51 | | kΩ | **Table 3A. Control Input Function Table** | Inputs | | | Out | puts | |--------|---------|-----------------|---------------|----------------| | CLK_EN | CLK_SEL | Selected Source | Q0:Q3 | nQ0:nQ3 | | 0 | 0 | CLK0 | Disabled; LOW | Disabled; HIGH | | 0 | 1 | CLK1 | Disabled; LOW | Disabled; HIGH | | 1 | 0 | CLK0 | Enabled | Enabled | | 1 | 1 | CLK1 | Enabled | Enabled | Figure 1. CLK_EN Timing Diagram **Table 3B. Clock Input Function Table** | Inputs | Outputs | | | |--------------|---------|---------|--| | CLK0 or CLK1 | Q0:Q3 | nQ0:nQ3 | | | 0 | LOW | HIGH | | | 1 | HIGH | LOW | | ### **Absolute Maximum Ratings** NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Electrical Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. | Item | Rating | |--|--------------------------------------| | Supply Voltage, V _{CC} | 4.6V | | Inputs, V _I | -0.5V to V _{CC} + 0.5V | | Outputs, I _O Continuous Current Surge Current | 50mA
100mA | | Package Thermal Impedance, θ _{JA}
20-Lead TSSOP
20-Lead VFQFN | 73.2°C/W (0 lfps)
60.4°C/W (0mps) | | Storage Temperature, T _{STG} | -65°C to 150°C | ### **DC Electrical Characteristics** Table 4A. Power Supply DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $T_A = 0$ °C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-------------------------|-----------------|---------|---------|---------|-------| | V _{CC} | Positive Supply Voltage | | 3.135 | 3.3 | 3.465 | ٧ | | I _{EE} | Power Supply Current | | | | 50 | mA | ### Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $T_A = 0$ °C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-----------------------|------------------------|--|---------|---------|-----------------------|----------| | | Innut High | CLK0, CLK1 | | 2 | | V _{CC} + 0.3 | ٧ | | V _{IH} | Input High
Voltage | CLK_EN,
CLK_SEL | | 2 | | V _{CC} + 0.3 | V | | | Input Low | CLK0, CLK1 | | -0.3 | | 1.3 | \ | | V _{IL} | Input Low
Voltage | CLK_EN,
CLK_SEL | | -0.3 | | 0.8 | V | | I _{IH} | Input High
Current | CLK0, CLK1,
CLK_SEL | $V_{IN} = V_{CC} = 3.465V$ | | | 150 | μA | | | Current | CLK_EN | $V_{IN} = V_{CC} = 3.465V$ | | | 5 | μA | | I _{IL} | Input Low
Current | CLK0, CLK1,
CLK_SEL | V _{IN} = 0V, V _{CC} = 3.465V | -5 | | | μA | | | Current | CLK_EN | $V_{IN} = 0V, V_{CC} = 3.465V$ | -150 | | | μA | ### Table 4C. LVPECL DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $T_A = 0$ °C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------|----------------------------------|-----------------|-----------------------|---------|-----------------------|-------| | V _{OH} | Output High Voltage ¹ | | V _{CC} – 1.4 | | V _{CC} - 0.9 | V | | V _{OL} | Output Low Voltage ¹ | | V _{CC} - 2.0 | | V _{CC} – 1.7 | V | | V _{SWING} | Output Voltage Swing | | 0.6 | | 1.0 | V | NOTE 1: Outputs terminated with 50Ω to V_{CC} – 2. #### **AC Characteristics** Table 5. AC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $T_A = 0$ °C to 70°C¹ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|--|--------------------|---------|---------|---------|-------| | f _{MAX} | Output Frequency | | | | 266 | MHz | | t _{PD} | Propagation Delay ² | <i>f</i> ≤ 266MHz | 1.0 | | 1.9 | ns | | tsk(o) | Output Skew ^{3, 4} | | | 11 | 30 | ps | | tsk(pp) | Part-to-Part Skew ^{4, 5} | | | | 250 | ps | | fjit | Buffer Additive Phase Jitter,
RMS; refer to Additive Phase
Jitter section ⁶ | | | 0.09 | | ps | | t _R / t _F | Output Rise/Fall Time | 20% to 80% @ 50MHz | 300 | | 700 | ps | | odc | Output Duty Cycle | | 48 | 50 | 52 | % | - NOTE 1: All parameters measured at 266MHz unless noted otherwise. The cycle-to-cycle jitter on the input will equal the jitter on the output. The part does not add jitter. - NOTE 2: Measured from the V CC /2 of the input to the differential output crosspoint. - NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential crosspoints - NOTE 4: This parameter is defined in accordance with JEDEC Standard 65. - NOTE 5: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential crosspoints. - NOTE 6: Driving only one input clock. #### **Additive Phase Jitter** The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the **dBc Phase Noise.** This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a **dBc** value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot. As with most timing specifications, phase noise measurements have issues. The primary issue relates to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment. ### **Parameter Measurement Information** Part 1 nQx Qx nQy Part 2i Qy tsk(pp) 3.3V Output Load Test Circuit **Part-to-Part Skew** **Output Skew** **Output Rise/Fall Time** **Propagation Delay** **Output Duty Cycle/Pulse Width/Period** ### **Applications Information** ### **Recommendations for Unused Input Pins** #### Inputs: #### **CLK Input** For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the CLK input to ground. #### **LVCMOS Control Pins** All control pins have internal pullups; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used. #### **Outputs:** #### **LVPECL Outputs** All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated. ### **Termination for 3.3V LVPECL Outputs** The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. The differential output is a low impedance follower output that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figure 2A* and *Figure 2B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. Figure 2A. 3.3V LVPECL Output Termination Figure 2B. 3.3V LVPECL Output Termination ### **Schematic Example** *Figure 3* shows a schematic example of the ICS8535-01. In this example, the CLK0 input is selected. The decoupling capacitors should be physically located near the power pin. For ICS8535-01, the unused clock outputs can be left floating Figure 3. ICS8535-01 Schematic Example #### **Power Considerations** This section provides information on power dissipation and junction temperature for the ICS8535-01. Equations and example calculations are also provided. #### 1. Power Dissipation. The total power dissipation for the ICS8535-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results. NOTE: Please refer to Section 3 for details on calculating power dissipated in the load. - Power (core)_{MAX} = V_{CC_MAX} * I_{EE_MAX} = 3.465V * 50mA = 173.25mW - Power (outputs)_{MAX} = 30mW/Loaded Output pair If all outputs are loaded, the total power is 4 * 30mW = 120mW Total Power_MAX (3.465V, with all outputs switching) = 173.25mW + 120mW = 293.25mW #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A Tj = Junction Temperature θ_{JA} = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) T_A = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per *Table 6A* below. Therefore, Tj for an ambient temperature of 70°C with all outputs switching is: $70^{\circ}\text{C} + 0.293\text{W} * 66.6^{\circ}\text{C/W} = 89.5^{\circ}\text{C}$. This is below the limit of 125°C . This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer). Table 6A. Thermal Resistance θ_{JA} for 20-Lead TSSOP, Forced Convection | θ_{JA} by Velocity | | | | | | |--|-----------|----------|----------|--|--| | Linear Feet per Minute | 0 | 200 | 500 | | | | Single-Layer PCB, JEDEC Standard Test Boards | 114.5°C/W | 98.0°C/W | 88.0°C/W | | | | Multi-Layer PCB, JEDEC Standard Test Boards | 73.2°C/W | 66.6°C/W | 63.5°C/W | | | NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. #### Table 6B. θ_{JA} vs. Air Flow Table for 20-Lead VFQFN | θ_{JA} by Velocity | | | | | | |---|----------|----------|----------|--|--| | Meters per Second | 0 | 1 | 3 | | | | Multi-Layer PCB, JEDEC Standard Test Boards | 60.4°C/W | 52.8°C/W | 46.0°C/W | | | #### 3. Calculations and Equations. The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in Figure 4. Figure 4. LVPECL Driver Circuit and Termination To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{CC} – 2V. - For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.9V$ $(V_{CC_MAX} - V_{OH_MAX}) = 0.9V$ - For logic low, V_{OUT} = V_{OL_MAX} = V_{CO_MAX} 1.7V (V_{CC_MAX} V_{OL_MAX}) = 1.7V Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low. $$Pd_{-}H = [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_{L}] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - (V_{CC_MAX} - V_{OH_MAX}))/R_{L}] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$$ $$Pd_{L} = [(V_{OL_MAX} - (V_{CC_MAX} - 2V))/R_{L}] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - (V_{CC_MAX} - V_{OL_MAX}))/R_{L}] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$$ Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW ## **Reliability Information** Table 7A. θ_{JA} vs. Air Flow Table for a 20-Lead TSSOP | θ_{JA} by Velocity | | | | | |--|-----------|----------|----------|--| | Linear Feet per Minute | 0 | 200 | 500 | | | Single-Layer PCB, JEDEC Standard Test Boards | 114.5°C/W | 98.0°C/W | 88.0°C/W | | | Multi-Layer PCB, JEDEC Standard Test Boards | 73.2°C/W | 66.6°C/W | 63.5°C/W | | NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. Table 7B. θ_{JA} vs. Air Flow Table for 20-Lead VFQFN | θ_{JA} by Velocity | | | | | |---|----------|----------|----------|--| | Meters per Second | 0 | 1 | 3 | | | Multi-Layer PCB, JEDEC Standard Test Boards | 60.4°C/W | 52.8°C/W | 46.0°C/W | | ### **Transistor Count** The transistor count for the IS8535-01 is 412. # **Package Outline and Package Dimensions** Package Outline - G Suffix for 20-Lead TSSOP Table 8A. Package Dimensions for TSSOP | Complete | Millimeters | | | |----------|-------------|---------|--| | Symbol | Minimum | Maximum | | | N | | 20 | | | Α | | 1.20 | | | A1 | 0.05 | 0.15 | | | A2 | 0.80 | 1.05 | | | b | 0.19 | 0.30 | | | С | 0.09 | 0.20 | | | D | 6.40 | 6.60 | | | E | 6.40 | BASIC | | | E1 | 4.30 | 4.50 | | | е | 0.65 | BASIC | | | L | 0.45 | 0.75 | | | α | 0° | 8° | | | aaa | | 0.10 | | Reference Document: JEDEC Publication 95, MO-153 ### Package Outline and Package Dimensions (continued) ### Package Outline - K Suffix for 20-Lead VFQFN Table 9. Package Dimensions for 20-Lead VFQFN | JEDEC Variation: All Dimensions in Millimeters | | | | | |--|----------------|------|---------|--| | Symbol | Minimum | Nom | Maximum | | | b | 0.20 | 0.25 | 0.30 | | | D | 3.90 | 4.00 | 4.10 | | | E | 3.90 4.00 4.10 | | | | | D2 | 1.95 | 2.10 | 2.25 | | | E2 | 1.95 | 2.10 | 2.25 | | | L | 0.45 | 0.55 | 0.65 | | | е | 0.50 BSC | | | | | N | 20 | | | | | Α | 0.80 | 0.90 | 1.00 | | | A1 | 0.00 | 0.02 | 0.05 | | | А3 | 0.2 REF | | | | Reference Document: JEDEC Publication 95, MO-220 #### NOTE: The drawing and dimension data originate from IDT package outline drawing PSC-4170, rev03. - 1. Dimensions and tolerances conform to ASME Y14.5M-1994 - 2. All dimensions are in millimeters. All angles are in degrees. - 3. N is the total number of terminals. - 4. All specifications comply with JEDEC MO-220. ## **Ordering Information** ### **Table 10. Ordering Information** | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|--------------|---------------------------|--------------------|-------------| | 8535AG-01LF | ICS8535A01LF | "Lead-Free" 20-Lead TSSOP | Tube | 0°C to 70°C | | 8535AG-01LFT | ICS8535A01LF | "Lead-Free" 20-Lead TSSOP | Tape & Reel | 0°C to 70°C | | 8535AK-01LF | 35A01L | "Lead-Free" 20-Lead VFQFN | Tube | 0°C to 70°C | | 8535AK-01LFT | 35A01L | "Lead-Free" 20-Lead VFQFN | Tape & Reel | 0°C to 70°C | # **Revision History Sheet** | Rev | Table | Page | Description of Change | Date | |-----|------------------|----------------------------|---|----------| | В | | 3 | Updated Figure 1 - CLK_EN Timing Diagram. | 10/16/01 | | В | | 3 | Updated Figure 1 - CLK_EN Timing Diagram. | 10/29/01 | | В | | 8 | Added Termination for LVPECL Outputs section. | 5/29/02 | | В | | 6 | Output Load Test Circuit - corrected V_{EE} equation to read " V_{EE} = -0.5V \pm 0.165V" from "VEE = -0.5V \pm 0.135V". | 10/4/02 | | С | T5 | 5 | AC Characteristics table - changed tsk(pp) from 150ps max. to 250ps. max. Update format. | 12/13/02 | | D | | 8
4
4 | Added Schematic layout in the Application Section.
LVCMOS Table - changed V_{IH} 3.765V Max. to V_{CC} + 0.3V Max.
LVPECL Table - changed V_{SWING} 0.85V Max. to 1.0V Max. | 1/20/03 | | D | | 8 | Schematic Example, changed sentence to read "In this example, the XTAL input is selected." to ", The CLK1 input is selected." Corrected schematic example. | 4/1/03 | | Е | T2
T5 | 1
2
4
5
6
8 | Added RMS Jitter to Features section. Pin Characteristics Table - changed C _{IN} from 4pF max. to 4pF typical. Revised Absolute Maximum Ratings Output. AC Characteristics Table - added RMS Jitter. Added Additive Phase Jitter Section. Revised LVPECL Output Termination diagrams. | 9/19/03 | | E | | 14 | Added "Lead-Free" Part/Order Number rows. | 11/13/03 | | E | | 14 | Corrected "Lead-Free" marking and order/part numbers. | 12/4/03 | | E | T5 | 1
5 | Added Lead-Free bullet in the Features section. AC Characteristics table - added Note 5. | 6/17/04 | | E | T9 | 14 | Corrected Lead-Free marking in Ordering Information Table. | 9/17/04 | | E | T7B
T8B
T9 | 1
12
14
15 | Pin Assignment - added 20-Lead VFQFN package information. Added 20-Lead VFQFN Reliability Information. Added 20-Lead VFQFN Package Outline and Dimensions. Ordering Information Table - added 20-Lead VFQFN ordering information. | 10/7/04 | | Е | Т9 | 15 | Ordering Information Table - added "Lead-Free/Annealed" part number. | 10/11/04 | | E | | 1 | Pin Assignment - corrected letter package for 20-Lead VFQFN from "G Package" to "K Package". | 12/8/04 | | E | Т9 | 15 | Ordering Information Table - corrected marking on TSSOP Lead-Free package and added Lead-Free note. | 5/24/05 | | E | Т9 | 8
15 | Added Recommendations for Unused Input and Output Pins. Ordering Information Table - corrected 20-Lead VFQFN marking and added Lead-Free 20-Lead VFQFN part number. | 9/16/05 | | E | Т9 | 15 | Ordering Information Table - corrected 20-Lead VFQFN Shipping Packaging. | 3/21/06 | | E | TOD | 4 | Absolute Maximum Ratings - corrected 20-Lead VFQFN Package Thermal Impedance. | 10/02/06 | | | T6B | 10 | Corrected 20-Lead VFQFN Theta JA. | | | | T7B | 12 | Corrected 20-Lead VFQFN Theta JA. | | | Rev | Table | Page | Description of Change | Date | |-----|-------|--------------|--|---------| | F | T4C | 4
10 - 11 | LVPECL DC Characteristics Table -corrected V_{OH} max. from V_{CC} - 1.0V to V_{CC} - 0.9V. Power Considerations - corrected power dissipation to reflect V_{OH} max in Table 4C. | 4/12/07 | | F | | 1 | NRND - Not Recommended For New Designs | 5/20/13 | | F | | 1 | Removed NRND marking from datasheet | 5/28/13 | | F | T8B | 14
14 | Updated datasheet format. Updated Package Outline Updated package dimensions to reflect tighter tolerances. | 8/7/14 | **Corporate Headquarters** 6024 Silver Creek Valley Road San Jose, CA 95138 USA Sales 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com Tech Support email: clocks@idt.com DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties. IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments. Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners. Copyright ©2014 Integrated Device Technology, Inc.. All rights reserved. ### **ПОСТАВКА** ЭЛЕКТРОННЫХ КОМПОНЕНТОВ Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107 # Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip. Для оперативного оформления запроса Вам необходимо перейти по данной ссылке: #### http://moschip.ru/get-element Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора. В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов. Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair. Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки. На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров. Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009 #### Офис по работе с юридическими лицами: 105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский» Телефон: +7 495 668-12-70 (многоканальный) Факс: +7 495 668-12-70 (доб.304) E-mail: info@moschip.ru Skype отдела продаж: moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9