16-tap Digital Potentiometers (POTs) with 2-wire Interface

Description

CAT5120/5121/5122 linear-taper digital POTs perform the same function as a mechanical potentiometer or a variable resistor. These devices consist of a fixed resistor and a wiper contact with 16-tap points that are digitally controlled through a 2-wire up/down serial interface.

The CAT5120 is configured as a potentiometer. The CAT5121 and CAT5122 are configured as variable resistors. See *Pin Configurations* for part functionality.

Two resistance values are available: 10 k Ω and 50 k Ω . These are available in space-saving 5-pin and 6-pin SC-70 and SOT-23 packages.

Features

- 0.3 µA Ultra-low Standby Current
- Single-supply Operation: 2.7 V to 5.5 V
- Glitchless Switching between Resistor Taps
- Power-on Reset to Midscale
- 2-wire Up/Down Serial Interface
- Resistance Values: $10 \text{ k}\Omega$, $50 \text{ k}\Omega$
- Available in SC-70 and SOT-23 Packages
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- LCD Screen Adjustment
- Volume Control
- Mechanical Potentiometer Replacement
- Gain Adjustment
- Line Impedance Matching

ON Semiconductor®

http://onsemi.com

SC-70 SD SUFFIX CASE 419AD

SOT-23 TB SUFFIX CASE 527AJ

SC-70 SD SUFFIX CASE 419AC SOT-23 TB SUFFIX CASE 527AH

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Table 1. PIN DESCRIPTIONS

Name	Description
V _{DD}	Power Supply
GND	Ground
U/D	Up/Down Control Input. With CS low, a low-to-high transition increments or decrements the wiper position.
CS	Chip Select Input. A high-to-low CS transition determines the mode: increment if U/D is high, or decrement if U/D is low.
L	Low Terminal of Resistor
W	Wiper Terminal of Resistor
Н	High Terminal of Resistor

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameters	Ratings	Units
V _{DD} to GND	–0.3 to +6	V
All Other Pins to GND	–0.3 to (V _{DD} + 0.3)	V
Input and Output Latch-up Immunity	±200	mA
Maximum Continuous Current into H, L and W 50 k Ω 10 k Ω	±1.3 ±1.3	mA
Continuous Power Dissipation (T _A = +70°C) 5-pin SC-70 (Note 1) 6-pin SC-70 (Note 1)	247 245	mW
Operating Temperature Range	-40 to +85	°C
Junction Temperature	+150	°C
Storage Temperature Range	-65 to +150	°C
Soldering Temperature (soldering, 10 s)	+300	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Derate 3.1 mW/°C above $T_A = +70°C$

Table 3. ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}, V_{H} = V_{DD}, V_{L} = 0, T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C}. \text{ Typical values are at } V_{DD} = 2.7 \text{ V}, T_{A} = 25^{\circ}\text{C}, \text{ unless otherwise noted.})$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
DC PERFORMANCE					•	
Resolution			16			Taps
End-to-End Resistance (-50)			37.5	50	62.5	kΩ
End-to-End Resistance (-10)			7.5	10	12.5	
End-to-End Resistance Tempco	TCR			200		ppm/°C
Ratiometric Resistance Tempco				5		ppm/°C
Integral Non-linearity	INL				±0.5	LSB
Differential Non-linearity	DNL				±0.5	LSB
Zero/Full-Scale Error				±0.1	±0.5	LSB
Wiper Resistance	R _W			200	600	Ω
DIGITAL INPUTS						
Input High Voltage	V _{IH}		0.7 x V _{DD}			V
Input Low Voltage	V _{IL}				0.3 x V _{DD}	V
TIMING CHARACTERISTICS (Figure	s 7, 8)					
U/\overline{D} Mode to \overline{CS} Setup	t _{CU}		25			ns
CS to U/D Step Setup	t _{CI}		50			ns
CS to U/D Step Hold	t _{IC}		25			ns
U/D Step Low Period	t _{IL}		25			ns
U/D Step High Period	t _{IH}		25			ns
Up/Down Toggle Rate (Note 2)	f TOGGLE			1		MHz
Output Settling Time (Note 3)	^t SETTLE	50 k Ω variable resistor configuration, C _L = 10 pF		1		μs
		50 k Ω potentiometer configuration, C _L = 10 pF		0.25		1

POWER SUPPLY

Supply Voltage	V _{DD}		2.7		5.5	V
Active Supply Current (Note 4)	I _{DD}				25	μΑ
Standby Supply Current (Note 5)	I _{SB}	V _{DD} = +5 V		0.3	1	μΑ

2. Up/Down Toggle Rate: $f_{TOGGLE} = 1 / t_{SETTLE}$ 3. Typical settling times are dependent on end-to-end resistance. 4. Supply current measured while changing wiper tap, $f_{TOGGLE} = 1$ MHz. 5. Supply current measured while wiper position is fixed.

TYPICAL OPERATING CHARACTERISTICS

Figure 6. Tap-to-Tap Switching Transient

FUNCTIONAL DESCRIPTION

The CAT5120/5121/5122 consist of a fixed resistor and a wiper contact with 16-tap points that are digitally controlled through a 2-wire up/down serial interface. Two end-to-end resistance values are available: 10 k Ω and 50 k Ω .

The CAT5120 is designed to operate as a potentiometer. In this configuration, the low terminal of the resistor array is connected to ground (pin 2).

The CAT5122 performs as a variable resistor. In this device, the wiper terminal and high terminal of the resistor array is connected at pin 5. The CAT5121 is a similar variable resistor, except the low terminal is connected to pin 5.

Digital Interface Operation

The devices have two modes of operation when the serial interface is active: increment and decrement mode. The serial interface is only active when \overline{CS} is low.

The \overline{CS} and U/\overline{D} inputs control the position of the wiper along the resistor array. When \overline{CS} transitions from high to low, the part will go into increment mode if U/\overline{D} input is high, and into decrement mode when U/\overline{D} input is low. Once the mode is set, the device will remain in that mode until \overline{CS} goes high again. A low-to-high transition at the U/\overline{D} pin will increment or decrement the wiper position depending on the current mode (Figures 7 and 8).

When the \overline{CS} input transitions to high (serial interface inactive), the value of the counter is stored and the wiper position is maintained.

Note that when the wiper reaches the maximum (or minimum) tap position, the wiper will not wrap around to the minimum (or maximum) position.

Power-on Reset

All parts in this family feature power-on reset (POR) circuitry that sets the wiper position to midscale at power-up. By default, the chip is in the increment mode.

Note: "W" is not a digital signal. It represents wiper transitions.

Note: "W" is not a digital signal. It represents wiper transitions.

Figure 8. Serial Interface Timing Diagram, Decrement Mode

APPLICATIONS INFORMATION

Adjustable Gain

The devices are intended for circuits requiring digitally controlled adjustable resistance, such as LCD contrast control, where voltage biasing adjusts the display contrast.

Alternative Positive LCD Bias Control

Use an op amp to provide buffering and gain on the output of the CAT5120. Connect the mechanical potentiometer to the positive input of a noninverting op amp (Figure 9) to select a portion of the input signal by digitally controlling the wiper terminal. Figure 10 shows a similar circuit for the CAT5121.

Figure 9. Positive LCD Bias Control

Figures 11 and 12 show how to use the variable resistor to digitally adjust the gain of a noninverting op amp configuration. Connect the CAT5121 in series with a resistor to ground to form the adjustable gain control of a noninverting amplifier. The devices have a low 5 ppm/°C ratiometric tempco that allows for a very stable adjustable gain configuration over temperature.

Figure 10. Positive LCD Bias Control

Figure 11. Adjustable Gain Circuit

Figure 12. Adjustable Gain Circuit

Table 4. ORDERING INFORMATION

Orderable Part Number	Resistor [kΩ]	Package	Shipping [†]
CAT5120SDI-10GT3	10	SC70–6 (Pb–Free)	3000 / Tape & Reel
CAT5120TBI-10GT3	10	SOT23–6 (Pb–Free)	3000 / Tape & Reel
CAT5120SDI-50GT3	50	SC70–6 (Pb–Free)	3000 / Tape & Reel
CAT5120TBI-50GT3	50	SOT23–6 (Pb–Free)	3000 / Tape & Reel
CAT5121SDI-10GT3	10	SC70–6 (Pb–Free)	3000 / Tape & Reel
CAT5121TBI-10GT3	10	SOT23–6 (Pb–Free)	3000 / Tape & Reel
CAT5121SDI-50GT3	50	SC70–6 (Pb–Free)	3000 / Tape & Reel
CAT5121TBI-50GT3	50	SOT23–6 (Pb–Free)	3000 / Tape & Reel
CAT5122SDI-10GT3	10	SC70–5 (Pb–Free)	3000 / Tape & Reel
CAT5122TBI-10GT3	10	SOT23–5 (Pb–Free)	3000 / Tape & Reel
CAT5122SDI-50GT3	50	SC70–5 (Pb–Free)	3000 / Tape & Reel
CAT5122TBI-50GT3	50	SOT23–5 (Pb–Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. 6. For detailed information and a breakdown of device nomenclature and numbering systems, please see the ON Semiconductor Device

Nomenclature document, TND310/D, available at www.onsemi.com.

PACKAGE DIMENSIONS

SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD **ISSUE A**

SYMBOL	MIN	NOM	MAX	
А	0.80		1.10	
A1	0.00		0.10	
A2	0.80		1.00	
b	0.15		0.30	
с	0.10		0.18	
D	1.80	2.00	2.20	
E	1.80	2.10	2.40	
E1	1.15	1.25	1.35	
е		0.65 BSC		
L	0.26	0.36	0.46	
L1	0.42 REF			
L2	0.15 BSC			
θ	0°		8°	
θ1	4°		10°	

SIDE VIEW

Notes:

All dimensions are in millimeters. Angles in degrees.
Complies with JEDEC MO-203.

END VIEW

PACKAGE DIMENSIONS

SOT-23, 6 Lead CASE 527AJ ISSUE B

PACKAGE DIMENSIONS

SC-88A (SC-70 5 Lead), 1.25x2 CASE 419AC **ISSUE A**

SYMBOL	MIN	NOM	MAX	
Α	0.80		1.10	
A1	0.00		0.10	
A2	0.80		1.00	
b	0.15		0.30	
с	0.10		0.18	
D	1.80	2.00	2.20	
Е	1.80	2.10	2.40	
E1	1.15	1.25	1.35	
е		0.65 BSC		
L	0.26	0.36	0.46	
L1	0.42 REF			
L2	0.15 BSC			
θ	0°		8°	
θ1	4°		10°	

SIDE VIEW

Notes:

All dimensions are in millimeters. Angles in degrees.
Complies with JEDEC MO-203.

END VIEW

PACKAGE DIMENSIONS

SOT-23, 5 Lead CASE 527AH ISSUE O

PIN #1 IDENTIFICATION

TOP VIEW

SYMBOL	MIN	NOM	MAX	
А	0.90		1.45	
A1	0.00		0.15	
A2	0.90	1.15	1.30	
b	0.30		0.50	
с	0.08		0.22	
D	2.90 BSC			
E	2.80 BSC			
E1	1.60 BSC			
е	0.95 BSC			
L	0.30	0.45	0.60	
L1	0.60 REF			
L2	0.25 REF			
θ	0°	4°	8°	
θ1	5°	10°	15°	
θ2	5°	10°	15°	

L2

END VIEW

SIDE VIEW

Notes:

(1) All dimensions in millimeters. Angles in degrees.

(2) Complies with JEDEC standard MO-178.

ON Semiconductor and **(iiii)** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.om/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use papenses, and expanselable attorney fees anising or or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employ

A

11

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Techn Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9