
1.8" TFT Display Breakout and Shield
Created by lady ada

Last updated on 2020-06-25 12:20:14 PM EDT

Overview

This tutorial is for our 1.8" diagonal TFT display. It comes packaged as a breakout or as an Arduino shield. Both styles
have a microSD interface for storing files and images. These are both great ways to add a small, colorful and bright
display to any project. Since the display uses 4-wire SPI to communicate and has its own pixel-addressable frame
buffer, it requires little memory and only a few pins. This makes it ideal for use with small microcontrollers.

The shield version plugs directly into an Arduino with no wiring required. The breakout version can be used with every
kind of microcontroller.

The 1.8" display has 128x160 color pixels. Unlike the low cost "Nokia 6110" and similar LCD displays, which are CSTN

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 4 of 75

https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3382
https://www.adafruit.com/product/4064
https://www.adafruit.com/product/4000

type and thus have poor color and slow refresh, this display is a true TFT! The TFT driver (ST7735R) can display full 18-
bit color (262,144 shades!). And the LCD will always come with the same driver chip so there's no worries that your
code will not work from one to the other.

Both boards have the TFT soldered on (it uses a delicate flex-circuit connector) as well as a ultra-low-dropout 3.3V
regulator and a 3/5V level shifter so you can use it with 3.3V or 5V power and logic. These also include a microSD card
holder so you can easily load full color bitmaps from a FAT16/FAT32 formatted microSD card. And on the Shield
version, we've added a nifty 5-way joystick navigation switch!

You can pick up one of these displays in the Adafruit shop!
1.8" 18-bit color TFT breakout (http://adafru.it/358)
1.8" 18-bit Color TFT Shield (http://adafru.it/802)

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 5 of 75

http://www.adafruit.com/products/358
http://www.adafruit.com/products/802

1.8" TFT
Breakout

This color display uses SPI to receive image data. That means you need at least 4 pins - clock, data in, tft cs and d/c. If
you'd like to have SD card usage too, add another 2 pins - data out and card cs. However, there's a couple other pins
you may want to use, lets go thru them all!

Lite - this is the PWM input for the backlight control. Connect to 3-5VDC to turn on the backlight. Connect to
ground to turn it off. Or, you can PWM at any frequency.
MISO - this is the SPI Microcontroller In Serial Out pin, its used for the SD card. It isn't used for the TFT display
which is write-only
SCLK - this is the SPI clock input pin
MOSI - this is the SPI Microcontroller Out Serial In pin, it is used to send data from the microcontroller to the SD
card and/or TFT
TFT_CS - this is the TFT SPI chip select pin
Card CS - this is the SD card chip select, used if you want to read from the SD card.
D/C - this is the TFT SPI data or command selector pin
RST - this is the TFT reset pin. Connect to ground to reset the TFT! Its best to have this pin controlled by the
library so the display is reset cleanly, but you can also connect it to the Arduino Reset pin, which works for most
cases.
Vcc - this is the power pin, connect to 3-5VDC - it has reverse polarity protection but try to wire it right!
GND - this is the power and signal ground pin

For the level shifter we use the CD74HC4050 (https://adafru.it/Boj) which has a typical propagation delay of ~10ns

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 6 of 75

http://www.ti.com/product/CD74HC4050/

Breakout Assembly

Prepare the header strip:
Cut the strip to length if necessary. It will be easier to

solder if you insert it into a breadboard - long pins down

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 7 of 75

https://learn.adafruit.com/assets/19556

Add the breakout board:
Place the breakout board over the pins so that the short

pins poke through the breakout pads

And Solder!
Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to

Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 8 of 75

https://learn.adafruit.com/assets/19557
https://learn.adafruit.com/assets/19558
https://learn.adafruit.com/assets/19559
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder joints visually and

continue onto the next steps

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 9 of 75

https://learn.adafruit.com/assets/19560

Breakout Wiring &
Test

There are two ways to wire up these displays - one is a more flexible method (you can use any pins on the Arduino)
and the other is much faster (4-8x faster, but you are required to use the hardware SPI pins) We will begin by showing
how to use the faster method, you can always change the pins later for flexible 'software SPI'

Wiring up the display in SPI mode is pretty easy as there's not that many pins! We'll be using hardware SPI, but you can
also use software SPI (any pins) later. Start by connecting the power pins

3-5V Vin connects to the Arduino 5V pin - red wires
GND connects to Arduino ground - black wires
CLK connects to SPI clock. On Arduino Uno/Duemilanove/328-based, thats Digital 13. On Mega's, its Digital 52
and on Leonardo/Due its ICSP-3 (See SPI Connections for more details (https://adafru.it/d5h)) - this is the orange
wire
MOSI connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based, thats Digital 11. On Mega's, its Digital 51
and on Leonardo/Due its ICSP-4 (See SPI Connections for more details (https://adafru.it/d5h)) - this is the white
wire
CS connects to our SPI Chip Select pin. We'll be using Digital 10 but you can later change this to any pin - this is
the yellow wire
RST connects to our TFT reset pin. We'll be using Digital 9 but you can later change this pin too - this is the blue
wire
D/C connects to our SPI data/command select pin. We'll be using Digital 8 but you can later change this pin too -
this is the green wire

Install Adafruit ST7735 TFT Library

We have example code ready to go for use with these TFTs. It's written for Arduino, which should be portable to any
microcontroller by adapting the C++ source.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 10 of 75

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

Three libraries need to be installed using the Arduino Library Manager…this is the preferred and modern way. From the
Arduino “Sketch” menu, select “Include Library” then “Manage Libraries…”

Search for and install the Adafruit GFX library:

And the Adafruit ST7735 library:

If using an older version of the Arduino IDE (pre-1.8.10), also locate and install the Adafruit_BusIO library (newer
versions do this automatically when using the Arduino Library Manager).

If this is all unfamiliar, we have a tutorial introducing Arduino library concepts and installation (https://adafru.it/aYM).

Restart the IDE!

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 11 of 75

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

After restarting the Arduino software, you should see a new example folder called Adafruit_ST7735 and inside, an
example called graphicstest.

Now upload the sketch to your Arduino. You may need to press the Reset button to reset the arduino and TFT. You
should see a collection of graphical tests draw out on the TFT.

Once uploaded, the Arduino should perform all the test display procedures! If you're not seeing anything - first check if

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 12 of 75

you have the backlight on, if the backlight is not lit something is wrong with the power/backlight wiring. If the backlight
is lit but you see nothing on the display make sure you're using our suggested wiring.

Changing Pins

Now that you have it working, there's a few things you can do to change around the pins.

If you're using Hardware SPI, the CLOCK and MOSI pins are 'fixed' and cant be changed. But you can change to
software SPI, which is a bit slower, and that lets you pick any pins you like. Find these lines:

// Option 1 (recommended): must use the hardware SPI pins
// (for UNO thats sclk = 13 and sid = 11) and pin 10 must be
// an output. This is much faster - also required if you want
// to use the microSD card (see the image drawing example)
Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_RST);

// Option 2: use any pins but a little slower!
#define TFT_SCLK 13 // set these to be whatever pins you like!
#define TFT_MOSI 11 // set these to be whatever pins you like!
//Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_MOSI, TFT_SCLK, TFT_RST);

Comment out option 1, and uncomment option 2. Then you can change the TFT_ pins to whatever pins you'd like!

You can also save a pin by setting

#define TFT_RST 9

to

#define TFT_RST -1

and connecting the RST line to the Arduino Reset pin. That way the Arduino will auto-reset the TFT as well.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 13 of 75

Displaying
Bitmaps

In this example, we'll show how to display a 128x160 pixel full color bitmap from a microSD card.

We have an example sketch in the library showing how to display full color bitmap images stored on an SD card. You'll
need a microSD card such as this one (http://adafru.it/102).

It's really easy to draw bitmaps. We have a library for it, Adafruit_ImageReader, which can be installed through the
Arduino Library Manager (Sketch→Include Library→Manage Libraries…). Enter “imageread” in the search field and the
library is easy to spot:

You'll also need an image. We suggest starting with this bitmap of a parrot.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 14 of 75

http://www.adafruit.com/products/102

https://adafru.it/cmn

https://adafru.it/cmn

If you want to later use your own image, use an image editing tool and crop your image to no larger than 160 pixels
high and 128 pixels wide. Save it as a 24-bit color BMP file - it must be 24-bit color format to work, even if it was
originally a 16-bit color image - because of the way BMPs are stored and displayed!

Copy the parrot.bmp to the microSD card and insert it into the micro SD card holder on your shield or breakout board.

Breakout Wiring

Shield users can skip directly to the "Example Sketch" section.

Wire up the TFT as described on the wiring & test page and add the two wires for talking to the SD card.
Connect CARD_CS (the unconnected pin in the middle) to digital pin 4 (you can change this later to any pin you want).
Connect MISO (second from the right) to the Arduino's hardware SPI MISO pin. For Classic arduinos, this is pin 12. For
Mega's this is pin 50. You can't change the MISO pin, it's fixed in the chip hardware.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 15 of 75

http://learn.adafruit.com/system/assets/assets/000/010/143/original/parrot.bmp

Example Sketch

If you have the breakout, open

the File→examples→Adafruit ImageReader

Library→BreakoutST7735 - 160x128 example.

If you have the shield, open

the File→examples→Adafruit ImageReader

Library→ShieldST7735 example.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 16 of 75

https://learn.adafruit.com/assets/78315
https://learn.adafruit.com/assets/78316

Now upload the example sketch to the Arduino. It should display the parrot image. If you have any problems, check the
serial console for any messages such as not being able to initialize the microSD card or not finding the image.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 17 of 75

CircuitPython Displayio Quickstart

You will need a board capable of running CircuitPython such as the Metro M0 Express or the Metro M4 Express. You
can also use boards such as the Feather M0 Express or the Feather M4 Express. We recommend either the Metro M4
or the Feather M4 Express because it's much faster and works better for driving a display. For this guide, we will be
using a Feather M4 Express. The steps should be about the same for the Feather M0 Express or either of the Metros. If
you haven't already, be sure to check out our Feather M4 Express (https://adafru.it/EEm) guide.

Preparing the Breakout

Before using the TFT Breakout, you will need to solder the headers or some wires to it. Be sure to check out
the Adafruit Guide To Excellent Soldering (https://adafru.it/drI). After that the breakout should be ready to go.

Wiring the Breakout to the Feather

3-5V VCC connects to the Feather 3V pin
GND connects toFeather ground
SCK connects to SPI clock. On the Feather that's SCK.
MISO connects to SPI MISO. On the Feather that's MI
MOSI connects to SPI MOSI. On the Feather that's MO
TFT_CS connects to our SPI Chip Select pin. We'll be using Digital 5 but you can later change this to any pin
D/C connects to our SPI data/command select pin. We'll be using Digital 6 but you can later change this pin too.
RESET connects to our reset pin. We'll be using Digital 9 but you can later change this pin too.
LITE connects to the Feather 3V pin. This is the only display that this pin is required to be connected or the
backlight won't work.

Adafruit Feather M4 Express - Featuring ATSAMD51

OUT OF STOCK

Out Of Stock

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 18 of 75

https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://learn.adafruit.com/adafruit-guide-excellent-soldering

https://adafru.it/IpA

https://adafru.it/IpA

Required CircuitPython Libraries

To use this display with displayio , there is only one required library.

https://adafru.it/EGk

https://adafru.it/EGk

First, make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.

Next, you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install
these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our introduction guide has a great
page on how to install the library bundle (https://adafru.it/ABU) for both express and non-express boards.

Remember for non-express boards, you'll need to manually install the necessary libraries from the bundle:

adafruit_st7735r

Before continuing make sure your board's lib folder or root filesystem has the adafruit_st7735r file copied over.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of a library so the code didn't get
overly complicated.

https://adafru.it/FiA

https://adafru.it/FiA

Go ahead and install this in the same manner as the driver library by copying the adafruit_display_text folder over to
the lib folder on your CircuitPython device.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 19 of 75

https://cdn-learn.adafruit.com/assets/assets/000/087/162/original/160x128-breakout-feather-m4.fzz?1579539898
https://github.com/adafruit/Adafruit_CircuitPython_ST7735R/releases
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text

CircuitPython Code Example

"""
This test will initialize the display using displayio and draw a solid green
background, a smaller purple rectangle, and some yellow text.
"""

import board
import terminalio
import displayio
from adafruit_display_text import label
from adafruit_st7735r import ST7735R

Release any resources currently in use for the displays
displayio.release_displays()

spi = board.SPI()
tft_cs = board.D5
tft_dc = board.D6

display_bus = displayio.FourWire(
 spi, command=tft_dc, chip_select=tft_cs, reset=board.D9
)

display = ST7735R(display_bus, width=160, height=128, rotation=90, bgr=True)

Make the display context
splash = displayio.Group(max_size=10)
display.show(splash)

color_bitmap = displayio.Bitmap(160, 128, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0x00FF00 # Bright Green

bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0)
splash.append(bg_sprite)

Draw a smaller inner rectangle
inner_bitmap = displayio.Bitmap(150, 118, 1)
inner_palette = displayio.Palette(1)
inner_palette[0] = 0xAA0088 # Purple
inner_sprite = displayio.TileGrid(inner_bitmap, pixel_shader=inner_palette, x=5, y=5)
splash.append(inner_sprite)

Draw a label
text_group = displayio.Group(max_size=10, scale=2, x=11, y=64)
text = "Hello World!"
text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00)
text_group.append(text_area) # Subgroup for text scaling
splash.append(text_group)

while True:
 pass

Let's take a look at the sections of code one by one. We start by importing the board so that we can
initialize SPI , displayio , terminalio for the font, a label , and the adafruit_st7735r driver.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 20 of 75

import board
import displayio
import terminalio
from adafruit_display_text import label
from adafruit_st7735r import ST7735R

Next we release any previously used displays. This is important because if the Feather is reset, the display pins are not
automatically released and this makes them available for use again.

displayio.release_displays()

Next, we set the SPI object to the board's SPI with the easy shortcut function board.SPI() . By using this function, it

finds the SPI module and initializes using the default SPI parameters.

spi = board.SPI()
tft_cs = board.D5
tft_dc = board.D6

In the next line, we set the display bus to FourWire which makes use of the SPI bus.

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs, reset=board.D9)

Finally, we initialize the driver with a width of 160 and a height of 128. If we stopped at this point and ran the code, we
would have a terminal that we could type at and have the screen update. Because we want to use the display
horizontally and the default orientation is vertical, we rotate it 90 degrees. One other parameter that we provide is
bgr=True and the reason for this is that the color ordering of certain displays is Blue, Green, Red rather than the usual

Red, Green, Blue. It tell displayio the correct color ordering for this particular display.

display = ST7735R(display_bus, width=160, height=128, rotation=90, bgr=True)

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 21 of 75

Next we create a background splash image. We do this by creating a group that we can add elements to and adding
that group to the display. In this example, we are limiting the maximum number of elements to 10, but this can be
increased if you would like. The display will automatically handle updating the group.

splash = displayio.Group(max_size=10)
display.show(splash)

Next we create a Bitmap which is like a canvas that we can draw on. In this case we are creating the Bitmap to be the
same size as the screen, but only have one color. The Bitmaps can currently handle up to 256 different colors. We
create a Palette with one color and set that color to 0x00FF00 which happens to be green. Colors are Hexadecimal
values in the format of RRGGBB. Even though the Bitmaps can only handle 256 colors at a time, you get to define what
those 256 different colors are.

color_bitmap = displayio.Bitmap(160, 128, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0x00FF00 # Bright Green

With all those pieces in place, we create a TileGrid by passing the bitmap and palette and draw it at (0, 0) which

represents the display's upper left.

bg_sprite = displayio.TileGrid(color_bitmap,
 pixel_shader=color_palette,
 x=0, y=0)
splash.append(bg_sprite)

Next we will create a smaller purple square. The easiest way to do this is the create a new bitmap that is a little smaller
than the full screen with a single color and place it in a specific location. In this case, we will create a bitmap that is 5
pixels smaller on each side. The screen is 160x128, so we'll want to subtract 10 from each of those numbers.

We'll also want to place it at the position (5, 5) so that it ends up centered.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 22 of 75

inner_bitmap = displayio.Bitmap(150, 118, 1)
inner_palette = displayio.Palette(1)
inner_palette[0] = 0xAA0088 # Purple
inner_sprite = displayio.TileGrid(inner_bitmap,
 pixel_shader=inner_palette,
 x=5, y=5)
splash.append(inner_sprite)

Since we are adding this after the first square, it's automatically drawn on top. Here's what it looks like now.

Next let's add a label that says "Hello World!" on top of that. We're going to use the built-in Terminal Font and scale it
up by a factor of two. To scale the label only, we will make use of a subgroup, which we will then add to the main
group.

Labels are centered vertically, so we'll place it at 64 for the Y coordinate, and around 11 pixels make it appear to be
centered horizontally, but if you want to change the text, change this to whatever looks good to you. Let's go with
some yellow text, so we'll pass it a value of 0xFFFF00 .

text_group = displayio.Group(max_size=10, scale=2, x=11, y=64)
text = "Hello World!"
text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00)
text_group.append(text_area) # Subgroup for text scaling
splash.append(text_group)

Finally, we place an infinite loop at the end so that the graphics screen remains in place and isn't replaced by a
terminal.

while True:
 pass

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 23 of 75

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using displayio (https://adafru.it/EGh)

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 24 of 75

https://learn.adafruit.com/circuitpython-display-support-using-displayio

Python Wiring and Setup

Wiring

It's easy to use display breakouts with Python and the Adafruit CircuitPython RGB Display (https://adafru.it/u1C) module.
This module allows you to easily write Python code to control the display.

We'll cover how to wire the display to your Raspberry Pi. First assemble your display.

Since there's dozens of Linux computers/boards you can use we will show wiring for Raspberry Pi. For other
platforms, please visit the guide for CircuitPython on Linux to see whether your platform is
supported (https://adafru.it/BSN).

Connect the display as shown below to your Raspberry Pi.

ILI9341 and HX-8357-based Displays

2.2" Display

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
CS connects to our SPI Chip Select pin. We'll be using CE0
D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later.
RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later as well.
Vin connects to the Raspberry Pi's 3V pin
GND connects to the Raspberry Pi's ground

Note this is not a kernel driver that will let you have the console appear on the TFT. However, this is handy
when you can't install an fbtft driver, and want to use the TFT purely from 'user Python' code!�

You can only use this technique with Linux/computer devices that have hardware SPI support, and not all
single board computers have an SPI device so check before continuing�

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 25 of 75

https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

https://adafru.it/H6C

https://adafru.it/H6C

2.4", 2.8", 3.2", and 3.5" Displays

These displays are set up to use the 8-bit data lines by default. We want to use them for SPI. To do that, you'll need to
either solder bridge some pads on the back or connect the appropriate IM lines to 3.3V with jumper wires. Check the
back of your display for the correct solder pads or IM lines to put it in SPI mode.

Vin connects to the Raspberry Pi's 3V pin
GND connects to the Raspberry Pi's ground
CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
CS connects to our SPI Chip Select pin. We'll be using CE0
D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later.
RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later as well.

These larger displays are set to use 8-bit data lines by default and may need to be modified to use SPI.�

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 26 of 75

https://cdn-learn.adafruit.com/assets/assets/000/084/669/original/2.2_TFT.fzz?1574277335

https://adafru.it/H7a

https://adafru.it/H7a

ST7789 and ST7735-based Displays

1.3", 1.54", and 2.0" IPS TFT Display

Vin connects to the Raspberry Pi's 3V pin
GND connects to the Raspberry Pi's ground
CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
CS connects to our SPI Chip Select pin. We'll be using CE0
RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later.
D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later as well.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 27 of 75

https://cdn-learn.adafruit.com/assets/assets/000/084/670/original/2.8_TFT.fzz?1574277361

https://adafru.it/H7d

https://adafru.it/H7d

0.96", 1.14", and 1.44" Displays

Vin connects to the Raspberry Pi's 3V pin
GND connects to the Raspberry Pi's ground
CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
CS connects to our SPI Chip Select pin. We'll be using CE0
RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later.
D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later as well.

https://adafru.it/H7B

https://adafru.it/H7B

1.8" Display

GND connects to the Raspberry Pi's ground
Vin connects to the Raspberry Pi's 3V pin
RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later.
D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later as well.
CS connects to our SPI Chip Select pin. We'll be using CE0
MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
LITE connects to the Raspberry Pi's 3V pin. This can be used to separately control the backlight.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 28 of 75

https://cdn-learn.adafruit.com/assets/assets/000/084/671/original/2.0_TFT.fzz?1574277392
https://cdn-learn.adafruit.com/assets/assets/000/084/672/original/1.44_TFT.fzz?1574277409

https://adafru.it/H8a

https://adafru.it/H8a

SSD1351-based Displays

1.27" and 1.5" OLED Displays

GND connects to the Raspberry Pi's ground
Vin connects to the Raspberry Pi's 3V pin
CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
CS connects to our SPI Chip Select pin. We'll be using CE0
RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later.
D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later as well.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 29 of 75

https://cdn-learn.adafruit.com/assets/assets/000/084/673/original/1.8_TFT.fzz?1574277427

https://adafru.it/H8e

https://adafru.it/H8e

SSD1331-based Display

0.96" OLED Display

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later.
RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later as well.
CS connects to our SPI Chip Select pin. We'll be using CE0
Vin connects to the Raspberry Pi's 3V pin
GND connects to the Raspberry Pi's ground

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 30 of 75

https://cdn-learn.adafruit.com/assets/assets/000/084/674/original/1.5_OLED.fzz?1574277454

https://adafru.it/H8D

https://adafru.it/H8D

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython support in Python. This may also require
enabling SPI on your platform and verifying you are running Python 3. Since each platform is a little different, and Linux
changes often, please visit the CircuitPython on Linux guide to get your computer ready (https://adafru.it/BSN)!

Python Installation of RGB Display Library

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-rgb-display

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to use
CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

DejaVu TTF Font

If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you will need to remove it first in
order to run this example.�

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 31 of 75

https://cdn-learn.adafruit.com/assets/assets/000/084/675/original/0.96_OLED.fzz?1574277476
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't, you can run the following to
install it:

sudo apt-get install ttf-dejavu

Pillow Library

We also need PIL, the Python Imaging Library, to allow graphics and using text with custom fonts. There are several
system libraries that PIL relies on, so installing via a package manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 32 of 75

Python Usage

Now that you have everything setup, we're going to look over three different examples. For the first, we'll take a look at
automatically scaling and cropping an image and then centering it on the display.

Turning on the Backlight

On some displays, the backlight is controlled by a separate pin such as the 1.3" TFT Bonnet with Joystick. On such
displays, running the below code will likely result in the display remaining black. To turn on the backlight, you will need
to add a small snippet of code. If your backlight pin number differs, be sure to change it in the code:

Turn on the Backlight
backlight = DigitalInOut(board.D26)
backlight.switch_to_output()
backlight.value = True

Displaying an Image

Here's the full code to the example. We will go through it section by section to help you better understand what is
going on. Let's start by downloading an image of Blinka. This image has enough border to allow resizing and cropping
with a variety of display sizes and rations to still look good.

Make sure you save it as blinka.jpg and place it in the same folder as your script. Here's the code we'll be loading onto
the Raspberry Pi. We'll go over the interesting parts.

import digitalio
import board
from PIL import Image, ImageDraw
import adafruit_rgb_display.ili9341 as ili9341
import adafruit_rgb_display.st7789 as st7789 # pylint: disable=unused-import

If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you will need to remove it first in
order to run this example.�

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 33 of 75

import adafruit_rgb_display.st7789 as st7789 # pylint: disable=unused-import
import adafruit_rgb_display.hx8357 as hx8357 # pylint: disable=unused-import
import adafruit_rgb_display.st7735 as st7735 # pylint: disable=unused-import
import adafruit_rgb_display.ssd1351 as ssd1351 # pylint: disable=unused-import
import adafruit_rgb_display.ssd1331 as ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):
cs_pin = digitalio.DigitalInOut(board.CE0)
dc_pin = digitalio.DigitalInOut(board.D25)
reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long
Create the display:
disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789
disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54" ST7789
disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 1.14"
ST7789
disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, # 1.44" ST7735R
disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R
disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351
disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = ili9341.ILI9341(
 spi,
 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341
 cs=cs_pin,
 dc=dc_pin,
 rst=reset_pin,
 baudrate=BAUDRATE,
)
pylint: enable=line-too-long

Create blank image for drawing.
Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 == 90:
 height = disp.width # we swap height/width to rotate it to landscape!
 width = disp.height
else:
 width = disp.width # we swap height/width to rotate it to landscape!
 height = disp.height
image = Image.new("RGB", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

image = Image.open("blinka.jpg")

Scale the image to the smaller screen dimension
image_ratio = image.width / image.height

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 34 of 75

image_ratio = image.width / image.height
screen_ratio = width / height
if screen_ratio < image_ratio:
 scaled_width = image.width * height // image.height
 scaled_height = height
else:
 scaled_width = width
 scaled_height = image.height * width // image.width
image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Crop and center the image
x = scaled_width // 2 - width // 2
y = scaled_height // 2 - height // 2
image = image.crop((x, y, x + width, y + height))

Display image.
disp.image(image)

So we start with our usual imports including a couple of Pillow modules and the display drivers. That is followed by
defining a few pins here. The reason we chose these is because they allow you to use the same code with the PiTFT if
you chose to do so.

import digitalio
import board
from PIL import Image, ImageDraw
import adafruit_rgb_display.ili9341 as ili9341
import adafruit_rgb_display.st7789 as st7789
import adafruit_rgb_display.hx8357 as hx8357
import adafruit_rgb_display.st7735 as st7735
import adafruit_rgb_display.ssd1351 as ssd1351
import adafruit_rgb_display.ssd1331 as ssd1331

Configuration for CS and DC pins
cs_pin = digitalio.DigitalInOut(board.CE0)
dc_pin = digitalio.DigitalInOut(board.D25)
reset_pin = digitalio.DigitalInOut(board.D24)

Next we'll set the baud rate from the default 24 MHz so that it works on a variety of displays. The exception to this is
the SSD1351 driver, which will automatically limit it to 16MHz even if you pass 24MHz. We'll set up out SPI bus and then
initialize the display.

We wanted to make these examples work on as many displays as possible with very few changes. The ILI9341 display
is selected by default. For other displays, go ahead and comment out the line that starts with:

disp = ili9341.ILI9341(spi,

and uncomment the line appropriate for your display. The displays have a rotation property so that it can be set in just
one place.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 35 of 75

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

#disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789
#disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54" ST7789
#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 1.14" ST7789
#disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
#disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
#disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, # 1.44" ST7735R
#disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R
#disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
#disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351
#disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = ili9341.ILI9341(spi, rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341
 cs=cs_pin, dc=dc_pin, rst=reset_pin, baudrate=BAUDRATE)

Next we read the current rotation setting of the display and if it is 90 or 270 degrees, we need to swap the width and
height for our calculations, otherwise we just grab the width and height. We will create an image with our dimensions

and use that to create a draw object. The draw object will have all of our drawing functions.

Create blank image for drawing.
Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 == 90:
 height = disp.width # we swap height/width to rotate it to landscape!
 width = disp.height
else:
 width = disp.width # we swap height/width to rotate it to landscape!
 height = disp.height
image = Image.new('RGB', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Next we clear whatever is on the screen by drawing a black rectangle. This isn't strictly necessary since it will be
overwritten by the image, but it kind of sets the stage.

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

Next we open the Blinka image, which we've named blinka.jpg, which assumes it is in the same directory that you are
running the script from. Feel free to change it if it doesn't match your configuration.

image = Image.open("blinka.jpg")

Here's where it starts to get interesting. We want to scale the image so that it matches either the width or height of the
display, depending on which is smaller, so that we have some of the image to chop off when we crop it. So we start by
calculating the width to height ration of both the display and the image. If the height is the closer of the dimensions, we
want to match the image height to the display height and let it be a bit wider than the display. Otherwise, we want to

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 36 of 75

do the opposite.

Once we've figured out how we're going to scale it, we pass in the new dimensions and using a Bicubic rescaling
method, we reassign the newly rescaled image back to image . Pillow has quite a few different methods to choose

from, but Bicubic does a great job and is reasonably fast.

Scale the image to the smaller screen dimension
image_ratio = image.width / image.height
screen_ratio = width / height
if screen_ratio < image_ratio:
 scaled_width = image.width * height // image.height
 scaled_height = height
else:
 scaled_width = width
 scaled_height = image.height * width // image.width
image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we want to begin cropping it so that it ends up
centered. We do that by using a standard centering function, which is basically requesting the difference of the center
of the display and the center of the image. Just like with scaling, we replace the image variable with the newly

cropped image.

Crop and center the image
x = scaled_width // 2 - width // 2
y = scaled_height // 2 - height // 2
image = image.crop((x, y, x + width, y + height))

Finally, we take our image and display it. At this point, the image should have the exact same dimensions at the display
and fill it completely.

disp.image(image)

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 37 of 75

Drawing Shapes and Text

In the next example, we'll take a look at drawing shapes and text. This is very similar to the displayio example, but it
uses Pillow instead. Here's the code for that.

import digitalio
import board
from PIL import Image, ImageDraw, ImageFont
import adafruit_rgb_display.ili9341 as ili9341
import adafruit_rgb_display.st7789 as st7789 # pylint: disable=unused-import
import adafruit_rgb_display.hx8357 as hx8357 # pylint: disable=unused-import
import adafruit_rgb_display.st7735 as st7735 # pylint: disable=unused-import
import adafruit_rgb_display.ssd1351 as ssd1351 # pylint: disable=unused-import
import adafruit_rgb_display.ssd1331 as ssd1331 # pylint: disable=unused-import

First define some constants to allow easy resizing of shapes.
BORDER = 20
FONTSIZE = 24

Configuration for CS and DC pins (these are PiTFT defaults):
cs_pin = digitalio.DigitalInOut(board.CE0)
dc_pin = digitalio.DigitalInOut(board.D25)
reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long
Create the display:
disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789
disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54" ST7789
disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 1.14"

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 38 of 75

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 1.14"
ST7789
disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, # 1.44" ST7735R
disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R
disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351
disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = ili9341.ILI9341(
 spi,
 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341
 cs=cs_pin,
 dc=dc_pin,
 rst=reset_pin,
 baudrate=BAUDRATE,
)
pylint: enable=line-too-long

Create blank image for drawing.
Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 == 90:
 height = disp.width # we swap height/width to rotate it to landscape!
 width = disp.height
else:
 width = disp.width # we swap height/width to rotate it to landscape!
 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a green filled box as the background
draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

Draw a smaller inner purple rectangle
draw.rectangle(
 (BORDER, BORDER, width - BORDER - 1, height - BORDER - 1), fill=(170, 0, 136)
)

Load a TTF Font
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", FONTSIZE)

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text(
 (width // 2 - font_width // 2, height // 2 - font_height // 2),
 text,
 font=font,
 fill=(255, 255, 0),
)

Display image.
disp.image(image)

Just like in the last example, we'll do our imports, but this time we're including the ImageFont Pillow module because

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 39 of 75

we'll be drawing some text this time.

import digitalio
import board
from PIL import Image, ImageDraw, ImageFont
import adafruit_rgb_display.ili9341 as ili9341

Next we'll define some parameters that we can tweak for various displays. The BORDER will be the size in pixels of

the green border between the edge of the display and the inner purple rectangle. The FONTSIZE will be the size of

the font in points so that we can adjust it easily for different displays.

BORDER = 20
FONTSIZE = 24

Next, just like in the previous example, we will set up the display, setup the rotation, and create a draw object. If you
have are using a different display than the ILI9341, go ahead and adjust your initializer as explained in the previous
example. After that, we will setup the background with a green rectangle that takes up the full screen. To get green,
we pass in a tuple that has our Red, Green, and Blue color values in it in that order which can be any integer from 0 to

255 .

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

Next we will draw an inner purple rectangle. This is the same color value as our example in displayio quickstart, except
the hexadecimal values have been converted to decimal. We use the BORDER parameter to calculate the size and

position that we want to draw the rectangle.

draw.rectangle((BORDER, BORDER, width - BORDER - 1, height - BORDER - 1),
 fill=(170, 0, 136))

Next we'll load a TTF font. The DejaVuSans.ttf font should come preloaded on your Pi in the location in the code. We

also make use of the FONTSIZE parameter that we discussed earlier.

Load a TTF Font
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', FONTSIZE)

Now we draw the text Hello World onto the center of the display. You may recognize the centering calculation was the
same one we used to center crop the image in the previous example. In this example though, we get the font size
values using the getsize() function of the font object.

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text((width//2 - font_width//2, height//2 - font_height//2),
 text, font=font, fill=(255, 255, 0))

Finally, just like before, we display the image.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 40 of 75

disp.image(image)

Displaying System Information

In this last example we'll take a look at getting the system information and displaying it. This can be very handy for
system monitoring. Here's the code for that example:

import time
import subprocess
import digitalio
import board
from PIL import Image, ImageDraw, ImageFont
import adafruit_rgb_display.ili9341 as ili9341
import adafruit_rgb_display.st7789 as st7789 # pylint: disable=unused-import
import adafruit_rgb_display.hx8357 as hx8357 # pylint: disable=unused-import
import adafruit_rgb_display.st7735 as st7735 # pylint: disable=unused-import
import adafruit_rgb_display.ssd1351 as ssd1351 # pylint: disable=unused-import
import adafruit_rgb_display.ssd1331 as ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):
cs_pin = digitalio.DigitalInOut(board.CE0)
dc_pin = digitalio.DigitalInOut(board.D25)
reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long
Create the display:
disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789
disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54" ST7789

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 41 of 75

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54" ST7789
disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 1.14"
ST7789
disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, # 1.44" ST7735R
disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R
disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351
disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = ili9341.ILI9341(
 spi,
 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341
 cs=cs_pin,
 dc=dc_pin,
 rst=reset_pin,
 baudrate=BAUDRATE,
)
pylint: enable=line-too-long

Create blank image for drawing.
Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 == 90:
 height = disp.width # we swap height/width to rotate it to landscape!
 width = disp.height
else:
 width = disp.width # we swap height/width to rotate it to landscape!
 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

First define some constants to allow easy positioning of text.
padding = -2
x = 0

Load a TTF font. Make sure the .ttf font file is in the
same directory as the python script!
Some other nice fonts to try: http://www.dafont.com/bitmap.php
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 24)

while True:
 # Draw a black filled box to clear the image.
 draw.rectangle((0, 0, width, height), outline=0, fill=0)

 # Shell scripts for system monitoring from here:
 # https://unix.stackexchange.com/questions/119126/command-to-display-memory-usage-disk-usage-and-
cpu-load
 cmd = "hostname -I | cut -d' ' -f1"
 IP = "IP: " + subprocess.check_output(cmd, shell=True).decode("utf-8")
 cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
 CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")
 cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"
 MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 42 of 75

 cmd = 'df -h | awk \'$NF=="/"{printf "Disk: %d/%d GB %s", $3,$2,$5}\''
 Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")
 cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk '{printf \"CPU Temp: %.1f C\", $(NF-0) /
1000}'" # pylint: disable=line-too-long
 Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

 # Write four lines of text.
 y = padding
 draw.text((x, y), IP, font=font, fill="#FFFFFF")
 y += font.getsize(IP)[1]
 draw.text((x, y), CPU, font=font, fill="#FFFF00")
 y += font.getsize(CPU)[1]
 draw.text((x, y), MemUsage, font=font, fill="#00FF00")
 y += font.getsize(MemUsage)[1]
 draw.text((x, y), Disk, font=font, fill="#0000FF")
 y += font.getsize(Disk)[1]
 draw.text((x, y), Temp, font=font, fill="#FF00FF")

 # Display image.
 disp.image(image)
 time.sleep(0.1)

Just like the last example, we'll start by importing everything we imported, but we're adding two more imports. The first
one is time so that we can add a small delay and the other is subprocess so we can gather some system information.

import time
import subprocess
import digitalio
import board
from PIL import Image, ImageDraw, ImageFont
import adafruit_rgb_display.ili9341 as ili9341

Next, just like in the first two examples, we will set up the display, setup the rotation, and create a draw object. If you
have are using a different display than the ILI9341, go ahead and adjust your initializer as explained in the previous
example.

Just like in the first example, we're going to draw a black rectangle to fill up the screen. After that, we're going to set up
a couple of constants to help with positioning text. The first is the padding and that will be the Y-position of the top-

most text and the other is x which is the X-Position and represents the left side of the text.

First define some constants to allow easy positioning of text.
padding = -2
x = 0

Next, we load a font just like in the second example.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)

Now we get to the main loop and by using while True: , it will loop until Control+C is pressed on the keyboard. The

first item inside here, we clear the screen, but notice that instead of giving it a tuple like before, we can just pass 0
and it will draw black.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 43 of 75

draw.rectangle((0, 0, width, height), outline=0, fill=0)

Next, we run a few scripts using the subprocess function that get called to the Operating System to get information.

The in each command is passed through awk in order to be formatted better for the display. By having the OS do the
work, we don't have to. These little scripts came from https://unix.stackexchange.com/questions/119126/command-to-
display-memory-usage-disk-usage-and-cpu-load

cmd = "hostname -I | cut -d\' \' -f1"
IP = "IP: "+subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"
MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}'"
Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk \'{printf \"CPU Temp: %.1f C\", $(NF-0) /
1000}\'" # pylint: disable=line-too-long
Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

Now we display the information for the user. Here we use yet another way to pass color information. We can pass it as
a color string using the pound symbol, just like we would with HTML. With each line, we take the height of the line
using getsize() and move the pointer down by that much.

y = padding
draw.text((x, y), IP, font=font, fill="#FFFFFF")
y += font.getsize(IP)[1]
draw.text((x, y), CPU, font=font, fill="#FFFF00")
y += font.getsize(CPU)[1]
draw.text((x, y), MemUsage, font=font, fill="#00FF00")
y += font.getsize(MemUsage)[1]
draw.text((x, y), Disk, font=font, fill="#0000FF")
y += font.getsize(Disk)[1]
draw.text((x, y), Temp, font=font, fill="#FF00FF")

Finally, we write all the information out to the display using disp.image() . Since we are looping, we tell Python to sleep

for 0.1 seconds so that the CPU never gets too busy.

disp.image(image)
time.sleep(.1)

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 44 of 75

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 45 of 75

1.8" TFT Shield
V2

Let's take a tour of the 1.8" TFT Shield

TFT Display

In the center is the 1.8" TFT display. This display is full

color (16-bit RGB), 128x160 pixels, and has a backlight.

The display receives data over SPI plus two pins:

SCK - SPI Clock

MOSI - SPI Data

Digital 10 - Chip Select

Digital 8 - Data/Command Select

The TFT reset is connected to the seesaw chip. The

backlight is also PWM controlled by the seesaw chip.

The 4 SPI+control pins, however, must be controlled

directly by the Arduino

Buttons & Joystick

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 46 of 75

https://learn.adafruit.com/assets/65537

In addition of the display, you also get a bunch of user-

interface buttons.

In the top left is the Reset button, this will reset the

shield and Arduino when pressed. It is connected

directly to the Reset pins

There are three buttons labeled A B C below the TFT,

these are connected to the seesaw chip. You can read

the values over I2C

To the right of the TFT is a 5-way joystick. It can be

pushed up/down/left/right and select (in). It is connected

to the seesaw chip, you can read the joystick over I2C

SD Card

The micro SD card slot can be used to read/write data

from any micro SD card using the Arduino libraries. The

SD card is connected to the SPI pins as well as Digital

#4 for Chip Select

The SD card is not required for use, but it's handy for

storing images

seesaw I2C Expander

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 47 of 75

https://learn.adafruit.com/assets/65539
https://learn.adafruit.com/assets/65540

Instead of taking up a bunch of GPIO pins to read the

buttons and joystick, as well as controlling the TFT

backlight, we use an I2C expander chip called the

seesaw. It is connected to the SDA/SCL pins and can

read/write pins with our library. This saves a ton of pins

and then you can always use the I2C pins for other

sensors, as long as the address doesnt conflict

Don't forget! Since the seesaw chip is used for the TFT

backlight and reset, you need to activate it even if you

are not reading the buttons or joystick.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 48 of 75

https://learn.adafruit.com/assets/65542

Testing the
Shield

You can test your assembled shield using the example code from the library.

Start by installing a bunch of libraries!

Open the Arduino Library manager

Install the Adafruit GFX Library

If using an older version of the Arduino IDE (pre-1.8.10), also locate and install the Adafruit_BusIO library (newer
versions do this automatically when using the Arduino Library Manager).

Adafruit ST7735 Library

Adafruit seesaw Library

You can read more about installing libraries in our tutorial (https://adafru.it/aYG).

Restart the Arduino IDE.

1.8" Shield with seesaw

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 49 of 75

http://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduino-libraries

If your shield looks like this, you have the 1.8" seesaw

version (the most recent) which will work with just about

any/all boards. For this version load up the

seesaw_shield18_test example

Upload to your microcontroller, and open the serial port watcher at 9600 baud:

The sketch waits until the serial port is opened (you can

make it auto-start once you know things are working by

removing the while (!Serial); line

Check that the seesaw chip is detected, you should see

text display on the TFT after a quick draw test.

If you don't have an SD card inserted, it will fail to init the

SD card, that's ok you can continue with the test

Once you've gotten this far try pressing all the buttons on the board (except for RESET) to activate the invert-blinking
loop.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 50 of 75

https://learn.adafruit.com/assets/65558
https://learn.adafruit.com/assets/65572

For more details about seesaw, check out our guide (https://adafru.it/Cmk) - we made a nice wrapper for the 1.8" TFT to
control the backlight and read buttons but it still might be useful to know the underlying protocol

Displaying a Bitmap

If you have parrot.bmp (https://adafru.it/cmn) stored on the SD card you will get a nice parrot display once the buttons
have all been pressed

The graphics don't look identical to the below but you should still press all the buttons as shown!�

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 51 of 75

https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout
http://learn.adafruit.com/system/assets/assets/000/010/143/original/parrot.bmp

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 52 of 75

CircuitPython Displayio Quickstart

You will need a Metro capable of running CircuitPython such as the Metro M0 Express or the Metro M4 Express. We
recommend the Metro M4 Express because it's much faster and works better for driving a display. The steps should be
about the same for the Metro M0 Express. If you haven't already, be sure to check out our Adafruit Metro M4 Express
featuring ATSAMD51 (https://adafru.it/Fkt) guide.

You could use a Grand Central which also has an M4 Processor. For this board, be sure to check out our Introducing
the Adafruit Grand Central M4 Express (https://adafru.it/DK7) guide.

If you need WiFi capabilities for your project, you could also use the Metro M4 Airlift Lite. For this board, be sure to
check out our Adafruit Metro M4 Express AirLift (https://adafru.it/EZh) guide.

Adafruit Metro M4 feat. Microchip ATSAMD51

$27.50
IN STOCK

Add To Cart

Adafruit Grand Central M4 Express featuring the SAMD51

$37.50
IN STOCK

Add To Cart

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 53 of 75

https://learn.adafruit.com/adafruit-metro-m4-express-featuring-atsamd51
https://www.adafruit.com/product/3382
https://www.adafruit.com/product/3382
https://learn.adafruit.com/adafruit-grand-central
https://www.adafruit.com/product/4064
https://www.adafruit.com/product/4064
https://learn.adafruit.com/adafruit-metro-m4-express-airlift-wifi

Preparing the Shield

Before using the TFT Shield, you will need to solder the headers on. Be sure to check out the Adafruit Guide To
Excellent Soldering (https://adafru.it/drI). After that the shield should be ready to go.

Required CircuitPython Libraries

To use this display with displayio , there are a few required libraries. You will need the display driver and since this is

no ordinary display and has some additional controls, you will also need the seesaw and busdevice libraries.

https://adafru.it/u0d

https://adafru.it/u0d

https://adafru.it/D5O

https://adafru.it/D5O

https://adafru.it/EGk

https://adafru.it/EGk

First, make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.

Next, you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install
these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our introduction guide has a great
page on how to install the library bundle (https://adafru.it/ABU) for both express and non-express boards.

Remember for non-express boards, you'll need to manually install the necessary libraries from the bundle:

adafruit_st7735r
adafruit_seesaw
adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has
the adafruit_st7735r, adafruit_seesaw and adafruit_bus_device files and folders copied over.

CircuitPython Code Example

Adafruit Metro M4 Express AirLift (WiFi) - Lite

$34.95
IN STOCK

Add To Cart

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 54 of 75

https://www.adafruit.com/product/4000
https://www.adafruit.com/product/4000
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice/releases
https://github.com/adafruit/Adafruit_CircuitPython_seesaw/releases
https://github.com/adafruit/Adafruit_CircuitPython_ST7735R/releases
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

"""
This example will test out the display on the 1.8" TFT Shield
"""
import time
import board
import displayio
from adafruit_seesaw.tftshield18 import TFTShield18
from adafruit_st7735r import ST7735R

Release any resources currently in use for the displays
displayio.release_displays()

ss = TFTShield18()

spi = board.SPI()
tft_cs = board.D10
tft_dc = board.D8

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs)

ss.tft_reset()
display = ST7735R(display_bus, width=160, height=128, rotation=90, bgr=True)

ss.set_backlight(True)

while True:
 buttons = ss.buttons

 if buttons.right:
 print("Button RIGHT!")

 if buttons.down:
 print("Button DOWN!")

 if buttons.left:
 print("Button LEFT!")

 if buttons.up:
 print("Button UP!")

 if buttons.select:
 print("Button SELECT!")

 if buttons.a:
 print("Button A!")

 if buttons.b:
 print("Button B!")

 if buttons.c:
 print("Button C!")

 time.sleep(0.001)

Let's take a look at the sections of code one by one. We start by importing time , so we can pause, the board so that

we can initialize SPI, displayio , the tftshield18 seesaw library, and the adafruit_ili9341 driver.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 55 of 75

import time
import board
import displayio
from adafruit_seesaw.tftshield18 import TFTShield18
from adafruit_st7735r import ST7735R

Next we release any previously used displays. This is important because if the Metro is reset, the display pins are not
automatically released and this makes them available for use again.

displayio.release_displays()

We set up seesaw using the TFTShield18, which was written specifically for this shield to make things very easy.

ss = TFTShield18()

Next, we set the SPI object to the board's SPI with the easy shortcut function board.SPI() . By using this function, it

finds the SPI module and initializes using the default SPI parameters. Next we set the Chip Select and Data/Command
pins that will be used.

spi = board.SPI()
tft_cs = board.D10
tft_dc = board.D8

In the next line, we set the display bus to FourWire which makes use of the SPI bus.

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs)

Finally, we reset the display, initialize the driver with a width of 160 and a height of 128, and turn on the backlight. If we
stopped at this point and ran the code, we would have a terminal that we could type at and have the screen update.

ss.tft_reset()
display = ST7735R(display_bus, width=160, height=128, rotation=90, bgr=True)

ss.set_backlight(True)

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 56 of 75

Finally, we place an infinite loop at the end and constantly read the buttons. If a button is detected as being pressed, a
message specifies which one. Multiple buttons can be pressed at the same time. We also provide an optional small
delay to allow you to adjust how quickly you want the buttons to read in case you want to debounce the output.

while True:
 buttons = ss.buttons

 if buttons.right:
 print("Button RIGHT!")

 if buttons.down:
 print("Button DOWN!")

 if buttons.left:
 print("Button LEFT!")

 if buttons.up:
 print("Button UP!")

 if buttons.select:
 print("Button SELECT!")

 if buttons.a:
 print("Button A!")

 if buttons.b:
 print("Button B!")

 if buttons.c:
 print("Button C!")

 time.sleep(.001)

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 57 of 75

Now go ahead and run the code. Once it's running, try pushing a few buttons and see what happens.

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using displayio (https://adafru.it/EGh)

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 58 of 75

https://learn.adafruit.com/circuitpython-display-support-using-displayio

Original V1
Shield

Original V1.0 Shield

If your shield looks like this, you have the original 1.8"

TFT shield which does not have a helper seesaw chip

The shield uses the "Classic Arduino" SPI wiring and will perform best with Atmega 328-based Arduinos such as the
Uno. It can work with other Arduinos but not very well.

Load up the shieldtest demo

If you are using an Arduino UNO, Duemilanove or compatible with the ATmega328 chipset, you don't have to do
anything! If you're using a Mega, Leonardo, Due or other non-ATmega328 chipset, you'll have to make a modification

To use with the shield, modify the example code pin definitions as follows.

Find these lines:

// Option 1 (recommended): must use the hardware SPI pins
// (for UNO thats sclk = 13 and sid = 11) and pin 10 must be
// an output. This is much faster - also required if you want
// to use the microSD card (see the image drawing example)
Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_RST);

// Option 2: use any pins but a little slower!
#define TFT_SCLK 13 // set these to be whatever pins you like!
#define TFT_MOSI 11 // set these to be whatever pins you like!
//Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_MOSI, TFT_SCLK, TFT_RST);

This is only required for the V1 shield, the V2 shield uses the hardware SPI port so it's not necessary to use
software SPI and in fact it won't work!�

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 59 of 75

https://learn.adafruit.com/assets/8416

The Example code has 2 options for defining the display object. Uno, Duemilanove and other Atmega 328-based
processors can use the "Option 1" version of the constructor for best performance:

Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_RST);

Mega and Leonardo users should use the "Option 2" version of the constructor for compatibility:

Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_MOSI, TFT_SCLK, TFT_RST);

Be sure to select only one option and comment out the other with a pair of //'s.

Now upload the sketch to see the graphical display!

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 60 of 75

Assembling the
Shield

The shield comes with all surface mount parts pre-soldered. All that remains is to install the headers!

Cut the Header Sections
Cut the breakaway header strip into sections to fit the

holes on the edge of the shield. You will need 2 sections

of 6-pins and 2 sections of 8 pins.

You can use wire-cutters as shown or pliers to snap

them apart between pins.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 61 of 75

https://learn.adafruit.com/assets/8404
https://learn.adafruit.com/assets/8405

Insert the Headers into an Arduino
To align the header strips for soldering, insert them

(long pins down) into the headers of an Arduino.

Note that for R3 and later Arduinos, there will be an

extra 2 unused pins on the end closest the USB and DC

power jacks.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 62 of 75

https://learn.adafruit.com/assets/8407
https://learn.adafruit.com/assets/8408

Add the Shield
Place the shield over the header strips so that the short

pins stick up through the holes.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 63 of 75

https://learn.adafruit.com/assets/8409
https://learn.adafruit.com/assets/8410
https://learn.adafruit.com/assets/8411

And Solder!
Solder each pin to assure good electrical contact.

For tips on soldering see the Adafruit Guide to Excellent

Soldering (https://adafru.it/aTk).

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 64 of 75

https://learn.adafruit.com/assets/8412
https://learn.adafruit.com/assets/8413
http://learn.adafruit.com/adafruit-guide-excellent-soldering

Reading the Joystick

The 5-way joystick on the shield is great for implementing menu navigation or even for use as a tiny game controller.
To minimize the number of pins required, the joystick uses a different resistor on each leg of the control to create a
variable voltage divider that can be monitored with a single analog pin. Each movement of the joystick control
connects a different resistor and results in a different voltage reading.

In the code example below, the CheckJoystick() function reads the analog pin and compares the result with 5 different
ranges to determine which (if any) direction the stick has been moved. If you upload this to your Arduino and open the
Serial Monitor, you will see the current joystick state printed to the screen.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 65 of 75

You can use this code as the input method for your menu system or game:

void setup()
{
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
}

#define Neutral 0
#define Press 1
#define Up 2
#define Down 3
#define Right 4
#define Left 5

// Check the joystick position
int CheckJoystick()
{
 int joystickState = analogRead(3);

 if (joystickState < 50) return Left;
 if (joystickState < 150) return Down;
 if (joystickState < 250) return Press;
 if (joystickState < 500) return Right;
 if (joystickState < 650) return Up;
 return Neutral;
}

void loop()
{
 int joy = CheckJoystick();
 switch (joy)
 {
 case Left:
 Serial.println("Left");
 break;
 case Right:
 Serial.println("Right");
 break;
 case Up:
 Serial.println("Up");
 break;
 case Down:
 Serial.println("Down");
 break;
 case Press:
 Serial.println("Press");
 break;
 }
}

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 66 of 75

Graphics Library

We've written a full graphics library specifically for this display which will get you up and running quickly. The code is
written in C/C++ for Arduino but is easy to port to any microcontroller by rewritting the low level pin access functions.

The TFT LCD library is based off of the Adafruit GFX graphics core library. GFX has many ready to go functions that
should help you start out with your project. It's not exhaustive and we'll try to update it if we find a really useful function.
Right now it supports pixels, lines, rectangles, circles, round-rects, triangles and printing text as well as rotation.

Two libraries need to be downloaded and installed: first is the ST7735 library (https://adafru.it/aHm) (this contains the
low-level code specific to this device), and second is the Adafruit GFX Library (https://adafru.it/aJa) (which handles
graphics operations common to many displays we carry). You can install these with the Arduino library manager.

Open up the Arduino library manager:

Search for the Adafruit ST7735 library and install it

Search for the Adafruit GFX library and install it

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 67 of 75

https://github.com/adafruit/Adafruit-ST7735-Library
https://github.com/adafruit/Adafruit-GFX-Library

Check out the GFX tutorial for detailed information about what is supported and how to use it (https://adafru.it/aPx)!

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 68 of 75

http://learn.adafruit.com/adafruit-gfx-graphics-library

�

Troubleshooting

Display does not work on initial power but does work after a reset.

The display driver circuit needs a small amount of time to be ready after initial power. If your code tries to write to the
display too soon, it may not be ready. It will work on reset since that typically does not cycle power. If you are having
this issue, try adding a small amount of delay before trying to write to the display.

In Arduino, use delay() to add a few milliseconds before calling tft.begin(). Adjust the amount of delay as needed to
see how little you can get away with for your specific setup.

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 69 of 75

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 70 of 75

Downloads

Files & Datasheets

Adafruit GFX library (https://adafru.it/aJa)
Adafruit ST7735 library (https://adafru.it/aHm)(See our detailed tutorial for installation
assistance (https://adafru.it/aYG))
Fritzing object in the Adafruit library (https://adafru.it/aP3)
Datasheet for the display (https://adafru.it/aP8)
Datasheet for the display driver chip (https://adafru.it/aP9).
EagleCAD PCB files for TFT shield (https://adafru.it/qxB)
EagleCAD PCB files for TFT breakout (https://adafru.it/qxC)

Breakout Schematic

For the level shifter we use the CD74HC4050 which has a typical propagation delay of ~10ns

Breakout Fabrication print

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 71 of 75

https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/adafruit/Adafruit-ST7735-Library
http://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduino-libraries
https://github.com/adafruit/Fritzing-Library
http://www.adafruit.com/datasheets/JD-T1800.pdf
http://www.adafruit.com/datasheets/ST7735R_V0.2.pdf
https://github.com/adafruit/Adafruit-1.8-TFT-Shield
https://github.com/adafruit/1.8-TFT-breakout

Shield v2 Schematic & Fab Print

This is the newer seesaw version

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 72 of 75

Shield V1 Schematic & Fab Print

This is the 'original' non-seesaw version

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 73 of 75

© Adafruit Industries https://learn.adafruit.com/1-8-tft-display Page 74 of 75

© Adafruit Industries Last Updated: 2020-06-25 12:20:14 PM EDT Page 75 of 75

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001
Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

 Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

 http://moschip.ru/get-element

 Вы можете разместить у нас заказ для любого Вашего проекта, будь то
серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и
пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы
двойного назначения, продукции таких производителей как XILINX, Intel
(ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits,
Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов,
предоставляет возможность заказывать и получать с международных складов
практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить
квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с
ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

 Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:
moschip.ru
moschip.ru_4

moschip.ru_6
moschip.ru_9

mailto:info@moschip.ru

