

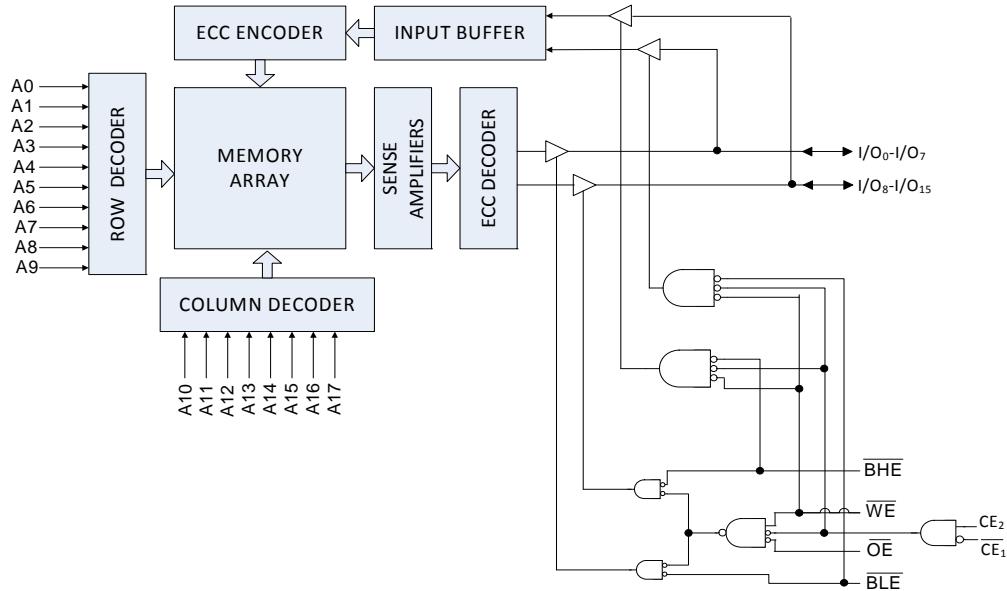
4-Mbit (256K words \times 16 bit) Static RAM with Error-Correcting Code (ECC)

Features

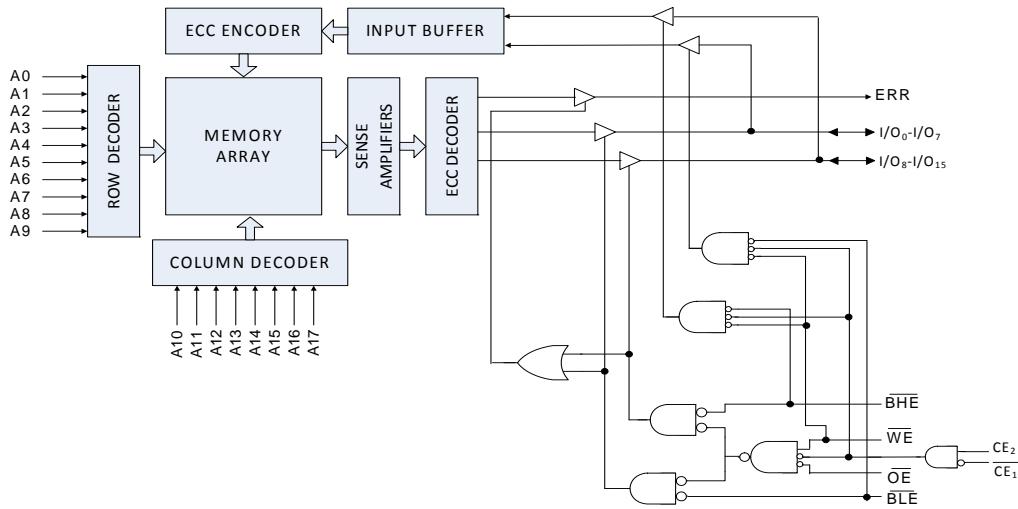
- High speed
 - $t_{AA} = 10$ ns
- Embedded ECC for single-bit error correction^[1]
- Low active and standby currents
 - Active current: $I_{CC} = 38$ -mA typical
 - Standby current: $I_{SB2} = 6$ -mA typical
- Operating voltage range: 1.65 V to 2.2 V, 2.2 V to 3.6 V, and 4.5 V to 5.5 V
- 1.0-V data retention
- TTL-compatible inputs and outputs
- Error indication (ERR) pin to indicate 1-bit error detection and correction
- Pb-free 44-pin SOJ, 44-pin TSOP II, and 48-ball VFBGA packages

Functional Description

CY7C1041G and CY7C1041GE are high-performance CMOS fast static RAM devices with embedded ECC. Both devices are offered in single and dual chip-enable options and in multiple pin configurations. The CY7C1041GE device includes an ERR pin that signals an error-detection and correction event during a read cycle.


Product Portfolio

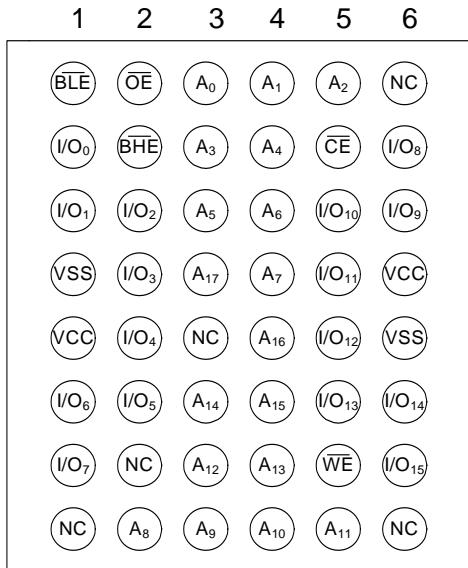
Product ^[2]	Features and Options (see Pin Configurations on page 4)	Range	V_{CC} Range (V)	Speed (ns) 10/15	Power Dissipation			
					Operating I_{CC} , (mA) $f = f_{max}$		Standby, I_{SB2} (mA)	
					Typ ^[3]	Max	Typ ^[3]	Max
					1.65 V–2.2 V	15	–	40
CY7C1041G(E)18	Single or Dual Chip Enables	Industrial	2.2 V–3.6 V	10	38	45	6	8
CY7C1041G(E)30					45	45		
CY7C1041G(E)					38	45		


Notes

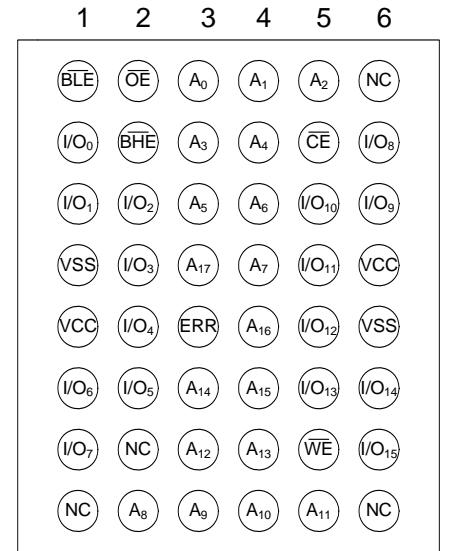
1. This device does not support automatic write-back on error detection.
2. The ERR pin is available only for devices which have ERR option "E" in the ordering code. Refer [Ordering Information](#) for details.
3. Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at $V_{CC} = 1.8$ V (for a V_{CC} range of 1.65 V–2.2 V), $V_{CC} = 3$ V (for a V_{CC} range of 2.2 V–3.6 V), and $V_{CC} = 5$ V (for a V_{CC} range of 4.5 V–5.5 V), $T_A = 25$ °C.

Logic Block Diagram – CY7C1041G

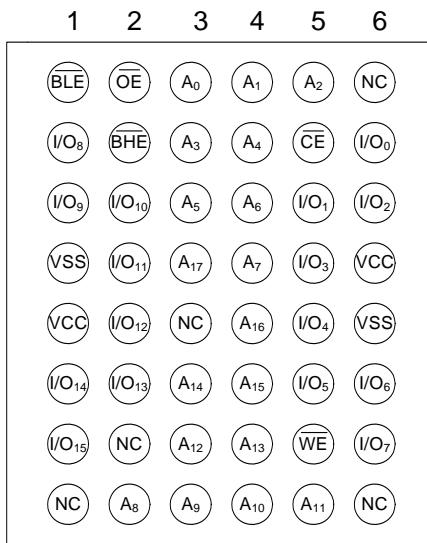
Logic Block Diagram – CY7C1041GE



Contents


Pin Configurations	4	Ordering Information	15
Maximum Ratings	6	Ordering Code Definitions	16
Operating Range	6	Package Diagrams	17
DC Electrical Characteristics	6	Acronyms	19
Capacitance	7	Document Conventions	19
Thermal Resistance	7	Units of Measure	19
AC Test Loads and Waveforms	7	Document History Page	20
Data Retention Characteristics	8	Sales, Solutions, and Legal Information	21
Data Retention Waveform	8	Worldwide Sales and Design Support	21
AC Switching Characteristics	9	Products	21
Switching Waveforms	10	PSoC® Solutions	21
Truth Table	14	Cypress Developer Community	21
ERR Output – CY7C1041GE	14	Technical Support	21

Pin Configurations


Figure 1. 48-ball VFBGA (6 x 8 x 1.0 mm) Single Chip Enable without ERR, CY7C1041G^[4] Package/Grade ID: BVXI^[6]

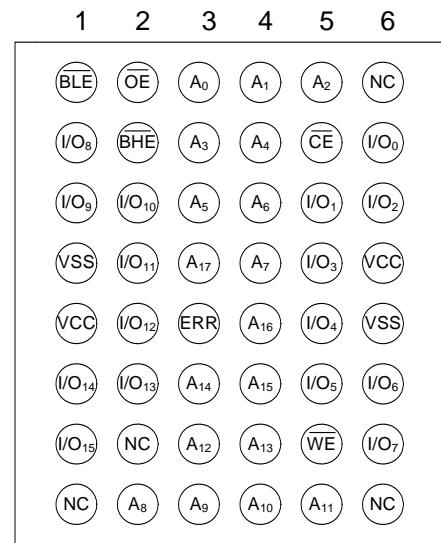
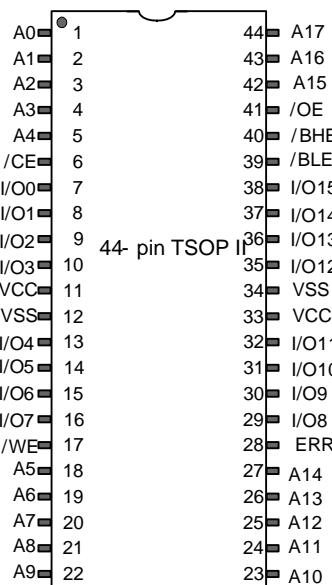
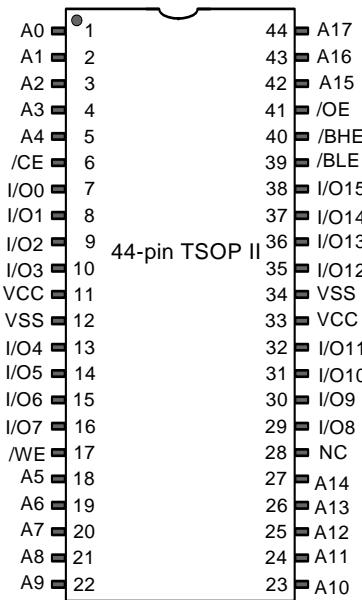

Figure 2. 48-ball VFBGA (6 x 8 x 1.0 mm) Single Chip Enable with ERR, CY7C1041GE^[4,5] Package/Grade ID: BVXI^[6]

Figure 3. 48-ball VFBGA (6 x 8 x 1.0 mm) Single Chip Enable without ERR, CY7C1041G^[4] Package/Grade ID: BVJXI^[6]



Figure 4. 48-ball VFBGA (6 x 8 x 1.0 mm) Single Chip Enable with ERR, CY7C1041GE^[4, 5] Package/Grade ID: BVJXI^[6]

Notes

4. NC pins are not connected internally to the die.
5. ERR is an output pin.
6. Package type BVJXI is JEDEC compliant compared to package type BVXI. The difference between the two is that the higher and lower byte I/Os (I/O_[7:0] and I/O_[15:8]) balls are swapped.

Pin Configurations (continued)

Figure 5. 44-pin TSOP II/44-pin SOJ Single Chip Enable with ERR CY7C1041GE^[7, 8]

Figure 6. 44-pin TSOP II/44-pin SOJ Single Chip Enable without ERR CY7C1041G^[7]

Notes

7. NC pins are not connected internally to the die.
8. ERR is an output pin.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature -65°C to $+150^{\circ}\text{C}$

Ambient temperature with power applied -55°C to $+125^{\circ}\text{C}$

Supply voltage on V_{CC} relative to GND^[9] -0.5 V to $V_{CC} + 0.5\text{ V}$

DC voltage applied to outputs in HI-Z State^[9] -0.5 V to $V_{CC} + 0.5\text{ V}$

DC input voltage^[9] -0.5 V to $V_{CC} + 0.5\text{ V}$
 Current into outputs (in LOW state) 20 mA
 Static discharge voltage (MIL-STD-883, Method 3015) $> 2001\text{ V}$
 Latch-up current $> 140\text{ mA}$

Operating Range

Grade	Ambient Temperature	V_{CC}
Industrial	-40°C to $+85^{\circ}\text{C}$	1.65 V to 2.2 V, 2.2 V to 3.6 V, 4.5 V to 5.5 V

DC Electrical Characteristics

Over the operating range of -40°C to 85°C

Parameter	Description	Test Conditions	10 ns / 15 ns			Unit
			Min	Typ ^[10]	Max	
V_{OH}	Output HIGH voltage	1.65 V to 2.2 V	$V_{CC} = \text{Min}$, $I_{OH} = -0.1\text{ mA}$	1.4	—	—
		2.2 V to 2.7 V	$V_{CC} = \text{Min}$, $I_{OH} = -1.0\text{ mA}$	2	—	—
		2.7 V to 3.6 V	$V_{CC} = \text{Min}$, $I_{OH} = -4.0\text{ mA}$	2.2	—	—
		4.5 V to 5.5 V	$V_{CC} = \text{Min}$, $I_{OH} = -4.0\text{ mA}$	2.4	—	—
		4.5 V to 5.5 V	$V_{CC} = \text{Min}$, $I_{OH} = -0.1\text{ mA}$	$V_{CC}-0.5$ ^[11]	—	—
V_{OL}	Output LOW voltage	1.65 V to 2.2 V	$V_{CC} = \text{Min}$, $I_{OL} = 0.1\text{ mA}$	—	—	0.2
		2.2 V to 2.7 V	$V_{CC} = \text{Min}$, $I_{OL} = 2\text{ mA}$	—	—	0.4
		2.7 V to 3.6 V	$V_{CC} = \text{Min}$, $I_{OL} = 8\text{ mA}$	—	—	0.4
		4.5 V to 5.5 V	$V_{CC} = \text{Min}$, $I_{OL} = 8\text{ mA}$	—	—	0.4
V_{IH}	Input HIGH voltage	1.65 V to 2.2 V	—	1.4	—	$V_{CC} + 0.2$ ^[9]
		2.2 V to 2.7 V	—	2	—	$V_{CC} + 0.3$ ^[9]
		2.7 V to 3.6 V	—	2	—	$V_{CC} + 0.3$ ^[9]
		4.5 V to 5.5 V	—	2.2	—	$V_{CC} + 0.5$ ^[9]
V_{IL}	Input LOW voltage	1.65 V to 2.2 V	—	-0.2 ^[9]	—	0.4
		2.2 V to 2.7 V	—	-0.3 ^[9]	—	0.6
		2.7 V to 3.6 V	—	-0.3 ^[9]	—	0.8
		4.5 V to 5.5 V	—	-0.5 ^[9]	—	0.8
I_{IX}	Input leakage current	$\text{GND} \leq V_{IN} \leq V_{CC}$	—	-1	—	+1
I_{OZ}	Output leakage current	$\text{GND} \leq V_{OUT} \leq V_{CC}$, Output disabled	—	-1	—	+1
I_{CC}	Operating supply current	Max V_{CC} , $I_{OUT} = 0\text{ mA}$, CMOS levels	$f = 100\text{ MHz}$	—	38	45
			$f = 66.7\text{ MHz}$	—	—	40
I_{SB1}	Automatic CE power-down current – TTL inputs	Max V_{CC} , $\overline{CE} \geq V_{IH}$, $V_{IN} \geq V_{IH}$ or $V_{IN} \leq V_{IL}$, $f = f_{MAX}$	—	—	—	15
I_{SB2}	Automatic CE power-down current – CMOS inputs	Max V_{CC} , $\overline{CE} \geq V_{CC} - 0.2\text{ V}$, $V_{IN} \geq V_{CC} - 0.2\text{ V}$ or $V_{IN} \leq 0.2\text{ V}$, $f = 0$	—	6	—	8

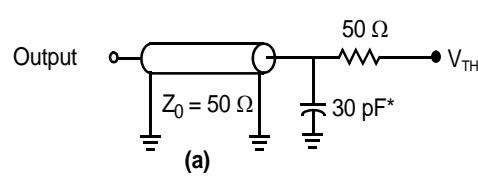
Notes

9. $V_{IL(min)} = -2.0\text{ V}$ and $V_{IH(max)} = V_{CC} + 2\text{ V}$ for pulse durations of less than 2 ns.

10. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = 1.8\text{ V}$ (for V_{CC} range of $1.65\text{ V} - 2.2\text{ V}$), $V_{CC} = 3\text{ V}$ (for V_{CC} range of $2.2\text{ V} - 3.6\text{ V}$), and $V_{CC} = 5\text{ V}$ (for V_{CC} range of $4.5\text{ V} - 5.5\text{ V}$), $T_A = 25^{\circ}\text{C}$.

11. This parameter is guaranteed by design and not tested.

Capacitance


Parameter ^[12]	Description	Test Conditions	48-ball VFBGA	44-pin SOJ	44-pin TSOP II	Unit
C_{IN}	Input capacitance	$T_A = 25^\circ\text{C}$, $f = 1\text{ MHz}$, $V_{CC} = V_{CC(\text{typ})}$	10	10	10	pF
C_{OUT}	I/O capacitance		10	10	10	pF

Thermal Resistance

Parameter ^[12]	Description	Test Conditions	48-ball VFBGA	44-pin SOJ	44-pin TSOP II	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3 x 4.5 inch, four layer printed circuit board	31.35	55.37	68.85	°C/W
Θ_{JC}	Thermal resistance (junction to case)		14.74	30.41	15.97	°C/W

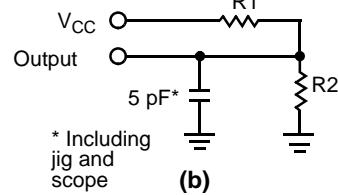
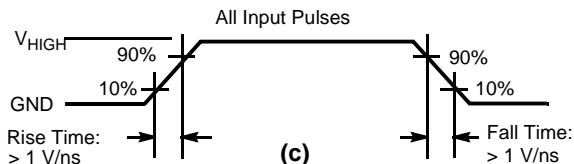

AC Test Loads and Waveforms

Figure 7. AC Test Loads and Waveforms^[13]



* Capacitive load consists of all components of the test environment

High-Z Characteristics:

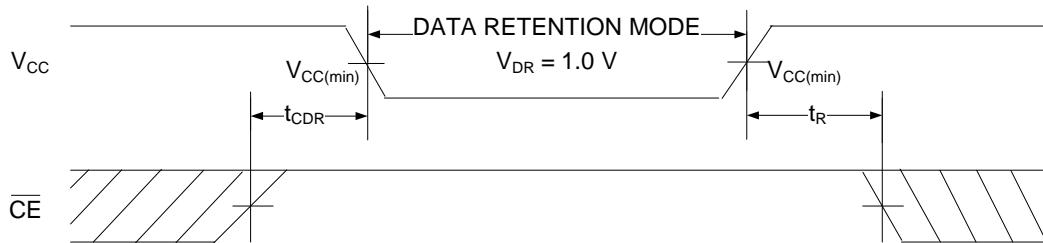
* Including jig and scope

Parameters	1.8 V	3.0 V	5.0 V	Unit
R1	1667	317	317	Ω
R2	1538	351	351	Ω
V_{TH}	0.9	1.5	1.5	V
V_{HIGH}	1.8	3	3	V

Notes

12. Tested initially and after any design or process changes that may affect these parameters.

13. Full-device AC operation assumes a 100-μs ramp time from 0 to $V_{CC(\text{min})}$ and a 100-μs wait time after V_{CC} stabilization.


Data Retention Characteristics

Over the operating range of -40°C to 85°C

Parameter	Description	Conditions	Min	Max	Unit
V_{DR}	V_{CC} for data retention		1	—	V
I_{CCDR}	Data retention current	$V_{\text{CC}} = 1.2 \text{ V}$, $\overline{\text{CE}} \geq V_{\text{CC}} - 0.2 \text{ V}$ ^[15] , $V_{\text{IN}} \geq V_{\text{CC}} - 0.2 \text{ V}$, or $V_{\text{IN}} \leq 0.2 \text{ V}$	—	8	mA
$t_{\text{CDR}}^{[14]}$	Chip deselect to data retention time		0	—	ns
$t_{\text{R}}^{[14,15]}$	Operation recovery time	$V_{\text{CC}} \geq 2.2 \text{ V}$	10	—	ns
		$V_{\text{CC}} < 2.2 \text{ V}$	15	—	ns

Data Retention Waveform

Figure 8. Data Retention Waveform^[15]

Notes

14. These parameters are guaranteed by design.

15. Full-device operation requires linear V_{CC} ramp from V_{DR} to $V_{\text{CC(min)}}$ $\geq 100 \mu\text{s}$ or stable at $V_{\text{CC(min)}} \geq 100 \mu\text{s}$.

AC Switching Characteristics

Over the operating range of -40°C to 85°C

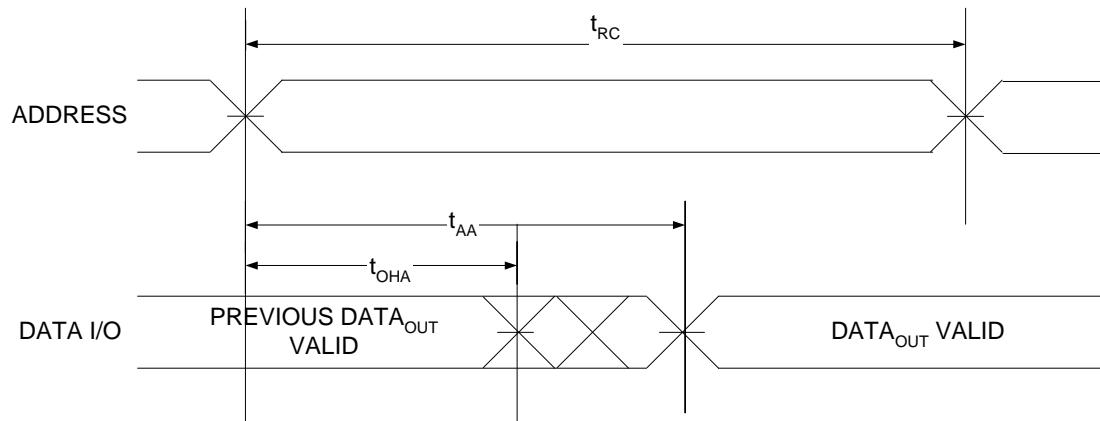
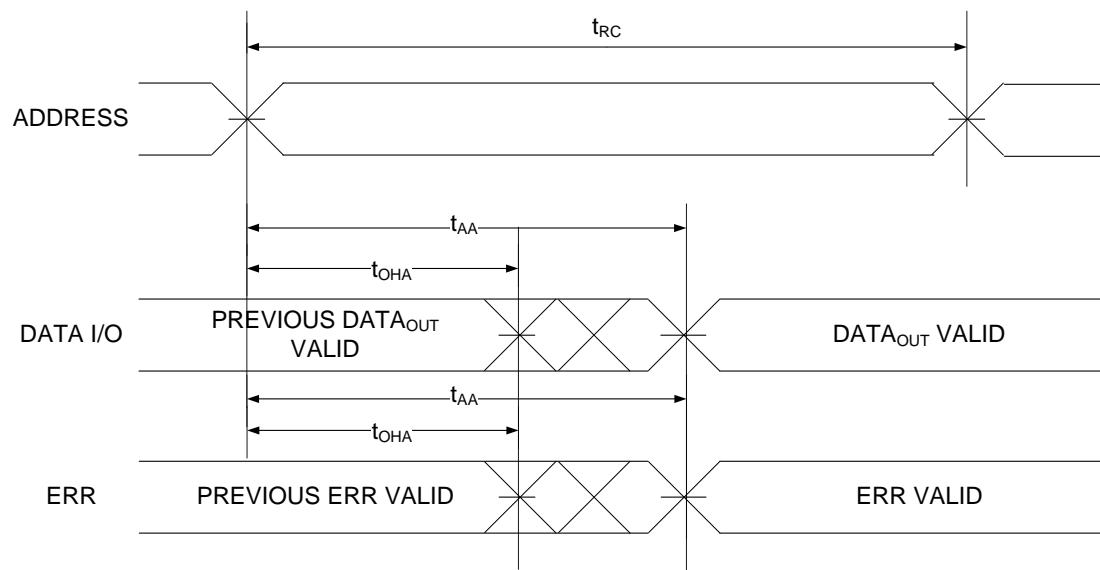
Parameter ^[16]	Description	10 ns		15 ns		Unit
		Min	Max	Min	Max	
Read Cycle						
t_{RC}	Read cycle time	10	—	15	—	ns
t_{AA}	Address to data / ERR valid	—	10	—	15	ns
t_{OHA}	Data / ERR hold from address change	3	—	3	—	ns
t_{ACE}	\overline{CE} LOW to data / ERR valid ^[17]	—	10	—	15	ns
t_{DOE}	\overline{OE} LOW to data / ERR valid	—	4.5	—	8	ns
t_{LZOE}	\overline{OE} LOW to low impedance ^[18, 19]	0	—	0	—	ns
t_{HZOE}	\overline{OE} HIGH to HI-Z ^[18, 19]	—	5	—	8	ns
t_{LZCE}	\overline{CE} LOW to low impedance ^[17, 18, 19]	3	—	3	—	ns
t_{HZCE}	\overline{CE} HIGH to HI-Z ^[17, 18, 19]	—	5	—	8	ns
t_{PU}	\overline{CE} LOW to power-up ^[17, 19, 20]	0	—	0	—	ns
t_{PD}	\overline{CE} HIGH to power-down ^[17, 19, 20]	—	10	—	15	ns
t_{DBE}	Byte enable to data valid	—	4.5	—	8	ns
t_{LZBE}	Byte enable to low impedance ^[19]	0	—	0	—	ns
t_{HZBE}	Byte disable to HI-Z ^[19]	—	6	—	8	ns
Write Cycle^[20, 21]						
t_{WC}	Write cycle time	10	—	15	—	ns
t_{SCE}	\overline{CE} LOW to write end ^[17]	7	—	12	—	ns
t_{AW}	Address setup to write end	7	—	12	—	ns
t_{HA}	Address hold from write end	0	—	0	—	ns
t_{SA}	Address setup to write start	0	—	0	—	ns
t_{PWE}	WE pulse width	7	—	12	—	ns
t_{SD}	Data setup to write end	5	—	8	—	ns
t_{HD}	Data hold from write end	0	—	0	—	ns
t_{LZWE}	WE HIGH to low impedance ^[18, 19]	3	—	3	—	ns
t_{HZWE}	WE LOW to HI-Z ^[18, 19]	—	5	—	8	ns
t_{BW}	Byte Enable to write end	7	—	12	—	ns

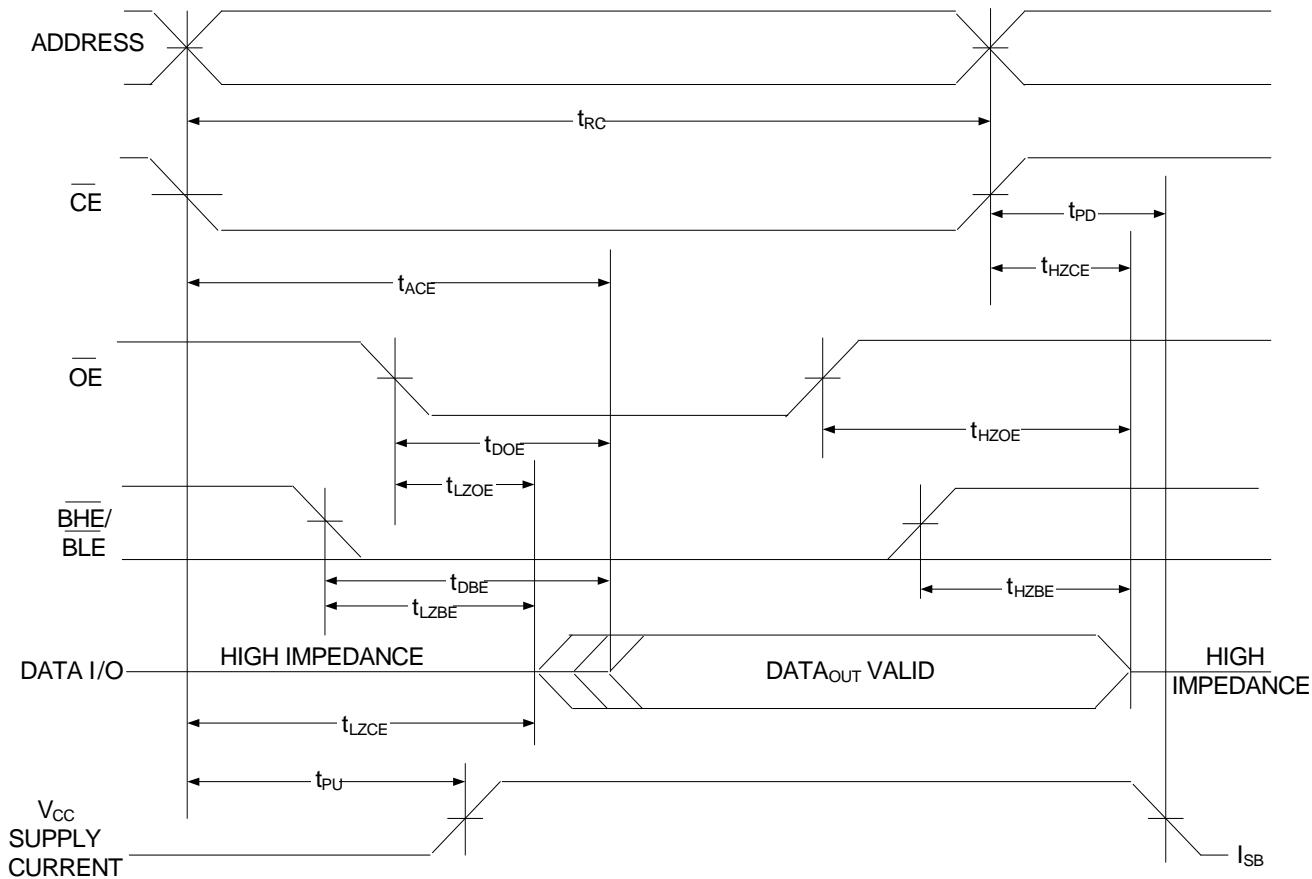
Notes

16. Test conditions assume a signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for $V_{CC} \geq 3$ V) and $V_{CC}/2$ (for $V_{CC} < 3$ V), and input pulse levels of 0 to 3 V (for $V_{CC} \geq 3$ V) and 0 to V_{CC} (for $V_{CC} < 3$ V). Test conditions for the read cycle use output loading, as shown in part (a) of [Figure 7 on page 7](#), unless specified otherwise.
17. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH.
18. t_{LZOE} , t_{HZCE} , t_{HZWE} , t_{HZBE} , t_{LZOE} , t_{LZCE} , t_{LZWE} , and t_{LZBE} are specified with a load capacitance of 5 pF, as shown in part (b) of [Figure 7 on page 7](#). Transition is measured ± 200 mV from steady state voltage.
19. These parameters are guaranteed by design and are not tested.
20. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$, and \overline{BHE} or $\overline{BLE} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
21. The minimum write cycle pulse width in write cycle No 2 (\overline{WE} Controlled, \overline{OE} low) should be equal to sum of t_{DS} and t_{HZWE} .

Switching Waveforms

Figure 9. Read Cycle No. 1 of CY7C1041G (Address Transition Controlled)^[22, 23]


Figure 10. Read Cycle No. 1 of CY7C1041GE (Address Transition Controlled)^[22, 23]

Notes

22. The device is continuously selected, $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} .
 23. WE is HIGH for the read cycle.

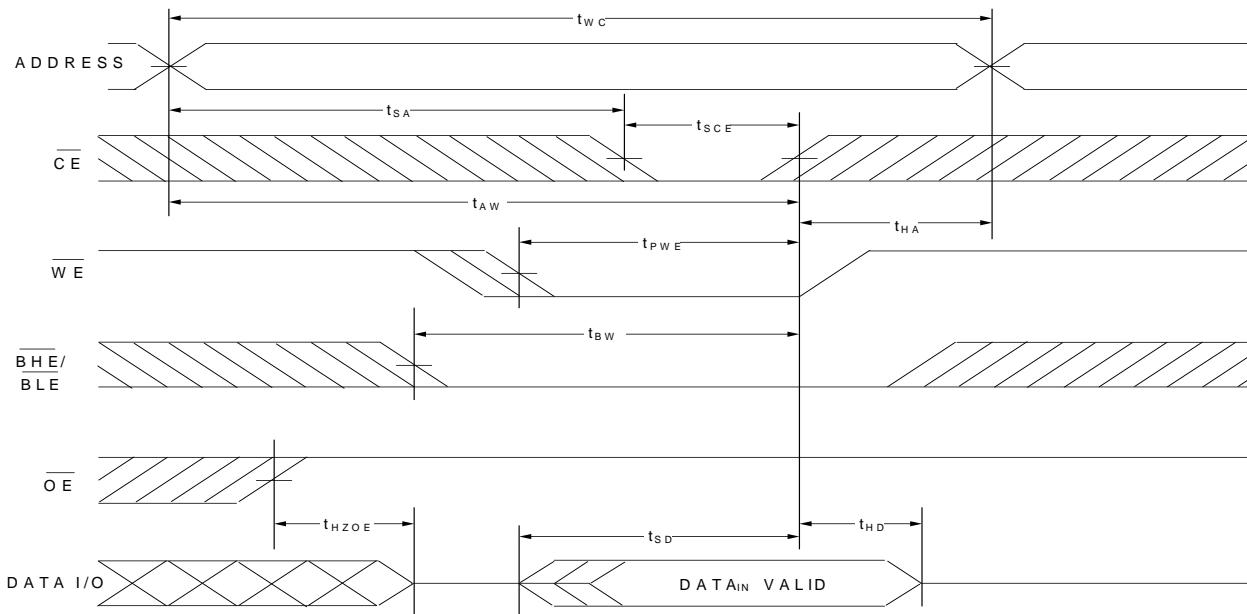
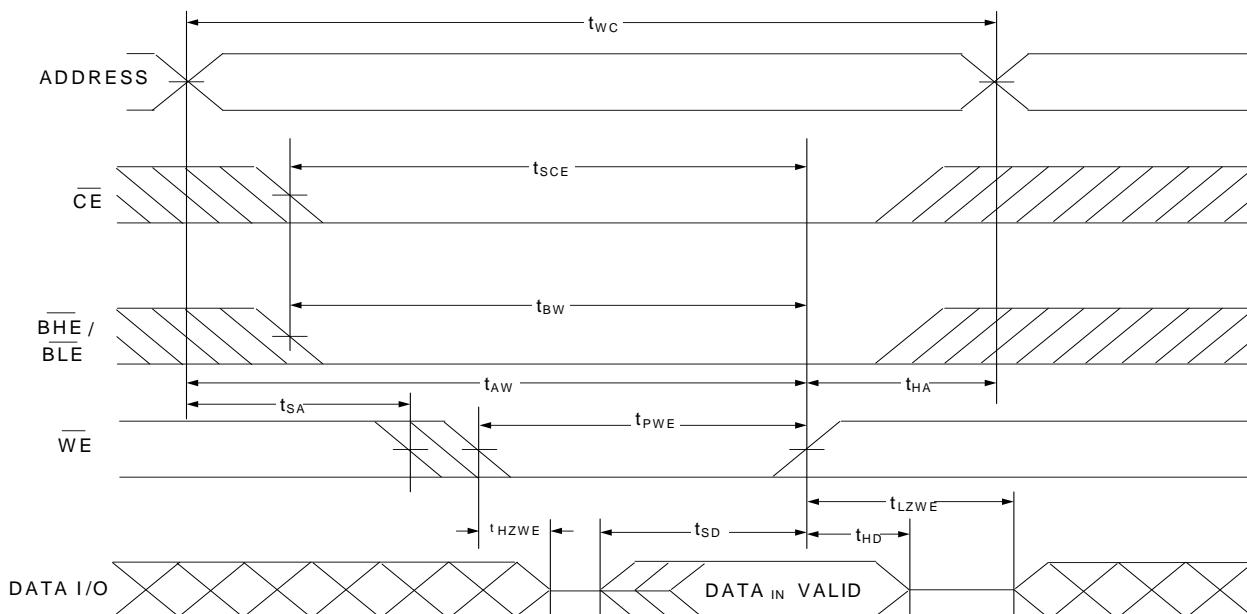


Switching Waveforms (continued)

Figure 11. Read Cycle No. 2 (OE Controlled)^[24, 25, 26]

Notes

24. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH.

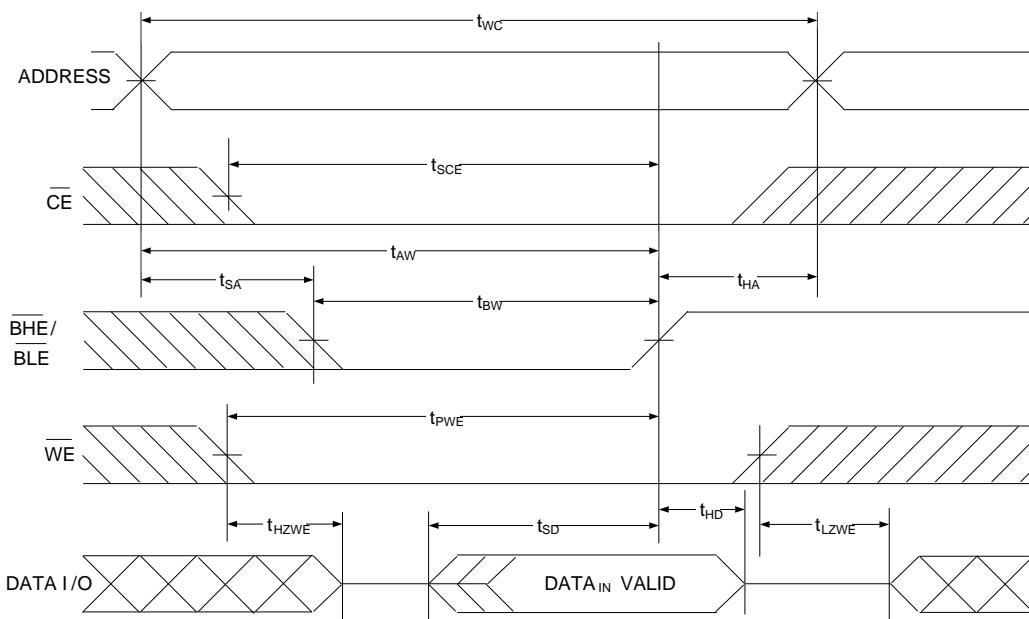
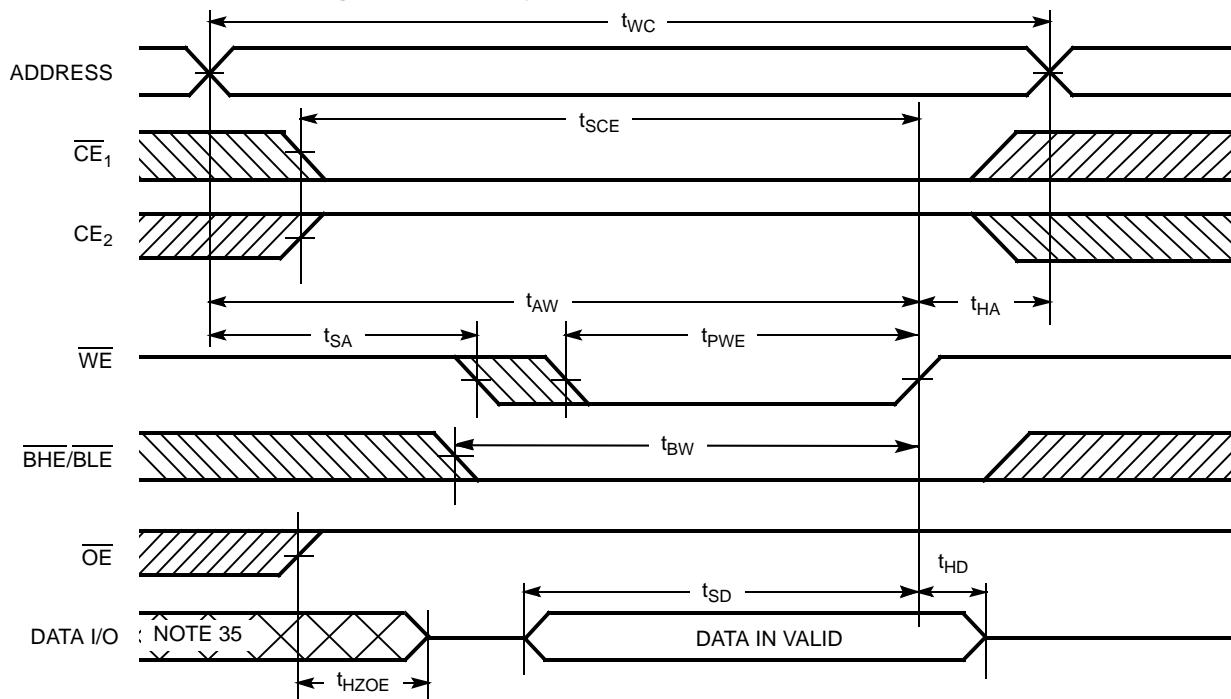
25. \overline{WE} is HIGH for the read cycle.

26. Address valid prior to or coincident with \overline{CE} LOW transition.

Switching Waveforms (continued)
Figure 12. Write Cycle No. 1 ($\overline{\text{CE}}$ Controlled)^[27, 28, 29]

Figure 13. Write Cycle No. 2 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[27, 28, 29, 30]

Notes



27. For all dual chip enable devices, $\overline{\text{CE}}$ is the logical combination of $\overline{\text{CE}}_1$ and CE_2 . When $\overline{\text{CE}}_1$ is LOW and CE_2 is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or CE_2 is LOW, $\overline{\text{CE}}$ is HIGH.

28. The internal write time of the memory is defined by the overlap of $\overline{\text{WE}} = V_{IL}$, $\overline{\text{CE}} = V_{IL}$, and $\overline{\text{BHE}} \text{ or } \overline{\text{BLE}} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.

29. Data I/O is in HI-Z state if $\overline{\text{CE}} = V_{IH}$, or $\overline{\text{OE}} = V_{IH}$, or $\overline{\text{BHE}}$, and/or $\overline{\text{BLE}} = V_{IH}$.

30. The minimum write cycle pulse width should be equal to sum of t_{SD} and t_{HZWE} .

Switching Waveforms (continued)

Figure 14. Write Cycle No. 3 ($\overline{\text{BLE}}$ or $\overline{\text{BHE}}$ Controlled)^[31, 32, 33]

Figure 15. Write Cycle No. 4 ($\overline{\text{WE}}$ Controlled)^[31, 32, 33, 34]

Notes

31. For all dual chip enable devices, $\overline{\text{CE}}$ is the logical combination of $\overline{\text{CE}}_1$ and CE_2 . When $\overline{\text{CE}}_1$ is LOW and CE_2 is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or CE_2 is LOW, $\overline{\text{CE}}$ is HIGH.
32. The internal write time of the memory is defined by the overlap of $\overline{\text{WE}} = V_{\text{IL}}$, $\overline{\text{CE}} = V_{\text{IL}}$, and $\overline{\text{BHE}} \text{ or } \overline{\text{BLE}} = V_{\text{IL}}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
33. Data I/O is in HI-Z state if $\overline{\text{CE}} = V_{\text{IH}}$, $\overline{\text{OE}} = V_{\text{IH}}$, or $\overline{\text{BHE}}$, and/or $\overline{\text{BLE}} = V_{\text{IH}}$.
34. Data I/O is high impedance if $\overline{\text{OE}} = V_{\text{IH}}$.
35. During this period the I/Os are in output state. Do not apply input signals.

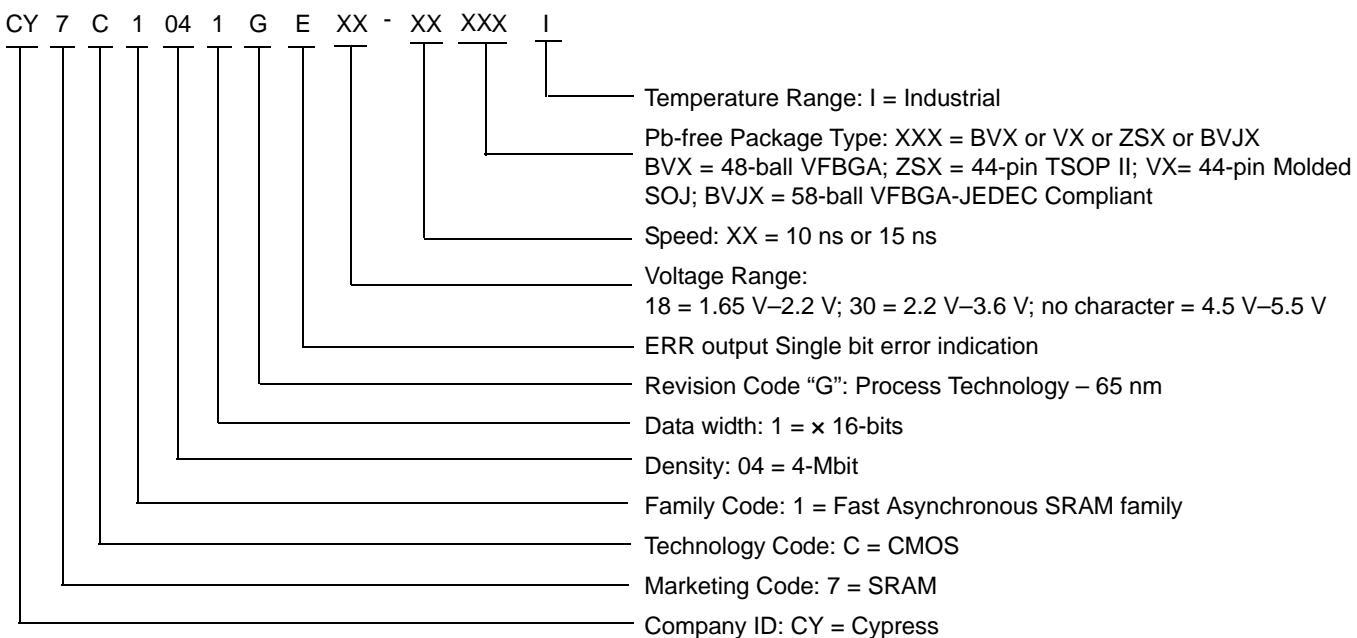
Truth Table

\overline{CE} ^[36]	\overline{OE}	\overline{WE}	\overline{BLE}	\overline{BHE}	$I/O_0-I/O_7$	$I/O_8-I/O_{15}$	Mode	Power
H	X ^[37]	X ^[37]	X ^[37]	X ^[37]	HI-Z	HI-Z	Power down	Standby (I_{SB})
L	L	H	L	L	Data out	Data out	Read all bits	Active (I_{CC})
L	L	H	L	H	Data out	HI-Z	Read lower bits only	Active (I_{CC})
L	L	H	H	L	HI-Z	Data out	Read upper bits only	Active (I_{CC})
L	X	L	L	L	Data in	Data in	Write all bits	Active (I_{CC})
L	X	L	L	H	Data in	HI-Z	Write lower bits only	Active (I_{CC})
L	X	L	H	L	HI-Z	Data in	Write upper bits only	Active (I_{CC})
L	H	H	X	X	HI-Z	HI-Z	Selected, outputs disabled	Active (I_{CC})

ERR Output – CY7C1041GE

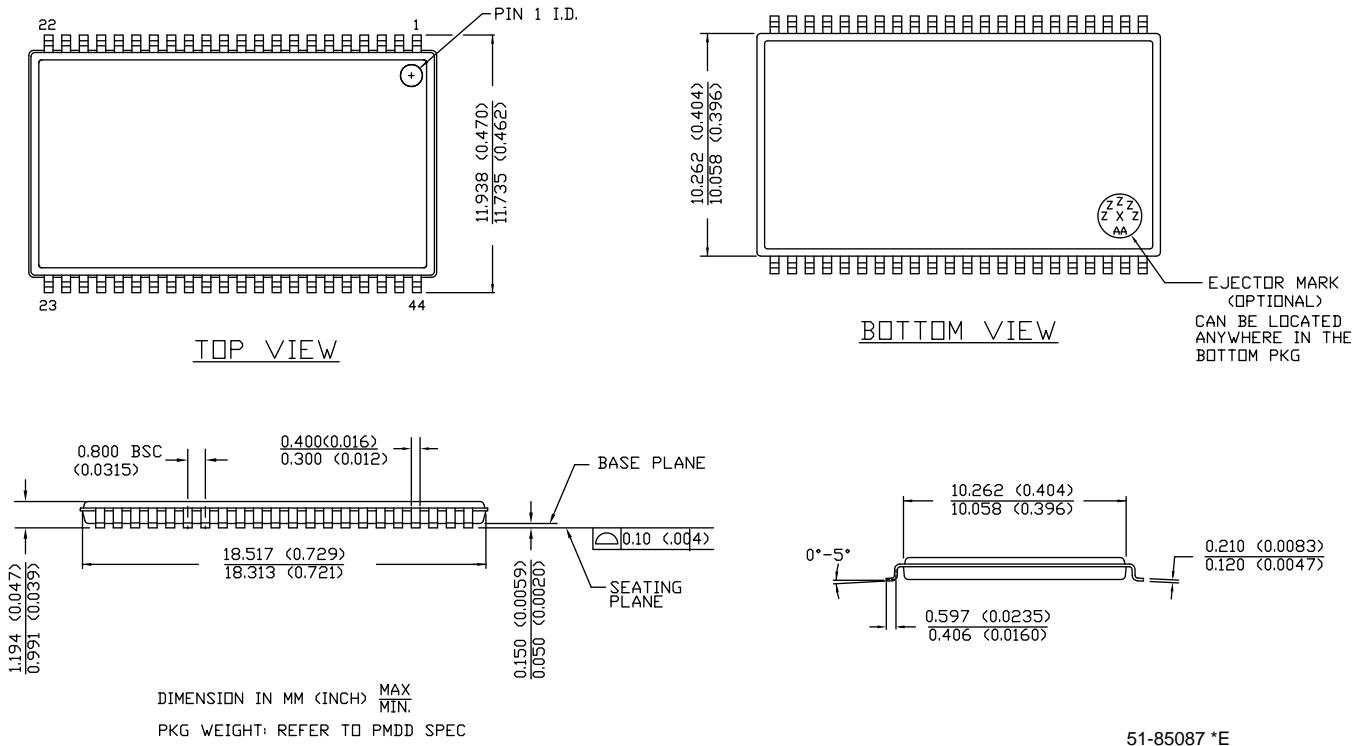
Output ^[38]	Mode
0	Read operation, no single-bit error in the stored data.
1	Read operation, single-bit error detected and corrected.
HI-Z	Device deselected or outputs disabled or Write operation

Notes

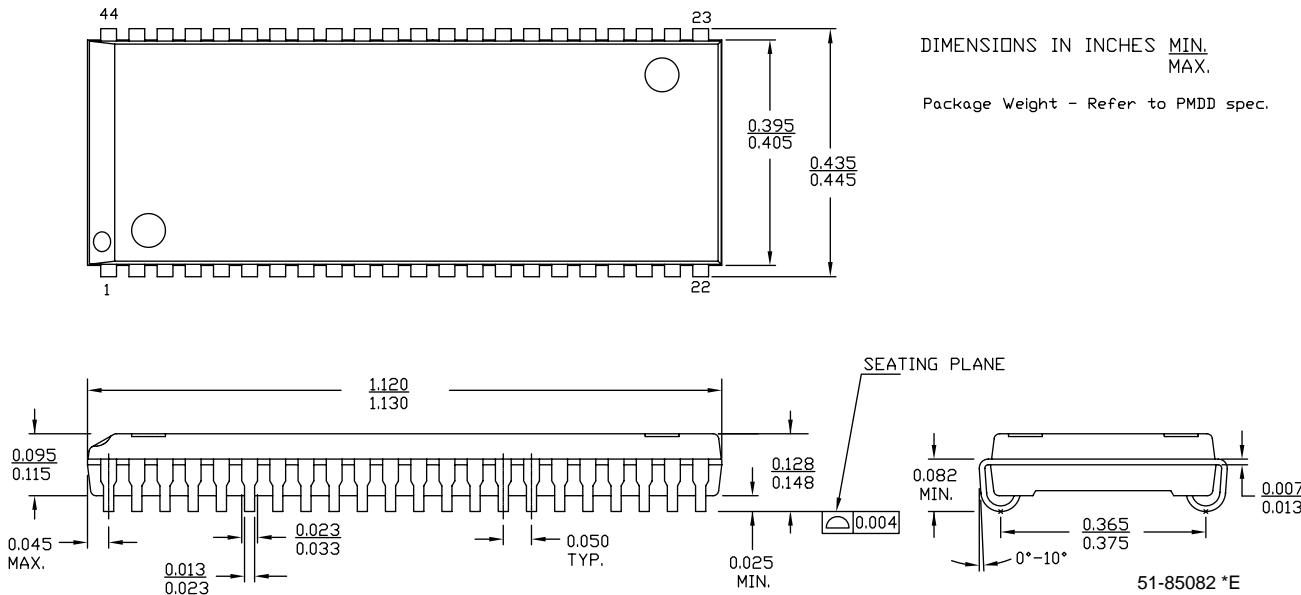

36. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH.

37. The input voltage levels on these pins should be either at V_{IH} or V_{IL} .

38. ERR is an Output pin. If not used, this pin should be left floating.


Ordering Information

Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type (all Pb-free)	Operating Range
10	2.2 V–3.6 V	CY7C1041GE30-10VXI	51-85082	44-pin Molded SOJ, ERR output	Industrial
		CY7C1041G30-10VXI	51-85082	44-pin Molded SOJ	
		CY7C1041GE30-10ZSXI	51-85087	44-pin TSOP II, ERR output	
		CY7C1041G30-10ZSXI	51-85087	44-pin TSOP II	
		CY7C1041GE30-10BVXI	51-85150	48-ball VFBGA (6 × 8 × 1.0 mm), ERR output	
		CY7C1041G30-10BVXI	51-85150	48-ball VFBGA (6 × 8 × 1.0 mm)	
		CY7C1041GE30-10BVJXI	51-85150	48-ball VFBGA (6 × 8 × 1.0 mm), ERR output, JEDEC Compliant	
		CY7C1041G30-10BVJXI	51-85150	48-ball VFBGA (6 × 8 × 1.0 mm), JEDEC	
15	1.65 V–2.2 V	CY7C1041GE18-15VXI	51-85082	44-pin Molded SOJ, ERR output	Industrial
		CY7C1041G18-15VXI	51-85082	44-pin Molded SOJ	
		CY7C1041GE18-15ZSXI	51-85087	44-pin TSOP II, ERR output	
		CY7C1041G18-15ZSXI	51-85087	44-pin TSOP II	
		CY7C1041GE18-15BVXI	51-85150	48-ball VFBGA (6 × 8 × 1.0 mm), ERR output	
		CY7C1041G18-15BVXI	51-85150	48-ball VFBGA (6 × 8 × 1.0 mm)	
10	4.5 V–5.5 V	CY7C1041GE-10VXI	51-85087	44-pin Molded SOJ, ERR output	
		CY7C1041G-10VXI	51-85087	44-pin Molded SOJ	
		CY7C1041GE-10ZSXI	51-85087	44-pin TSOP II, ERR output	
		CY7C1041G-10ZSXI	51-85087	44-pin TSOP II	
		CY7C1041GE-10BVXI	51-85150	48-ball VFBGA (6 × 8 × 1.0 mm), ERR output	
		CY7C1041G-10BVXI	51-85150	48-ball VFBGA (6 × 8 × 1.0 mm)	


Ordering Code Definitions

Package Diagrams

Figure 16. 44-pin TSOP II (Z44) Package Outline, 51-85087

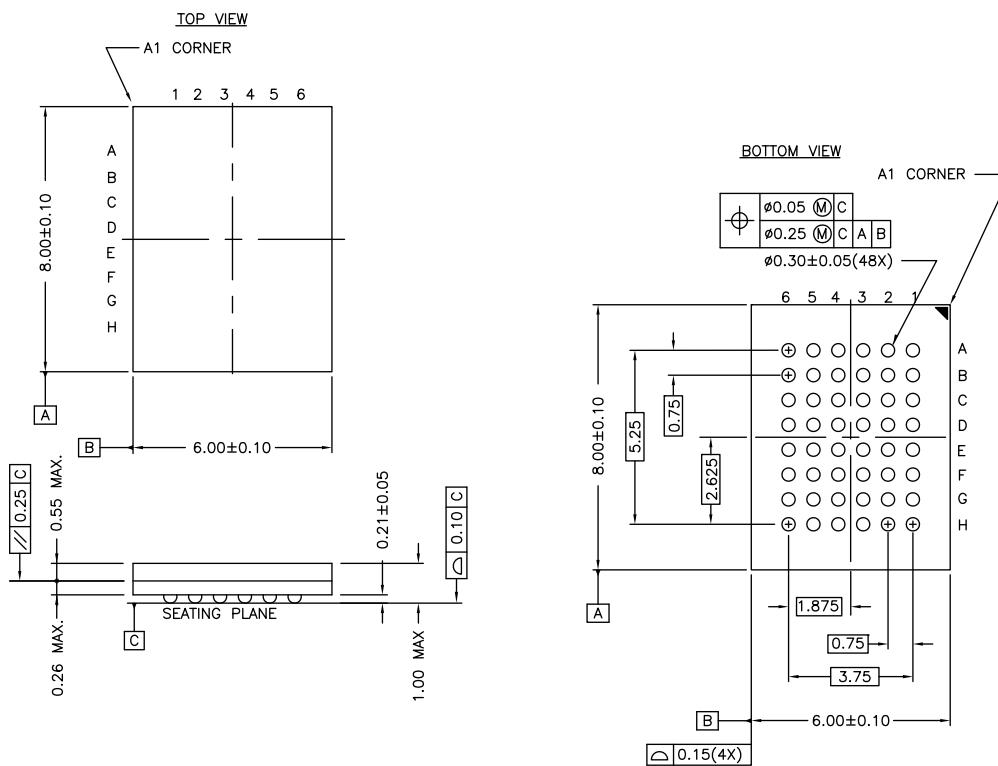


Figure 17. 44-Pin SOJ (400 Mil) Package Outline - 51-85082

Package Diagrams (continued)

Figure 18. 48-ball VFBGA (6 x 8 x 1.0 mm) BV48/BZ48 Package Outline, 51-85150

NOTE:

PACKAGE WEIGHT: See Cypress Package Material Declaration Datasheet (PMDD) posted on the Cypress web.

51-85150 *H

Acronyms

Acronym	Description
BHE	Byte High Enable
BLE	Byte Low Enable
CE	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
I/O	Input/Output
OE	Output Enable
SRAM	Static Random Access Memory
TSOP	Thin Small Outline Package
TTL	Transistor-Transistor Logic
VFBGA	Very Fine-Pitch Ball Grid Array
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
MHz	megahertz
µA	microampere
µs	microsecond
mA	milliampere
mm	millimeter
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Document Title: CY7C1041G/CY7C1041GE, 4-Mbit (256K words × 16 bit) Static RAM with Error-Correcting Code (ECC)
 Document Number: 001-91368

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	4407441	SMCH/VINI	06/25/2014	New datasheet.
*A	4498947	SMCH	09/10/2014	Updated Figure 1 and Figure 3 .
*B	4553979	SMCH	10/30/2014	Updated the Ordering Information Added $I_{CC(\text{typ})}$ for the 5-V part in Product Portfolio as 38 mA
*C	4611296	NILE	12/31/2014	Updated the Ordering Information . Corrected Pin Configurations for JEDEC Compliant package and added Figure 3 . Added footnotes 15 and 21 . Updated Figure 11 through Figure 13 .
*D	4710838	NILE	04/02/2015	Updated Thermal Resistance

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at [Cypress Locations](#).

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions
[PSoC 1](#) | [PSoC 3](#) | [PSoC 4](#) | [PSoC 5LP](#)

Cypress Developer Community

[Community](#) | [Forums](#) | [Blogs](#) | [Video](#) | [Training](#)

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2014-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Данный компонент на территории Российской Федерации**Вы можете приобрести в компании MosChip.**

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

<http://moschip.ru/get-element>

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибуторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ Р В 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru
moschip.ru_4

moschip.ru_6
moschip.ru_9