ADD-A-PAK Generation VII Power Modules Schottky Rectifier, 200 A | PRODUCT SUMMARY | | | | | |--------------------|-------------------------|--|--|--| | I _{F(AV)} | 200 A | | | | | V _R | 150 V | | | | | Package | ADD-A-PAK | | | | | Circuit | Two diodes common anode | | | | #### **MECHANICAL DESCRIPTION** The ADD-A-PAK generation VII, new generation of ADD-A-PAK module, combines the excellent thermal performances obtained by the usage of exposed direct bonded copper substrate, with advanced compact simple package solution and simplified internal structure with minimized number of interfaces. #### **FEATURES** - 175 °C T_J operation - Low forward voltage drop - High frequency operation - Low thermal resistance - UL approved file E78996 Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u> #### **BENEFITS** - Excellent thermal performances obtained by the usage of exposed direct bonded copper substrate - High surge capability - · Easy mounting on heatsink #### **ELECTRICAL DESCRIPTION** The VS-VSKJS209.. Schottky rectifier common anode has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in high current switching power supplies, plating power supplies, UPS systems, converters, freewheeling diodes, welding, and reverse battery protection. | MAJOR RATINGS AND CHARACTERISTICS | | | | | | |-----------------------------------|---|------------|-------|--|--| | SYMBOL | CHARACTERISTICS | VALUES | UNITS | | | | I _{F(AV)} | Rectangular waveform | 200 | A | | | | V _{RRM} | | 150 | V | | | | I _{FSM} | t _p = 5 μs sine | 11 300 | Α | | | | V _F | 100 A _{pk} , T _J = 125 °C | 0.85 | V | | | | T _J | Range | -55 to 175 | °C | | | | VOLTAGE RATINGS | | | | | | |--------------------------------------|-----------|-----------------|-------|--|--| | PARAMETER | SYMBOL | VS-VSKJS209/150 | UNITS | | | | Maximum DC reverse voltage | V_{R} | 150 | V | | | | Maximum working peak reverse voltage | V_{RWM} | 150 | V | | | | ABSOLUTE MAXIMUM RATINGS | | | | | | | |--------------------------------|------------|-------------------------------|---|--------------------------------|--------|-------| | PARAMETER | | SYMBOL | TEST CONDITIONS \ | | VALUES | UNITS | | Maximum average | per module | , | 50 % duty cycle at T _C = 113 °C, rectangular waveform | | 200 | | | forward current | per leg | I _{F(AV)} | | | 100 | | | Maximum peak one cycle | | 5 μs sine or 3 μs rect. pulse | Following any rated load condition and with | 11 300 | Α | | | non-repetitive surge current | | IFSM | 10101 | rated V _{RRM} applied | 1600 | | | Non-repetitive avalanche energ | Jy | E _{AS} | T _J = 25 °C, I _{AS} = 1.8 A, L = 10 mH | | 15 | mJ | | Repetitive avalanche current | | I _{AR} | Current decaying linearly to zero in 1 μ s Frequency limited by T_J maximum $V_A = 1.5 \times V_R$ typical | | 1 | А | | ELECTRICAL SPECIFICATIONS | | | | | | |--|------------------|--|---------------------------------------|----------------------------|-------| | PARAMETER | SYMBOL | TEST CONDITIONS | | VALUES | UNITS | | Marian markania dia mandia ma | V _{FM} | 100 A | T _J = 25 °C | 1.01 | . V | | | | 200 A | | 1.35 | | | Maximum forward voltage drop | | 100 A | - T _J = 125 °C | 0.85 | | | | | 200 A | | 1.13 | | | Marin and a second | I _{RM} | T _J = 25 °C | V _R = Rated V _R | 6 | mΛ | | Maximum reverse leakage current | | T _J = 125 °C | | 85 | mA | | Maximum junction capacitance | C _T | $V_R = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz), 25 °C | | 3000 | pF | | Typical series inductance | L _S | Measured lead to lead 5 mm from package body | | 7.0 | nΗ | | Maximum voltage rate of change | dV/dt | Rated V _R | | 10 000 | V/µs | | Maximum RMS insulation voltage | V _{INS} | 50 Hz | | 3000 (1 min)
3600 (1 s) | V | | THERMAL - MECHANICAL SPECIFICATIONS | | | | | | |---|-------------|-----------------------------------|--|-------------|----------| | PARAMETER | | SYMBOL | TEST CONDITIONS | VALUES | UNITS | | Maximum junction and storage temperature range |) | T _J , T _{Stg} | | -55 to 175 | °C | | Maximum thermal resistance, junction to case per leg | | R _{thJC} | DC operation | 0.52 | · °C/W | | Typical thermal resistance, case to heatsink per module | | R _{thCS} | | 0.1 | C/VV | | Approximate weight | | | | 75 | g | | Approximate weight | | | | 2.7 | oz. | | Mounting torque ± 10 % | to heatsink | | A mounting compound is recommended and the torque should be rechecked after a period of 3 hours to allow for | 4 | Nm | | | busbar | | the spread of the compound. | 3 | INIII | | Case style | | | JEDEC® | TO-240AA co | mpatible | Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics Allowable Case Temperature (°C) #### www.vishay.com # Vishay Semiconductors Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current Fig. 6 - Forward Power Loss Characteristics Fig. 7 - Maximum Non-Repetitive Surge Current Fig. 8 - Unclamped Inductive Test Circuit ### Note (1) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward power loss = I_{F(AV)} \times V_{FM} at (I_{F(AV)}/D)$ (see fig. 6); $Pd_{REV} = Inverse power loss = V_{R1} \times I_R (1 - D)$; I_R at $V_{R1} = 80 \%$ rated V_R #### **ORDERING INFORMATION TABLE** Device code 1 - Vishay Semiconductors product 2 - Circuit configuration: KJ = ADD-A-PAK - 2 diodes/common anode 3 - S = Schottky diode 4 - Average current rating (20 = 200 A) 5 - Product silicon identification 6 - Voltage rating (150 = 150 V) ### **CIRCUIT CONFIGURATION** | LINKS TO RELATED DOCUMENTS | | | | | |----------------------------|--------------------------|--|--|--| | Dimensions | www.vishay.com/doc?95369 | | | | ## **Legal Disclaimer Notice** Vishay ## **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. ## **Material Category Policy** Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards. Revision: 02-Oct-12 Document Number: 91000 ## **ПОСТАВКА** ЭЛЕКТРОННЫХ КОМПОНЕНТОВ Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107 # Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip. Для оперативного оформления запроса Вам необходимо перейти по данной ссылке: ## http://moschip.ru/get-element Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора. В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов. Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair. Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки. На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров. Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009 ### Офис по работе с юридическими лицами: 105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский» Телефон: +7 495 668-12-70 (многоканальный) Факс: +7 495 668-12-70 (доб.304) E-mail: info@moschip.ru Skype отдела продаж: moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9