

Precision LVDS 2:1 Multiplexer with 1:2 Fanout and Internal Termination

General Description

The SY89474U is a 2.5V precision, high-speed 2:1 differential MUX capable of processing clocks up to 2.5GHz and data up to 2.5Gbps.

The differential input includes Micrel's unique, 3-pin input termination architecture that directly interfaces to any differential signal (AC- or DC-coupled) as small as 100mV ($200mV_{PP}$) without any level shifting or termination resistor networks in the signal path. The output is 325mV LVDS with fast rise/fall times guaranteed to be less than 150ps.

The SY89474U operates from a 2.5V \pm 5% supply and is guaranteed over the full industrial temperature range of -40°C to +85°C. The SY89474U is part of Micrel's high-speed, Precision Edge[®] product line. For multiple clock switchover solutions, please refer to the SY89840U–SY89845U family.

All support documentation can be found on Micrel's web site at: <u>www.micrel.com</u>.

Functional Block Diagram

Features

- Selects between two input channels and provides two copies of the selected input
- Guaranteed AC performance over temperature and supply voltage:
 - DC to 2.5Gbps data throughput
 - DC to 2.5GHz f_{MAX} (clock)
 - <470ps In-to-Out tpd
 - <150ps t_r/t_f
 - <20ps output-to-output skew
- Unique, patent-pending input isolation design minimizes crosstalk
- Ultra-low jitter design:
 - <1ps_{RMS} random jitter
 - <10ps_{PP} deterministic jitter
 - <1ps_{RMS} cycle-to-cycle jitter
 - <10ps_{PP} total jitter (clock)
 - <0.7ps_{RMS} crosstalk induced jitter
- Unique patent-pending input termination and VT pin accepts DC- and AC-coupled inputs (CML, PECL, LVDS)
- 325mV LVDS output swing
- 2.5V ±5% supply voltage
- -40°C to +85°C industrial temperature range
- Available in 24-pin (4mm x 4mm) QFN package

Applications

- Clock switchover
- Data distribution

Markets

- LAN/WAN
- Enterprise Servers
- ATE
- Test and Measurement

Precision Edge is a registered trademark of Micrel, Inc.

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89474UMG	QFN-24	Industrial	474U with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY89474UMGTR ⁽²⁾	QFN-24	Industrial	474U with Pb-Free bar-line indicator	NiPdAu Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at TA = 25°C, DC Electricals Only.

2. Tape and Reel.

Pin Configuration

24-Pin QFN

Pin Description

Pin Number	Pin Name	Pin Function
5, 2, 23, 20	IN0, /IN0 IN1, /IN1	Differential Inputs: These input pairs are the differential signal inputs to the device. They accept AC- or DC-coupled signals as small as 100mV (200mVpp). Note that these inputs will default to an undetermined state if left open. Each pin of a pair internally terminates to a VT pin through 50 Ω . Please refer to the "Input Interface Applications" section for more details.
3, 21	VREF-AC0, VREF-AC1	Reference Voltage: These outputs bias to V _{CC} -1.2V. They are used for AC- coupling inputs IN and /IN. Connect VREF-AC directly to the corresponding VT pin. Bypass with 0.01µF low ESR capacitor to VCC. Maximum sink/source current is ±1.5mA. Due to the limited drive capability, the VREF-AC pin is only intended to drive its respective VT pin. Please refer to the "Input Interface Applications" section for more details.
4, 22	VT0, VT1	Input Termination Center-Tap: Each side of the differential input pair terminates to a VT pin. The VT0 and VT1 pins provide a center-tap to a termination network for maximum interface flexibility. Please refer to the "Input Interface Applications" section for more details.
1, 6, 9, 10, 13, 19, 24	VCC	Positive Power Supply: Connect to +2.5V \pm 5% power supply. Bypass with 0.1µF//0.01µF low ESR capacitors as close to VCC pins as possible.
7, 8 11, 12	Q0, /Q0 Q1, /Q1	Differential Outputs: These differential LVDS output pairs are a logic function of the IN0, IN1, and SEL inputs. Please refer to the truth table below for details. Unused output pairs should be terminated with 100Ω across the outputs.
15	SEL	This single-ended TTL/CMOS-compatible input selects the inputs to the multiplexer. Note that this input is internally connected to a $25k\Omega$ pull-up resistor and will default to a logic HIGH state if left open. V _{TH} = V _{CC} /2. Please refer to the "Timing Diagram" section for more details.
14, 17, 18	GND, Exposed Pad	Ground: Ground pins and exposed pad must be connected to the same ground plane.

Truth Table

	INPUTS					PUTS
IN0	/IN0	IN1	/IN1	SEL	Q	/Q
0	1	Х	Х	0	0	1
1	0	Х	Х	0	1	0
Х	Х	0	1	1	0	1
Х	Х	1	0	1	1	0

Absolute Maximum Ratings⁽¹⁾

Supply Voltage (V_{CC}) Input Voltage (V_{IN})	
Termination Current	
IN, /IN	±50mA
V _T	±100mA
V _{REF-AC} Current	
Source/sink Current on VREF-AC	±2mA
Lead Temperature (soldering, 20 sec.)	+260°C
Storage Temperature (T _S)	65°C to 150°C

Operating Ratings⁽²⁾

Supply Voltage (V _{CC})	+2.375V to +2.625V
Ambient Temperature (T _A)	40°C to +85°C
Package Thermal Resistance ⁽³⁾	
QFN (θ _{JA})	
Still-Air	50°C/W
QFN (Ψ _{JB})	
Junction-to-Board	

DC Electrical Characteristics⁽⁴⁾

 $T_A = -40^{\circ}C$ to +85°C; unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CC}	Power Supply		2.375	2.5	2.625	V
Icc	Power Supply Current	No load, max V _{CC} .		80	110	mA
R _{IN}	Input Resistance (IN-to-V _T)		45	50	55	Ω
R _{DIFF_IN}	Differential Input Resistance (IN-to-/IN)		90	100	110	Ω
V _{IH}	Input High Voltage (IN, /IN)		1.2		V _{cc}	V
V _{IL}	Input Low Voltage (IN, /IN)		0		V _{IH} -0.1	V
V _{IN}	Input Voltage Swing (IN, /IN)	See Figure 1a. Note 5.	0.1		V _{CC}	V
V_{DIFF_IN}	Differential Input Voltage Swing IN-/IN	See Figure 1b.	0.2			V
$V_{T_{IN}}$	IN-to-V _T (IN, /IN)				1. 28	V
$V_{\text{REF-AC}}$	Output Reference Voltage		V _{CC} -1.3	V _{CC} -1.2	V _{CC} -1.1	V

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.

3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. θ_{JA} and Ψ_{JB} values are determined for a 4-layer board in still air unless otherwise stated.

4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

5. V_{IN} (max) is specified when V_T is floating.

LVDS Outputs DC Electrical Characteristics⁽⁶⁾

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OUT}	Output Voltage Swing Q, /Q	See Figure 1a	250	325		mV
V _{DIFF_OUT}	Differential Output Voltage Swing Q, /Q	See Figure 1b	500	650		mV
V _{OCM}	Output Common Mode Voltage		1.125		1.275	V
ΔV_{OCM}	Change in V _{OS} between complementary output states		-50		+50	mV

LVTTL/CMOS DC Electrical Characteristics⁽⁶⁾

 V_{CC} = 2.5V ±5%; T_A = -40°C to + 85°C; unless otherwise stated

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IH}	Input HIGH Voltage		2.0			V
V _{IL}	Input LOW Voltage				0.8	V
Іін	Input HIGH Current		-125		30	μA
IIL	Input LOW Current		-300			μA

Notes:

6. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC Electrical Characteristics⁽⁷⁾

 V_{CC} = 2.5V ±5%; T_A = -40°C to + 85°C; R_L = 100 Ω across output pair; unless otherwise stated

Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{MAX}	Maximum Operating Frequency	NRZ Data	2.5	3.2		Gbps
		V _{OUT} ≥200mV Clock	2.5	4		GHz
t _{pd}	Differential Propagation Delay In-to-Q		220	320	470	ps
	SEL-to-Q	$V_{TH} = V_{CC}/2$	200	350	550	ps
t _{pd} Tempco	Differential Propagation Delay Temperature Coefficient			158		fs/°C
t _{SKEW}	Output-to-Output Skew	Note 8		5	20	ps
	Part-to-Part Skew	Note 9			200	ps
t _{Jitter}	Data Random Jitter	Note 10			1	ps _{RMS}
	Deterministic Jitter	Note 11			10	ps _{PP}
	Clock Cycle-to-cycle Jitter	Note 12			1	ps _{RMS}
	Total Jitter	Note 13			10	ps _{PP}
	Crosstalk-Induced Jitter	Note 14			0.7	ps _{RMS}
t _{r,} t _f	Output Rise/Fall Time (20% to 80%)	At full output swing.	30		150	ps

Notes:

- 7. High-frequency AC-parameters are guaranteed by design and characterization.
- 8. Output-to-output skew is measured between two different outputs under identical transitions.
- 9. Part-to-part skew is defined for two parts with identical power supply voltages, at the same temperature, and with no skew of the edges at the respective inputs.
- 10. Random Jitter is measured with a K28.7 pattern, measured at $\leq f_{\text{MAX}}.$
- 11. Deterministic Jitter is measured with both K28.5 and 2^{23} -1 PRBS pattern, measured at $\leq f_{MAX}$.
- 12. Cycle-to-cycle jitter definition: The variation of periods between adjacent cycles, T_n T_{n-1} where T is the time between rising edges of the output signal.
- Total Jitter definition: With an ideal clock input of frequency <f_{MAX}, no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value.
- 14. Crosstalk is measured at the output while applying two similar differential clock frequencies that are asynchronous with respect to each other at the inputs.

Typical Operating Characteristics

 V_{CC} = 2.5V ±5%; V_{IN} > 400mV; T_A = 25°C, R_L = 100 Ω across output pair; unless otherwise stated.

Functional Characteristics

 V_{CC} = 2.5V ±5%; V_{IN} > 400mV; T_A = 25°C, R_L = 100 Ω across output pair; unless otherwise stated.

Single-Ended and Differential Swings

Figure 1b. Differential Voltage Swing

Timing Diagrams

Input and Output Stages

Input Interface Applications

Figure 3d. CML Interface (AC-Coupled)

Figure 3b. LVPECL Interface (AC-Coupled)

Option: may connect V_T to V_{cc} . Figure 3c. CML Interface (DC-Coupled)

LVDS Output Interface Applications

LVDS specifies a small swing of 325mV typical, on a nominal 1.20V common mode above ground. The common mode voltage has tight limits to permit large variations in ground between an LVDS driver and

Figure 4a. LVDS Differential Measurement

receiver. Also, change in common mode voltage, as a function of data input, is kept to a minimum, to keep EMI low.

Figure 4b. LVDS Mode Measurement

Related Product and Support Information

Part Number	Function	Data Sheet Link
SY89473U	Precision LVPECL 2:1 Multiplexer with 1:2 Fanout and Internal Termination	www.micrel.com/product-info/products/sy89473u.shtml
HBW Solutions	New Products and Applications	www.micrel.com/product-info/products/solutions.shtml

Package Information

 ALL DIMENSIONS ARE IN MILLIMETERS (mm).
THE PIN#1 IDENTIFIER MUST EXIST ON THE TOP SURFACE OF PACKAGE BY USING IDENTIFICATION MARK OR OTHER FEATURE OF PACKAGE BODY.

3. CHAMFER STYLE PIN 1 IDENTIFIER ON BOTTOM SIDE

24-Pin (4mm x 4mm) QFN

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9