

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

FDS4559

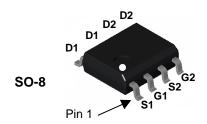
60V Complementary PowerTrench®MOSFET

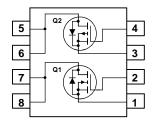
General Description

This complementary MOSFET device is produced using Fairchild's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.

Applications

- DC/DC converter
- Power management
- LCD backlight inverter


Features


Q1: N-Channel

4.5 A, 60 V
$$R_{DS(on)} = 55 \text{ m}\Omega @ V_{GS} = 10V$$

$$R_{DS(on)} = 75 \text{ m}\Omega @ V_{GS} = 4.5V$$

Q2: P-Channel

$$-3.5$$
 A, -60 V $~R_{DS(on)}=105$ $m\Omega$ @ $V_{GS}=-10$ V
$$~R_{DS(on)}=135$$
 $m\Omega$ @ $V_{GS}=-4.5$ V

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V _{DSS}	Drain-Source Voltage		60	-60	V
V _{GSS}	Gate-Source Voltage		±20	±20	V
I _D	Drain Current - Continuous	(Note 1a)	4.5	-3.5	А
	- Pulsed		20	-20	
P _D	Power Dissipation for Dual Operation		2	2	W
	Power Dissipation for Single Operation	(Note 1a)	1.	.6	
		(Note 1b)	1.	.2	
		(Note 1c)	,	1	
T_J , T_{STG}	Operating and Storage Junction Temperature Range		-55 to	+175	°C

Thermal Characteristics

R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
R _{θJC}	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

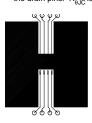
Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDS4559	FDS4559	13"	12mm	2500 units

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Drain-S	ource Avalanche Rating]S (Note 1)					
W _{DSS}	Single Pulse Drain-Source Avalanche Energy	$V_{DD} = 30 \text{ V}, \qquad I_{D} = 4.5 \text{ A}$	Q1			90	mJ
I _{AR}	Maximum Drain-Source Avalanche Current		Q1			4.5	Α
Off Cha	racteristics						
BV _{DSS}	Drain-Source Breakdown	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Q1	60			V
. 5) (Voltage	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	Q2	-60			1400
∆BV _{DSS}	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°C	Q1 Q2		58 –49		mV/°C
ΔT _J	-	$I_D = -250 \mu\text{A}$, Referenced to 25°C	Q2 Q1		-49	1	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}$	Q1 Q2			1 –1	μΑ
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	Q1			+100	nA
1055	Cate Body Loanage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	Q2			+100	1.5
On Cha	racteristics (Note 2)					. —	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	Q1	1	2.2	3	V
V GS(III)	Cate Thromolog Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	Q2	-1	-1.6	-3	•
$\Delta V_{GS(th)}$	Gate Threshold Voltage	I _D = 250 μA, Referenced to 25°C	Q1		-5.5		mV/°C
ΔT_{J}	Temperature Coefficient	$I_D = -250 \mu\text{A}$, Referenced to 25°C	Q2		4		
R _{DS(on)}	Static Drain-Source	$V_{GS} = 10 \text{ V}, I_D = 4.5 \text{ A}$	Q1		42	55	$m\Omega$
	On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 4.5 \text{ A}, T_J = 125^{\circ}\text{C}$			72	94	
		$V_{GS} = 4.5 \text{ V}, I_D = 4 \text{ A}$ $V_{GS} = -10 \text{ V}, I_D = -3.5 \text{ A}$			55	75	
			Q2		82	105	
		$V_{GS} = -10 \text{ V}, I_D = -3.5 \text{ A}, T_J = 125^{\circ}\text{C}$			130	190	
	On State Drain Current	$V_{GS} = -4.5 \text{ V}, I_D = -3.1 \text{ A}$	01	20	105	135	^
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$ $V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$	Q1 Q2	20 –20			Α
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, V_{DS} = -3 \text{ V}$ $V_{DS} = 10 \text{ V}, I_{D} = 4.5 \text{ A}$	Q1	-20	14		S
913		$V_{DS} = -5 \text{ V}, I_D = -3 \text{ 5 A}$	Q2		9		
Dvnami	c Characteristics						
C _{iss}	Input Capacitance	Q1	Q1		650		pF
Oiss	mput Supusitarios	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$	Q2		759		Pi
Coss	Output Capacitance	f = 1.0 MHz	Q1		80		pF
		Q2	Q2		90		·
Crss	Reverse Transfer	$V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V},$	Q1		35		pF
	Capacitance	f = 1.0 MHz	Q2		39		
Switchin	g Characteristics (Note 2)					
	Turn-On Delay Time	Q1	Q1		11	20	ns
(011)	,	$V_{DD} = 30 \text{ V}, I_D = 1 \text{ A},$	Q2		7	14	
	Turn-On Rise Time	$V_{GS} = 10V$, $R_{GEN} = 6 \Omega$	Q1		8	18	ns
			Q2		10	20	
d(off)	Turn-Off Delay Time	Q2	Q1		19	35	ns
	Turn Off Fall Time	$V_{DD} = -30 \text{ V}, I_{D} = -1 \text{ A},$ $V_{GS} = -10 \text{ V}, R_{GEN} = 6 \Omega$	Q2		19	34	
	Turn-Off Fall Time	V _{GS} = -10 V, N _{GEN} = 0 22	Q1 Q2		6 12	15 22	ns
Q_{g}	Total Gate Charge	Q1	Q1		12.5	18	nC
·9	3	$V_{DS} = 30 \text{ V}, I_D = 4.5 \text{ A}, V_{GS} = 10 \text{ V}$	Q2		15	21	
) _{gs}	Gate-Source Charge		Q1		2.4		nC
		Q2	Q2		2.5		1
) _{gd}	Gate-Drain Charge	$V_{DS} = -30 \text{ V}, I_{D} = -3.5 \text{ A}, V_{GS} = -10 \text{V}$	Q1		2.6		nC
			Q2		3.0		

Electrical Characteristics (continued) T_A = 25°C unless otherwise noted

Drain-Source Diode Characteristics and Maximum Ratings							
Is	Maximum Continuous Drain-Source Diode Forward Current	Q1			1.3	Α	
		Ω2			_1 3		


Test Conditions

V_{SD}

Symbol

 R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{8JC} is guaranteed by design while R_{8CA} is determined by the user's board design.

 $V_{GS} = 0 \text{ V}, I_S = 1.3 \text{ A} \text{ (Note 2)}$ $V_{GS} = 0 \text{ V}, I_S = -1.3 \text{ A} \text{ (Note 2)}$

Voltage

a) 78°C/W when mounted on a 0.5 in² pad of 2 oz copper

Parameter

Drain-Source Diode Forward

b) 125°C/W when mounted on a .02 in² pad of 2 oz copper

Q1

Q2

c) 135°C/W when mounted on a minimum pad.

Type | Min | Typ | Max | Units

0.8

-0.8

1.2

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width < $300\mu s$, Duty Cycle < 2.0%

Typical Characteristics: Q2

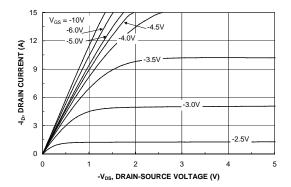


Figure 1. On-Region Characteristics.

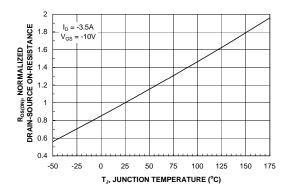


Figure 3. On-Resistance Variation with Temperature.

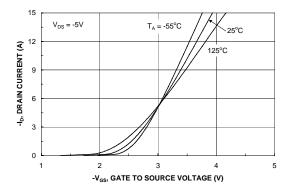


Figure 5. Transfer Characteristics.

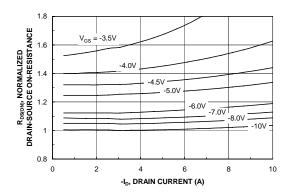


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

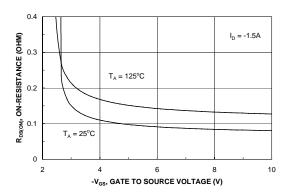


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

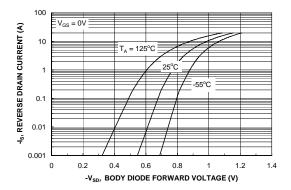
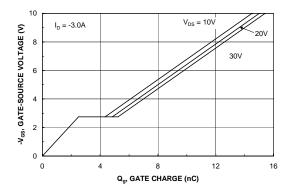



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

f = 1 MHz V_{GS} = 0 V

Typical Characteristics: Q2

-V_{DS}, DRAIN TO SOURCE VOLTAGE (V)

1200

1000

800 600 400

CAPACITANCE (pF)

Figure 7. Gate Charge Characteristics.

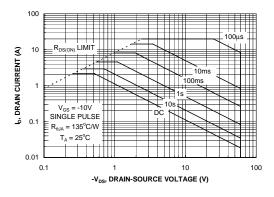


Figure 8. Capacitance Characteristics.

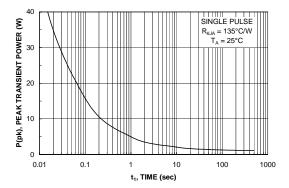


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

Typical Characteristics: Q1

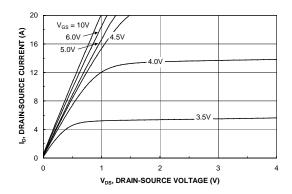


Figure 11. On-Region Characteristics.

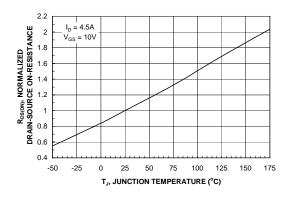


Figure 13. On-Resistance Variation with Temperature.

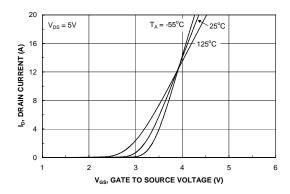


Figure 15. Transfer Characteristics.

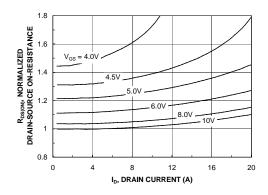


Figure 12. On-Resistance Variation with Drain Current and Gate Voltage.

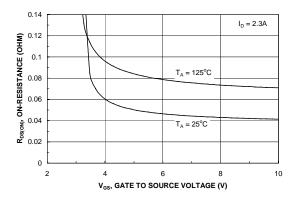


Figure 14. On-Resistance Variation with Gate-to-Source Voltage.

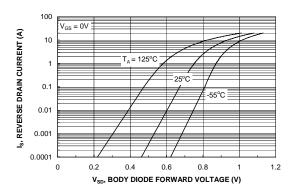
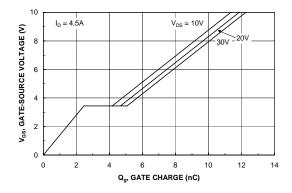



Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: Q1

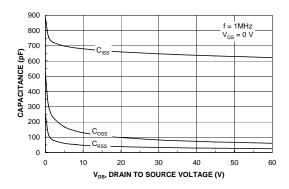
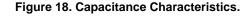
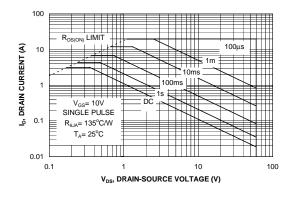




Figure 17. Gate Charge Characteristics.

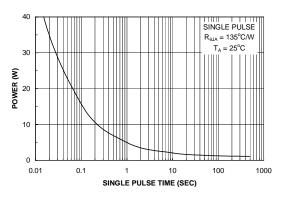


Figure 19. Maximum Safe Operating Area.

Figure 20. Single Pulse Maximum Power Dissipation.

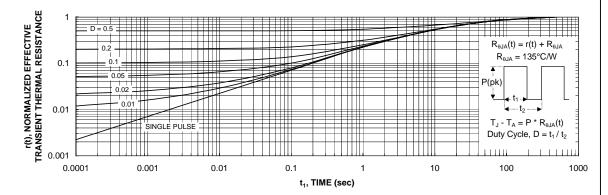


Figure 21. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ AttitudeEngine™ FRFET®

Global Power ResourceSM Awinda[®] AX-CAP®* GreenBridge™

BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™

CorePLUS™ Gmax™ CorePOWER™ $\mathsf{GTO}^{\mathsf{TM}}$ CROSSVOLT™ IntelliMAX™ CTL™ ISOPLANAR™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™ Dual Cool™ MegaBuck™ EcoSPARK® MIČROCOUPLER™ EfficientMax™ MicroFET™

ESBC™ MicroPak™ **-**® MicroPak2™ MillerDrive™ Fairchild® MotionMax™

Fairchild Semiconductor® MotionGrid® FACT Quiet Series™ MTi[®] FACT[®] MTx® FastvCore™ MVN® FETBench™ mWSaver® FPS™ OptoHiT™

OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXSTI

Programmable Active Droop™

OFFT QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

SYSTEM SYSTEM

TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™

TRUECURRENT®* uSerDes™

UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™

XSTM. Xsens™ 仙童™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR <u>AIRCHILDSEMI.COM.</u> FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms							
Datasheet Identification	Product Status	Definition					
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.					
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.					
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.					
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.					

Rev 176

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

FDS4559

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9