

PRELIMINARY DATA SHEET

SKY13270-92LF: GaAs SPDT Switch 100 MHz-2.5 GHz

Features

• Broadband: 100 MHz-2.5 GHz

• Very low insertion loss: 0.35 dB typical @ 900 MHz

• High isolation: 24 dB typical @ 900 MHz

• P_{0.1 dB}: 37 dBm typical @ 3 V

• Low current consumption: <100 μA @ 3 V

• Miniature SC-70 6-lead package

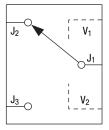
 Available lead (Pb)-free and RoHS-compliant MSL-1 @ 260 °C per JEDEC J-STD-020

Description

The SKY13270-92LF is a PHEMT GaAs FET IC high-linearity SPDT switch. This wideband switch has been designed for use from 100 MHz to 2.5 GHz, where extremely high linearity, low control voltage, high isolation, low insertion loss, and ultraminiature package size are required. It can be controlled with positive, negative, or a combination of both voltages. The RF signal paths within the SKY13270-92 are fully bilateral.

Some standard implementations include T/R switching and diversity switching over 3 W. The SKY13270-92LF switch can be used in many analog and digital wireless communication systems including cellular, GSM and UMTS applications.

Switching is controlled via two control voltage inputs. Depending upon the voltage level applied to the control voltage pins, the common RF port (J_1) is connected to one of two RF ports $(J_2$ or $J_3)$ via a low insertion loss path, while the path between J_1 and the other RF port is in its isolation state. When the control voltages are toggled, the states between J_1 and J_2 , as well as J_1 and J_3 , are also toggled.


This part is available in a lead (Pb)-free, 6-lead SC-70 package which is RoHS-compliant.

An evaluation board is available upon request.

Skyworks offers lead (Pb)-free, RoHS (Restriction of Hazardous Substances)-compliant packaging.

Functional Block Diagram

Electrical Specifications

V_{CTL} = 0 V/3 V, T = 25 °C, P_{INPUT} = 0 dBm, Z_0 = 50 Ω , unless otherwise noted

Parameter	Frequency	Min.	Тур.	Max.	Unit
Insertion loss	0.1-0.5 GHz		0.30	0.4	dB
	0.5–1.0 GHz		0.35	0.5	dB
	1.0–2.0 GHz		0.45	0.6	dB
	2.0–2.5 GHz		0.55	0.7	dB
Isolation	0.1-0.5 GHz	28	30		dB
	0.5–1.0 GHz	22	24		dB
	1.0-2.0 GHz	17	19		dB
	2.0–2.5 GHz	15	17		dB
VSWR	0.1–1.0 GHz		1.2:1		
	1.0–2.5 GHz		1.3:1		

Operating Characteristics

V_{CTL} = 0 V/3 V, T = 25 °C, P_{INPUT} = 0 dBm, Z_0 = 50 Ω , unless otherwise noted

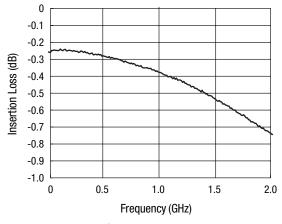
Parameter	Condition	Frequency	Min.	Тур.	Max.	Unit
Switching characteristics						
Rise, fall	0/90% or 90/10% RF			60		ns
On, off	50% CTL to 90/10% RF			100		ns
Video feedthru	$T_{RISE} = 1 \text{ ns, BW} = 500 \text{ MHz}$			50		mV
Input power for -0.1 dB compression		900 MHz		37		dBm
Second, third harmonics	P _{IN} = 34.5 dBm, f _{IN} = 900 MHz			-65		dBc
Thermal resistance				25		°C/W
Control voltages	V _{LOW} = 0 @ 20 μA max. V _{HIGH} = 2.5 V @ 100 μA max. to 5 V @ 200 μA max.					

Absolute Maximum Ratings

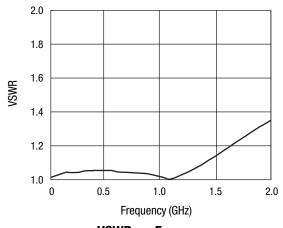
Characteristic	Value
Control voltage range	$-0.2 \le V_C \le 8 \text{ V}$
RF input power @ 0/5 V	6 W, f > 900 MHz
Operating temperature	-40 °C to +85 °C
Storage temperature	-65 °C to +150 °C

Performance is guaranteed only under the conditions listed in the specifications table and is not guaranteed under the full range(s) described by the Absolute Maximum specifications. Exceeding any of the absolute maximum/minimum specifications may result in permanent damage to the device and will void the warranty.

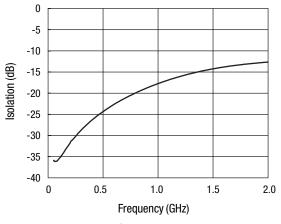
CAUTION: Although this device is designed to be as robust as possible, ESD (Electrostatic Discharge) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions must be employed at all times.

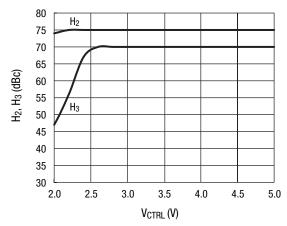

Truth Table

V ₁	V ₂	J ₁ -J ₂	J ₁ -J ₃	
V_{LOW}	V_{HIGH}	Isolation	Insertion loss	
V _{HIGH}	V_{LOW}	Insertion loss	Isolation	

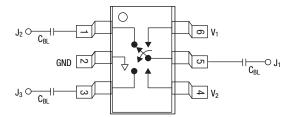

 $2.5~\text{V} \leq \text{V}_{\text{HIGH}} \leq 5~\text{V},~0 \leq \text{V}_{\text{LOW}} \leq 0.2~\text{V}.$ All other conditions not recommended.

Typical Performance Data

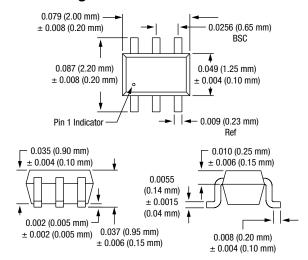

T = 25 °C, Z_0 = 50 Ω , unless otherwise noted


Insertion Loss vs. Frequency

VSWR vs. Frequency



Isolation vs. Frequency


Second and Third Harmonics vs. Control Voltage $f_{IN} = 900 \text{ MHz}, P_{IN} = 34.5 \text{ dBm}, GSM Signal}$

Pin Out

DC blocking capacitors (C_{BL}) must be supplied externally. $C_{BL}=100$ pF for operating frequency >500 MHz.

SC-70 Package Outline

Pin Descriptions

Pin Number	Pin Name	Description	
1	J ₂	RF Input/Output – RF input/output port which is either connected to J_1 via a low insertion loss path or isolated from J_1 , according to the logic voltage levels applied to V_1 and V_2	
2	GND	Equipotential Point – Internal circuit common, which must be connected to the pcb ground or common via the lowest possible impedance	
3	J ₃	RF Input/Output – RF input/output port which is either connected to J_1 via a low insertion loss path or isolated from J_1 , according to the logic voltage levels applied to V_1 and V_2	
4	V ₂	Control Voltage 2 – Control voltage input #2. The logic voltage level applied to this pin, along with the voltage level applied to V_1 (pin 6), determines the states of the RF paths between J_1-J_2 and J_1-J_3	
5	J ₁	RF Common Input/Output – RF common input/output port which is either connected to J_2 or to J_3 via a low insertion loss and isolated from the other RF port, according to the logic voltage levels applied to V_1 and V_2	
6	V ₁	Control Voltage 1 – Control voltage input #1. The logic voltage level applied to this pin, along with the voltage level applied to V_2 (pin 4), determines the states of the RF paths between J_1-J_2 and J_1-J_3	

Recommended Solder Reflow Profiles

Refer to the "<u>Recommended Solder Reflow Profile</u>" Application Note.

Tape and Reel Information

Refer to the "<u>Discrete Devices and IC Switch/Attenuators</u> <u>Tape and Reel Package Orientation</u>" Application Note.

Copyright © 2002, 2003, 2004, 2005, Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9