HEDS-974x Series

For 180, 300, 360 LPI Small Optical Encoder Modules

Data Sheet

Description

The HEDS-974x series is a high performance, low cost, optical incremental encoder module. When operated in conjunction with codestrip, this module detects linear position. The module consists of a lensed LED source and a detector IC enclosed in a small C-shaped plastic package. Due to a highly collimated light source and a unique photodetector array, the module is extremely tolerant to mounting misalignment.

The two-channel digital outputs and 5 V supply input are accessed through four solder-plated leads located on 2.54 mm (0.1 inch) centers.

Theory of Operation

The HEDS-974x is a C-shaped emitter/detector module. Coupled with a codewheel, it translates rotary motion into a two-channel digital output. Coupled with a codestrip, it translates linear motion into digital outputs.

As seen in the block diagram, the module contains a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single lens located directly over the LED. Opposite the emitter is the integrated detector circuit.

This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.

The codestrip moves between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codestrip. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the count density of the codestrip. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are fed through the signal processing circuitry. Two comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with channel B (90 degrees out of phase).

Features

- Small size
- Multiple mounting options
- Wide resolution range
- Linear options available
- No signal adjustment required
- Insensitive to radial and axial play
- -40° C to +85° C operating temperature
- High resolution version of the HEDS-970x
- Two-channel quadrature output
- TTL or 5.0 V CMOS compatible
- Single 5 V supply
- Wave solderable
- Integrated 2.5 KΩ pullup on outputs

Applications

The HEDS-974x provides sophisticated motion detection at a low cost, making close-loop control very cost-competitive! Typical applications include printers, plotters, copiers, and office automation equipment.

Note: Agilent Technologies encoders are not recommended for use in safety critical applications. Eg. ABS braking systems, power steering, life support systems and critical care medical equipment. Please contact sales representative if more clarification is needed.

ESD WARNING: Normal precautions should be taken to avoid static discharge.

Definitions

Count (N) = the number of bar and window pairs or Counts Per Revolution (CPR) of the codewheel, or the number of Lines Per Inch (LPI) of the codestrip.

1 Shaft Rotation = 360 mechanical degrees

= N cycles

1 Cycle (c) = 360 electrical degrees (°e) = 1 bar and window pair

Pulse Width (P): The number of electrical degrees that an output is high during one cycle. This value is nominally $180^{\circ}e$ or $\frac{1}{2}$ cycle.

Pulse Width Error (ΔP): The deviation, in electrical degrees, of the pulse width from its ideal value of 180°e.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are four states per cycle, each nominally 90°e.

State Width Error (Δ **S**): The deviation, in electrical degrees, of each state width from its ideal value of 90°e.

Phase (ϕ **):** The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B.

This value is nominally 90°e for quadrature output.

Phase Error ($\Delta \phi$): The deviation of the phase from its ideal value of 90°e.

Direction of Rotation: When the codewheel rotates counter-clockwise, as viewed looking down on the module (so the marking is visible), channel A will lead channel B. If the codewheel rotates in the opposite direction, channel B will lead channel A.

Optical Radius (R_{OP}): The distance from the codewheel's center of rotation to the optical center (OC) of the encoder module.

Angular Misalignment Error (E_A): Angular misalignment of the sensor in relation to the tangential direction. This applies for both rotary and linear motion.

Mounting Position (R_M): Distance from motor shaft center of rotation to center of alignment tab receiving hole.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	Ts	-40	85	°C	
Operating Temperature	T _A	-40	85	°C	
Supply Voltage	V _{CC}	-0.5	7	V	
Output Voltage	Vo	-0.5	V _{CC}	V	
Output Current per Channel	Io	-1.0	5	mA	
Soldering Temperature			260	°C	t ≤ 5 sec.

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Temperature	Т	-40		85	°C	
Supply Voltage	V _{CC}	4.5	5.0	5.5	V	Ripple < 100 mVp-p. Recommended one bypass capacitor (1 μ F) between V _{CC} and GND less than 15 cm from the encoder.
Load Capacitance	CL			100	pF	
Pullup Resistor	RL		none			Recommended no pullup. Device has integrated 2.5 k Ω on outputs.
Count Frequency				40	kHz	(Velocity (rpm) x N) / 60
Angular Misalignment	E _A	-2.0	0	+2.0	deg.	Mounting considerations.

Electrical Characteristics over Recommended Operating Range, Typical at $T_A = 25^{\circ}$ C

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Supply Current	Icc	12	21	40	mA	
High Level Output Voltage	V _{OH}	2.4			V	I _{OH} = -200 μA
Low Level Output Voltage	V _{OL}			0.4	V	I _{OL} = 3.2 mA
Rise Time	t _r		70		ns	C _L = 25 pF
Fall Time	t _f		45		ns	$R_L = (NO pullup)$

Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances. These characteristics do not include codewheel/codestrip contribution. The Typical Values are averages over the full rotation of the codewheel.

Parameter	Symbol	Typical	Maximum	Units	
Pulse Width Error	ΔΡ	5	40	°e	
Logic State Width Error	ΔS	3	40	°e	
Phase Error	$\Delta \phi$	2	15	°e	

Recommended Codewheel and Codestrip Characteristics

Parameter	Symbol	Min.	Max.	Units	Notes
Window/Bar Ratio	Ww/Wb	0.7	1.4		
Center of Post to Inside Edge of Window	W1	1.04 (0.041)		mm (inch)	
Center of Post to Outside Edge of Window	W2	0.76 (0.030)		mm (inch)	
Center of Post to Inside Edge of Codestrip	L		3.60 (0.142)	mm (inch)	

Mounting Considerations

For linear motion, angular misalignment, E^A , must be $\leq \pm 2$ degrees to achieve Encoding Characteristics.

All dimensions for mounting the module and codestrip should be measured with respect to the two mounting posts, shown above. Recommended Screw Size: M2.5 x 0.45 or 2-56

Recommended Wave Solder Conditions

Flux – RMA Water Soluble (per MIL-F-14256D)

Process Parameters

- 1. Flux
- 2. Pre-heat 60 seconds total Nominal preheat temp : 90° C Min : 85° C Max : 110° C
- 3. Solder Pot Zone Nominal dip in time : 2.5 - 4.5 seconds Min : 2.5 seconds Max : 5 seconds PCB top side : 140 - 160° C PCB bottom side : 240 - 260° C
- 4. Wave Solder 255° C, 1.2 meters/minute line speed
- 5. Hot Water Wash 1st : 30° C 45 seconds 2nd : 70° C 90 seconds
- 6. Rinse 1st : 23° C 45 seconds 2nd : 23° C 45 seconds
- 7. Dry

1st : 80° C 105 seconds 2nd : 95° C 105 seconds

Ordering Information

		50	51	52	53	54	55
HEDS-9740	Q	*					
	2	*					
	1	*					
HEDS-9741	Q						
	2	*					
	1						

Package Dimensions

Mounting Option #50

LEAD THICKNESS = 0.25 mm LEAD PITCH = 2.54 mm

Note: If not specified, tolerances are xx. \pm 0.7, xx.x \pm 0.3, xx.xx \pm 0.07 mm.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. Obsoletes 5988-8042EN AV02-3654EN - June 21, 2012

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9