

Data sheet acquired from Harris Semiconductor SCHS079C – Revised October 2003

RECOMMENDED FOR

CD4522B Types

Advance Information/ **Preliminary Data**

CMOS Programmable BCD Divide-by-"N" Counter

Features:

- Internally synchronous for high internal and external speeds.
- Logic edge-clocked design increments on positive Clock transition or on negative Clock Inhibit transition.
- 100% tested for quiescent current at 20-V.
- 5-V, 10-V, and 15-V parametric ratings.
- High-Voltage Types (20-Volt Rating) Standard symmetrical output characteristics.
 - Maximum input current of 1 µA at 18 V over full package-temperature range: 100 nA at 18 V and 25° C.
 - Meets all requirements of JEDEC Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices."

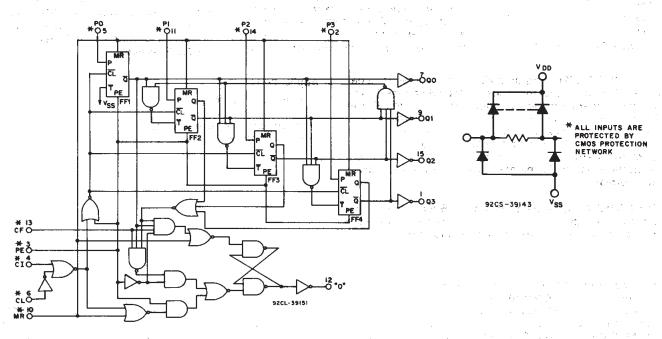
CD4522B programmable BCD counter has a decoded "0" state output for divide-by-N applications. In single stage operation the "0" output is tied to the Preset Enable input. The Cascade Feedback allows multiple stage divide-by-N operation without the need for external gating. A HIGH on the Clock Inhibit disables the pulse-counting function. A HIGH on the Master Reset asynchronously resets the divide-by-N operation. The output is presented in BCD format.

The CD4522B-series types are supplied in 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (M, M96, MT, and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

Applications:

- Frequency synthesizers
- Phase-locked loops
- Programmable down counters
- Programmable frequency dividers

MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE RANGE, (VDD)


Voltages referenced to VSS Terminal) -0.5V to +20V INPUT VOLTAGE RANGE, ALL INPUTS-0.5V to V_{DD} +0.5V POWER DISSIPATION PER PACKAGE (PD): **DEVICE DISSIPATION PER OUTPUT TRANSISTOR** OPERATING-TEMPERATURE RANGE (T_A)-55°C to +125°C STORAGE TEMPERATURE RANGE (Tstg)-65°C to +150°C LEAD TEMPERATURE (DURING SOLDERING):

TRUTH TABLES

CLOCK	CLOCK INHIBIT	PRESET ENABLE	MASTER RESET	ACTION
0	0	0	0	No Count
	0	0	0	Count Down
x	1	0	0	No Count
1 1	~	0	0	Count Down
Х	Х	1	0	Preset
X	Х	Х	1	Reset

X = Don't Care

		OUTPUTS									
Count	Qo	Q ₁	Q ₂	Q₃							
0	0	0	0	0							
1	1 1	0	0	- 0							
S 225	0	1	0	0							
3-2"	en fish	1	0	0							
4	0	0	1	0							
5	1 6	0	. 1	0							
6	0	1	- 1	0							
. 7	1 1	1	. 1	0							
8 🚉	0	0	0	1							
9	1 2	0 .	. 0	1							

a. Basic diagram.

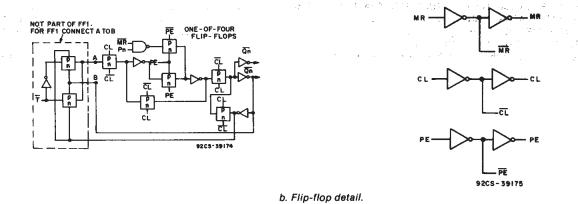


Fig. 1 - Logic diagram for the CD4522B.

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}\text{C}$, except as noted.

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTICS	V _{DD}	LIN	IITS	UNITS		
	(V) Min. Max.					
Supply-Voltage Range (For T _A = Full Package- Temperature Range		3	18	v		
Pulse Width: Clock, tw(cc)	5 10 15	250 100 80		ns		
Preset Enable, tw(cc)	5 10 15	250 100 80	_	ns		
Master Reset, tw(_{MR})	5 10 15	350 250 200	-	пѕ		
Clock Frequency, fc∟	5 10 15		1.5 3.0 4.0	MHz		
Clock Rise and Fall Time t _{rcL} , t _{rcL}	5 10 15	<u>+</u>	15 15 15	μs		
Preset Enable Set-up Time, t _{su}	5 10 15	0 0 0	_ _ _	ns		
Preset Enable Hold Time, t _h	5 10 15	75 25 20		ns		
Master Reset Removal Time, t _{rem}	5 10 15	130 50 30	-	ns		

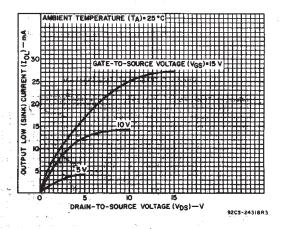


Fig. 2 — Typical output low (sink) current characteristics.

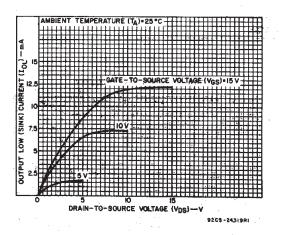


Fig. 3 — Minimum output low (sink) current characteristics.

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER- ISTIC	cc	NOITION	LIMITS AT INDICATED TEMPERATURES (°C)							UNITS	
	V _o	Vin	V _{DD}						+25		
	(V)	(V)	(V)	-55	-40	+85	+125	Min.	, Тур.	Max.	
Quiescent Device		0, 5	5	5	5	150	150		0.04	5	
Current, IDD Max.		0, 10	10	10	10	300	300		0.04	10]
		0, 15	15	20	20	600	600		0.04	20	μΑ
		0, 20	20	100	100	3000	3000	1	0.08	100	
Output Low	0.4	0, 5	5	0.64	0.61	0.42	0.36	0.51	1]
(Sink) Current	0.5	0, 10	10	1.6	1.5	1.1	0.9	1.3	2.6		
lo∟ Min.	1.5	0, 15	15	4.2	4	2.8	2.4	3.4	6.8		
Output High	4.6	0, 5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1		mA
(Source)	2.5	0, 5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2		
Current,	9.5	0, 10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6]
I _{он} Min.	13.5	0, 15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	_	
Output Voltage:	_	0, 5	5		0.	05			0	0.05]
Low-Level,	_	0, 10	10		0.	05			0	0.05	
V _{OL} Max.		0, 15	15		0.	05			0	0.05]
Output Voltage:	_	0, 5	5		4.	95		4.95	5		
High-Level		0, 10	10		9.	95		9.95	10	_	
V _{он} Min.		0, 15	15		. 14	.95		14.95	15		V
Input low	0.5, 4.5	-	5		1	.5		_	_	1.5] `
Voltage, V _{IL} Max.	1, 9	<u> </u>	10			3		_	_	3]
4.4	1.5, 13.5		15		4				_	4	
Input High	0.5, 4.5	_	5	3.5				3.5		_]
Voltage, V _{IH} Min.	1, 9		10			7		7]
	1.5, 13.5	_	15	11				11		_	
Input Current,	_	0, 18	18	±0.1	±0.1	±1	±1		±10 ⁻⁵	±0.1	μΑ

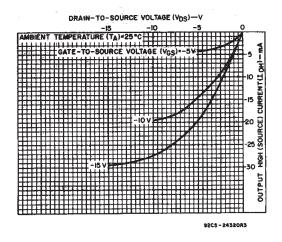


Fig. 4 — Typical output high (source) current characteristics.

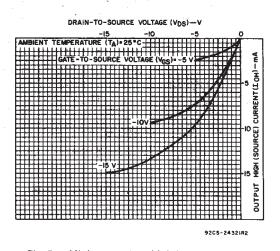


Fig. 5 — Minimum output high (source) current characteristics.

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A=25^{\circ}C$, Input t_r , $t_f=20$ ns, $C_I=50$ pF, R_L , =200 k Ω

0114040000000	TEST CO	NDITIONS		UNITS		
CHARACTERISTIC		V _{DD} (V)	Min.	Тур.	Max.	UNITS
Propagation Delay Time; t _{PHL} , t _{PLH:} Clock to "Q" outputs		5 10 15		550 225 160	1100 450 320	ns
Clock to "0" output		5 10 15	, _ _ _	420 160 110	710 270 190	ns
Clock inhibit to "Q" outputs		5 10 15	_ _ _	270 100 70	540 200 140	ns
Master reset to "Q" outputs		5 10 15	_ _ _ _	270 100 70	540 200 140	ns
Preset Enable Setup Time, t _{su}		5 10 15	_ _ _	0 0 0	0 0 0	ns
Preset Enable Hold Time, t _h		5 10 15	-	75 25 20	150 50 40	ns
Master Reset Removal Time, t _{rem}		5 10 15	<u>-</u>	130 50 30	260 100 60	ns
Transition Time, t _{THL} , t _{TLH}		5 10 15		100 50 40	200 100 80	ns
Minimum Pulse Width Clock, twicu	S. S	5 10 15		125 50 40	250 100 80	ns
Preset Enable, tw(PE)		5 10 15	_ _ _	125 50 40	250 100 80	ns
Master Reset, twime		5 10 15		175 125 100	350 250 200	ns
Max Clock Freq, f _{cL}		5 10 15	-	3 6 8	1.5 3.0 4.0	MHz
Max Clock or Clock Inhibit Rise & Fall Time, ttlh, tthL	k. Mg	5 10 15			15 15 15	us
Input Capacitance, CiN	Any	Input	_	5	7.5	pF

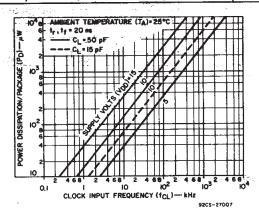
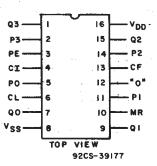



Fig. 6 — Typical dynamic power dissipation vs. frequency.

TERMINAL ASSIGNMENT

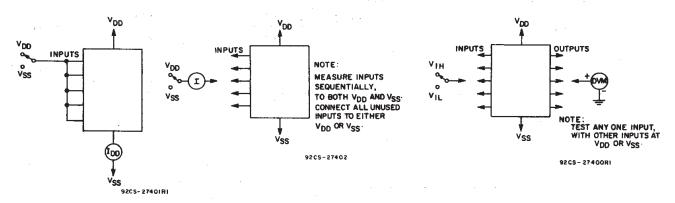
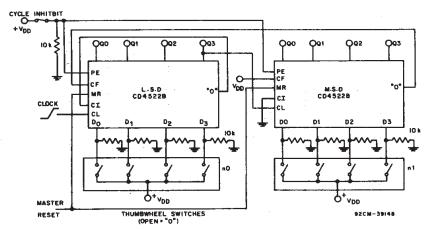
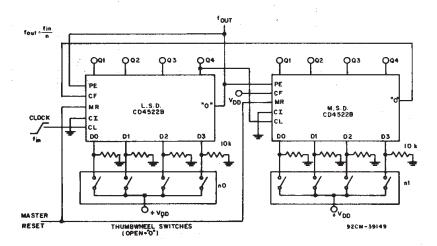



Fig. 7 — Quiescent device current test circuit.

Fig. 8 — Input current test circuit.


Fig. 9 — Input voltage test circuit.

APPLICATION CIRCUITS

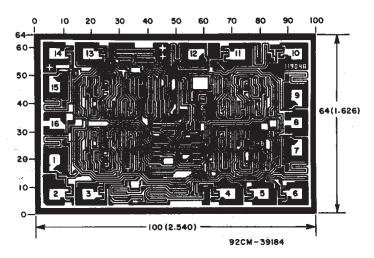

Fro	m	To	•	Donne of N
Stage	Pin	Stage	Pin	Range of N
LSD	"0"	Ali	PE	LSD < N < MSD
N	"0"	N-1	CF	LSD+1 <n<msd< td=""></n<msd<>
N	"0₃"	N+1	CL	LSD < N < MSD-1

Fig. 10 — 2-Stage Programmable Down Counter (One Cycle)

Fro	From)	Denne of N
Stage	Płn	Stage	Pin	Range of N
LSD	"0"	All	PE	LSD < N < MSD
N	"0"	N-1	CF	LSD + 1 < N < MSD
N.	"03"	N+1	CL	LSD < N < MSD-1

Fig. 11 — 2-Stage Programmable Frequency Divider

Dimensions and pad layout for CD4522BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

24-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
CD4522BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4522BE	Samples
CD4522BEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4522BE	Samples
CD4522BM	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4522BM	Samples
CD4522BME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4522BM	Samples
CD4522BMG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4522BM	Samples
CD4522BMT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4522BM	Samples
CD4522BMTE4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4522BM	Samples
CD4522BMTG4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4522BM	Samples
CD4522BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM522B	Samples
CD4522BPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM522B	Samples
CD4522BPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM522B	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

24-Jan-2013

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Only one of markings shown within the brackets will appear on the physical device.

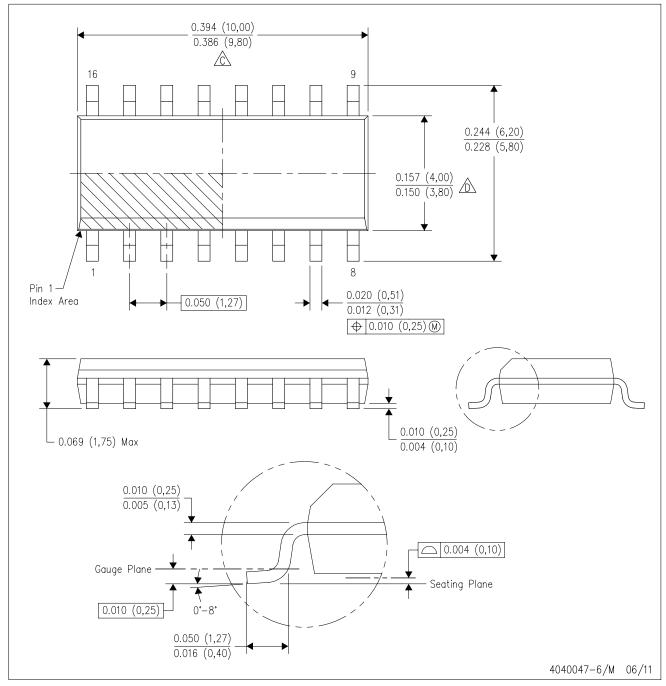
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

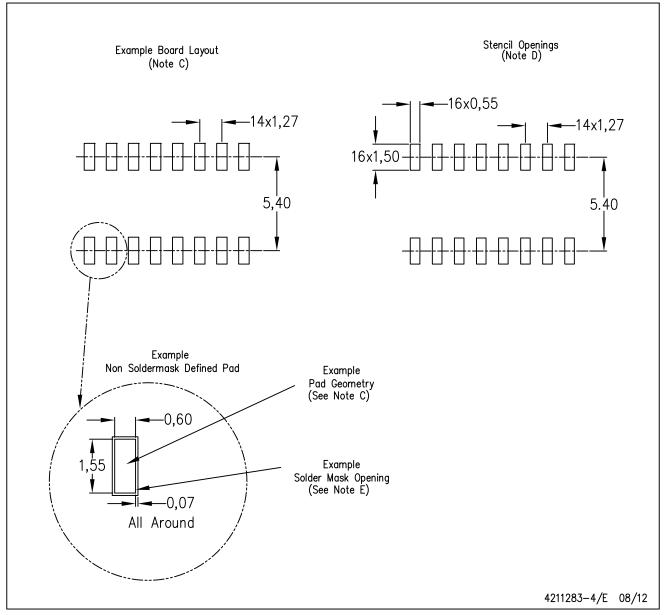
16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDS0-G16)

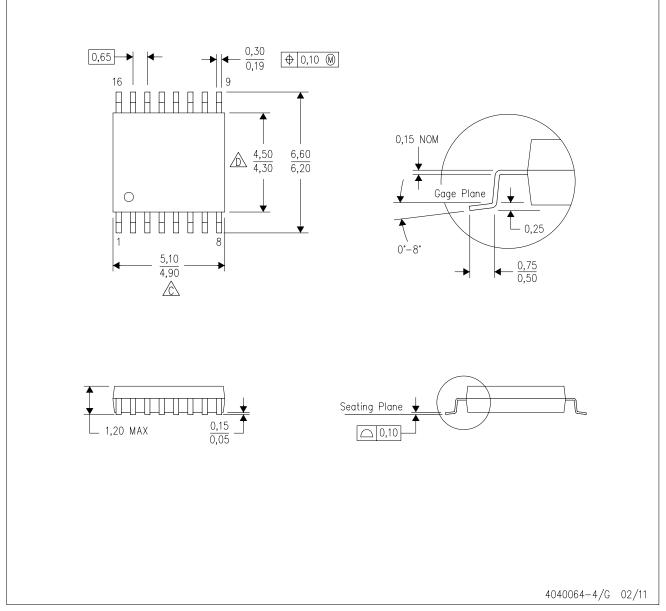
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

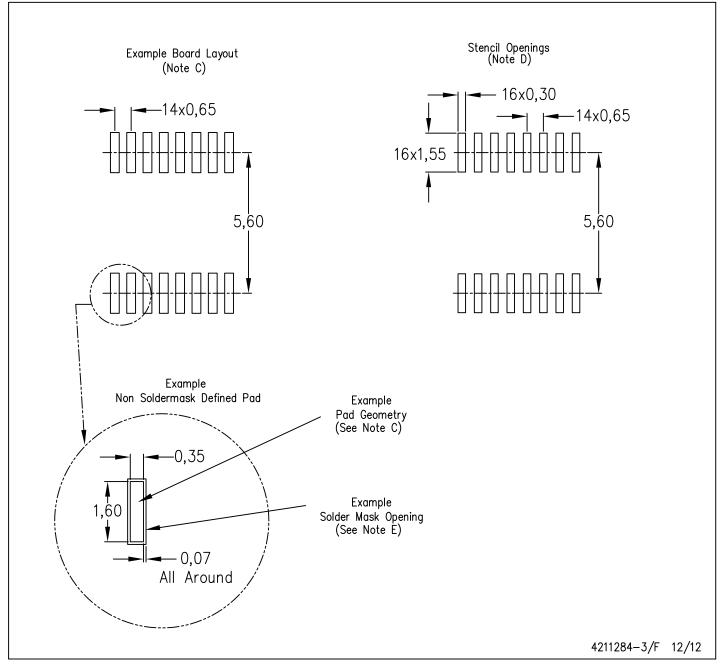
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9