74HC4017-Q100; 74HCT4017-Q100 Johnson decade counter with 10 decoded outputs Rev. 2 — 1 July 2020 **Product data sheet** ## 1. General description The 74HC4017-Q100; 74HCT4017-Q100 is a 5-stage Johnson decade counter with 10 decoded outputs (Q0 to Q9), an output from the most significant flip-flop ($\overline{\text{Q5}}$ -9), two clock inputs (CP0 and $\overline{\text{CP1}}$) and an overriding asynchronous master reset input (MR). The counter is advanced by either a LOW-to-HIGH transition at CP0 while $\overline{\text{CP1}}$ is LOW or a HIGH-to-LOW transition at $\overline{\text{CP1}}$ while CP0 is HIGH. When cascading counters, the $\overline{\text{Q5}}$ -9 output, which is LOW while the counter is in states 5, 6, 7, 8 and 9, can be used to drive the CP0 input of the next counter. A HIGH on MR resets the counter to zero (Q0 = $\overline{\text{Q5}}$ -9 = HIGH; Q1 to Q9 = LOW) independent of the clock inputs (CP0 and $\overline{\text{CP1}}$). Automatic code correction of the counter is provided by an internal circuit: following any illegal code the counter returns to a proper counting mode within 11 clock pulses. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}. This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications. ## 2. Features and benefits - Automotive product qualification in accordance with AEC-Q100 (Grade 1) - Specified from -40 °C to +85 °C and from -40 °C to +125 °C - Wide supply voltage range from 2.0 V to 6.0 V - CMOS low power dissipation - High noise immunity - · Latch-up performance exceeds 100 mA per JESD 78 Class II Level B - Complies with JEDEC standards: - JESD8C (2.7 V to 3.6 V) - JESD7A (2.0 V to 6.0 V) - Input levels: - For 74HC4017-Q100: CMOS level - For 74HCT4017-Q100: TTL level - ESD protection: - MIL-STD-883, method 3015 exceeds 2000 V - HBM JESD22-A114F exceeds 2000 V - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω) - Multiple package options - DHVQFN package with Side-Wettable Flanks enabling Automatic Optical Inspection (AOI) of solder joints ## 3. Ordering information **Table 1. Ordering information** | Type number | Package | | | | | | | | | |------------------|-------------------|----------|---|----------|--|--|--|--|--| | | Temperature range | Name | Description | Version | | | | | | | 74HC4017D-Q100 | -40 °C to +125 °C | SO16 | | | | | | | | | 74HCT4017D-Q100 | | | body width 3.9 mm | | | | | | | | 74HC4017PW-Q100 | -40 °C to +125 °C | TSSOP16 | plastic thin shrink small outline package; 16 leads; body width 4.4 mm | SOT403-1 | | | | | | | 74HC4017BQ-Q100 | -40 °C to +125 °C | DHVQFN16 | plastic dual in-line compatible thermal | SOT763-1 | | | | | | | 74HCT4017BQ-Q100 | | | enhanced very thin quad flat package; no leads;
16 terminals; body 2.5 × 3.5 × 0.85 mm | | | | | | | ## 4. Functional diagram ## 5. Pinning information ## 5.1. Pinning ## 5.2. Pin description Table 2. Pin description | Symbol | Pin | Description | |--|--------------------------------|--| | Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9 | 3, 2, 4, 7, 10, 1, 5, 6, 9, 11 | decoded output | | GND | 8 | ground (0 V) | | Q5-9 | 12 | carry output (active LOW) | | CP1 | 13 | clock input (HIGH-to-LOW edge-triggered) | | CP0 | 14 | clock input (LOW-to-HIGH edge-triggered) | | MR | 15 | master reset input (active HIGH) | | V _{CC} | 16 | supply voltage | ## 6. Functional description #### Table 3. Function table $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level; \ X = don't \ care; \ \uparrow = LOW-to-HIGH \ transition; \ \downarrow = HIGH-to-LOW \ transition;$ | MR | CP0 | CP1 | Operation | |----|----------|----------|--| | Н | Х | Х | $Q0 = \overline{Q}5-9 = HIGH; Q1 \text{ to } Q9 = LOW$ | | L | Н | ↓ | counter advances | | L | ↑ | L | counter advances | | L | L | Х | no change | | L | Х | Н | no change | | L | Н | 1 | no change | | L | ↓ | L | no change | ## 7. Limiting values #### **Table 4. Limiting values** In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | Min | Max | Unit | |------------------|-------------------------|---|-----|------|------|------| | V _{CC} | supply voltage | | | -0.5 | +7 | V | | I _{IK} | input clamping current | $V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$ | [1] | - | ±20 | mA | | I _{OK} | output clamping current | V_{O} < -0.5 V or V_{O} > V_{CC} + 0.5 V | [1] | - | ±20 | mA | | Io | output current | $-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$ | | - | ±25 | mA | | I _{CC} | supply current | | | - | 50 | mA | | I _{GND} | ground current | | | -50 | - | mA | | T _{stg} | storage temperature | | | -65 | +150 | °C | | P _{tot} | total power dissipation | T _{amb} = -40 °C to +125 °C | [2] | - | 500 | mW | ^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed. For SOT403-1 (TSSOP16) package: Ptot derates linearly with 8.5 mW/K above 91 °C. For SOT763-1 (DHVQFN16) package: Ptot derates linearly with 11.2 mW/K above 106 °C. ## 8. Recommended operating conditions Table 5. Recommended operating conditions | Symbol | Parameter | Conditions | 74HC4017-Q100 | | | 74H0 | Q100 | Unit | | |------------------|-----------------------|-------------------------|---------------|------|-----------------|------|------|-----------------|------| | | | | Min | Тур | Max | Min | Тур | Max | | | V_{CC} | supply voltage | | 2.0 | 5.0 | 6.0 | 4.5 | 5.0 | 5.5 | V | | VI | input voltage | | 0 | - | V _{CC} | 0 | - | V _{CC} | V | | Vo | output voltage | | 0 | - | V _{CC} | 0 | - | V _{CC} | V | | Δt/ΔV | input transition rise | V _{CC} = 2.0 V | - | - | 625 | - | - | - | ns/V | | | and fall rate | V _{CC} = 4.5 V | - | 1.67 | 139 | - | 1.67 | 139 | ns/V | | | | V _{CC} = 6.0 V | - | - | 83 | - | - | - | ns/V | | T _{amb} | ambient temperature | | -40 | +25 | +125 | -40 | +25 | +125 | °C | ^[2] For SOT109-1 (SO16) package: P_{tot} derates linearly with 12.4 mW/K above 110 °C. ## 9. Static characteristics #### **Table 6. Static characteristics** At recommended operating conditions; voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | 25 °C | | -40 °C to | o +85 °C | -40 °C to | +125 °C | Unit | |-----------------|--------------------------|---|----------|-------|------|-----------|----------|-----------|---------|------| | | | | Min | Тур | Max | Min | Max | Min | Max | | | 74HC40 | 17-Q100 | | <u>'</u> | | | | | | | | | V _{IH} | HIGH-level | V _{CC} = 2.0 V | 1.5 | 1.2 | - | 1.5 | - | 1.5 | - | V | | | input voltage | V _{CC} = 4.5 V | 3.15 | 2.4 | - | 3.15 | - | 3.15 | - | V | | | | V _{CC} = 6.0 V | 4.2 | 3.2 | - | 4.2 | - | 4.2 | - | V | | V _{IL} | LOW-level | V _{CC} = 2.0 V | - | 0.8 | 0.5 | - | 0.5 | - | 0.5 | V | | | input voltage | V _{CC} = 4.5 V | - | 2.1 | 1.35 | - | 1.35 | - | 1.35 | V | | | | V _{CC} = 6.0 V | - | 2.8 | 1.8 | - | 1.8 | - | 1.8 | V | | V _{OH} | HIGH-level | V _I = V _{IH} or V _{IL} | | | | | | | | | | | output voltage | I _O = -20 μA; V _{CC} = 2.0 V | 1.9 | 2.0 | - | 1.9 | - | 1.9 | - | V | | | | I _O = -20 μA; V _{CC} = 4.5 V | 4.4 | 4.5 | - | 4.4 | - | 4.4 | - | V | | | | I _O = -20 μA; V _{CC} = 6.0 V | 5.9 | 6.0 | - | 5.9 | - | 5.9 | - | V | | | | I _O = -4.0 mA; V _{CC} = 4.5 V | 3.98 | 4.32 | - | 3.84 | - | 3.7 | - | V | | | | I_{O} = -5.2 mA; V_{CC} = 6.0 V | 5.48 | 5.81 | - | 5.34 | - | 5.2 | - | V | | V_{OL} | LOW-level | V _I = V _{IH} or V _{IL} | | | | | | | | | | | output voltage | I _O = 20 μA; V _{CC} = 2.0 V | - | 0 | 0.1 | - | 0.1 | - | 0.1 | V | | | | I _O = 20 μA; V _{CC} = 4.5 V | - | 0 | 0.1 | - | 0.1 | - | 0.1 | V | | | | I _O = 20 μA; V _{CC} = 6.0 V | - | 0 | 0.1 | - | 0.1 | - | 0.1 | V | | | | I _O = 4.0 mA; V _{CC} = 4.5 V | - | 0.15 | 0.26 | - | 0.33 | - | 0.4 | V | | | | I _O = 5.2 mA; V _{CC} = 6.0 V | - | 0.16 | 0.26 | - | 0.33 | - | 0.4 | V | | I _I | input leakage
current | $V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$ | - | - | ±0.1 | - | ±1.0 | - | ±1.0 | μΑ | | I _{CC} | supply current | $V_I = V_{CC}$ or GND; $I_O = 0$ A;
$V_{CC} = 6.0 \text{ V}$ | - | - | 8.0 | - | 80 | - | 160 | μΑ | | Cı | input
capacitance | | - | 3.5 | - | - | - | - | - | pF | | Symbol | Parameter | Conditions | | 25 °C | | -40 °C t | o +85 °C | -40 °C to +125 °C | | Unit | |------------------|---------------------------|---|------|-------|------|----------|----------|-------------------|----------|------| | | | | Min | Тур | Max | Min | Max | Min | Max | | | 74HCT4 | 017-Q100 | | | | | | ' | | <u>'</u> | | | V _{IH} | HIGH-level input voltage | V _{CC} = 4.5 V to 5.5 V | 2.0 | 1.6 | - | 2.0 | - | 2.0 | - | V | | V _{IL} | LOW-level input voltage | V _{CC} = 4.5 V to 5.5 V | - | 1.2 | 0.8 | - | 0.8 | - | 0.8 | V | | V _{OH} | HIGH-level | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$ | | | | | | | | | | | output voltage | Ι _Ο = -20 μΑ | 4.4 | 4.5 | - | 4.4 | - | 4.4 | - | V | | | | I _O = -4 mA | 3.98 | 4.32 | - | 3.84 | - | 3.7 | - | V | | - OL | LOW-level | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$ | | | | | | | | | | | output voltage | Ι _Ο = 20 μΑ | - | 0 | 0.1 | - | 0.1 | - | 0.1 | V | | | | I _O = 4.0 mA | - | 0.15 | 0.26 | - | 0.33 | - | 0.4 | V | | I _I | input leakage
current | $V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$ | - | - | ±0.1 | - | ±1.0 | - | ±1.0 | μΑ | | I _{CC} | supply current | $V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$; $I_O = 0 \text{ A}$ | - | - | 8.0 | - | 80 | - | 160 | μΑ | | ΔI _{CC} | additional supply current | per input pin; $V_I = V_{CC} - 2.1 \text{ V}$;
other inputs at V_{CC} or GND;
$V_{CC} = 4.5 \text{ V}$ to 5.5 V; $I_O = 0 \text{ A}$ | | | | | | | | | | | | CP0 input | - | 25 | 90 | - | 113 | - | 123 | μΑ | | | | CP1 input | - | 40 | 144 | - | 180 | - | 196 | μΑ | | | | MR input | - | 50 | 180 | - | 225 | - | 245 | μΑ | | Cı | input
capacitance | | - | 3.5 | - | - | - | - | - | pF | ## 10. Dynamic characteristics #### **Table 7. Dynamic characteristics** $GND = 0 \ V; t_r = t_f = 6 \ ns; \ C_L = 50 \ pF; \ see \ Fig. 11.$ | Symbol | Parameter | Conditions | | 25 °C | | -40 °C to | o +85 °C | -40 °C to | +125 °C | Unit | |------------------|-------------------|--|-----|-------|-----|-----------|----------|-----------|---------|------| | | | | Min | Тур | Max | Min | Max | Min | Max | 1 | | 74HC40 | 17-Q100 | | | | | | | 1 | - | | | t _{pd} | propagation delay | CP0 to Qn; CP0 to $\overline{Q}5-9$; [1] see Fig. 8 | | | | | | | | | | | | V _{CC} = 2.0 V | - | 63 | 230 | - | 290 | - | 345 | ns | | | | V _{CC} = 4.5 V | - | 23 | 46 | - | 58 | - | 69 | ns | | | | V _{CC} = 5.0 V; C _L = 15 pF | - | 20 | - | - | - | - | - | ns | | | | V _{CC} = 6.0 V | - | 18 | 39 | - | 49 | - | 59 | ns | | | | CP1 to Qn; CP1 to Q5-9; see Fig. 8 | | | | | | | | | | | | V _{CC} = 2.0 V | - | 61 | 250 | - | 315 | - | 375 | ns | | | | V _{CC} = 4.5 V | - | 22 | 50 | - | 63 | - | 75 | ns | | | | $V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$ | - | 20 | - | - | - | - | - | ns | | | | V _{CC} = 6.0 V | - | 18 | 43 | - | 54 | - | 64 | ns | | t _{PHL} | | MR to Qn; see Fig. 9 | | | | | | | | | | | propagation delay | V _{CC} = 2.0 V | - | 52 | 230 | - | 290 | - | 345 | ns | | | uelay | V _{CC} = 4.5 V | - | 19 | 46 | - | 58 | - | 69 | ns | | | | V _{CC} = 6.0 V | - | 15 | 39 | - | 49 | - | 59 | ns | | t _{PLH} | | MR to \overline{Q} 5-9, Q0; see Fig. 9 | | | | | | | | | | | propagation | V _{CC} = 2.0 V | - | 55 | 230 | - | 290 | - | 345 | ns | | | delay | V _{CC} = 4.5 V | - | 20 | 46 | - | 58 | - | 69 | ns | | | | V _{CC} = 6.0 V | - | 16 | 39 | - | 49 | - | 59 | ns | | t _t | transition | see <u>Fig. 8</u> [2] | | | | | | | | | | | time | V _{CC} = 2.0 V | - | 19 | 75 | - | 95 | - | 110 | ns | | | | V _{CC} = 4.5 V | - | 7 | 15 | - | 19 | - | 22 | ns | | | | V _{CC} = 6.0 V | - | 6 | 13 | - | 16 | - | 19 | ns | | t _W | pulse width | CP0 and CP1 (HIGH or LOW); see Fig. 9 | | | | | | | | | | | | V _{CC} = 2.0 V | 80 | 17 | - | 100 | - | 120 | - | ns | | | | V _{CC} = 4.5 V | 16 | 6 | - | 20 | - | 24 | - | ns | | | | V _{CC} = 6.0 V | 14 | 5 | - | 17 | - | 20 | - | ns | | | | MR (HIGH); see Fig. 9 | | | | | | | | | | | | V _{CC} = 2.0 V | 80 | 19 | - | 100 | - | 120 | - | ns | | | | V _{CC} = 4.5 V | 16 | 7 | - | 20 | - | 24 | - | ns | | | | V _{CC} = 6.0 V | 14 | 6 | - | 17 | - | 20 | - | ns | | t _{su} | set-up time | CP1 to CP0; CP0 to CP1; see Fig. 10 | | | | | | | | | | | | V _{CC} = 2.0 V | 50 | -8 | - | 65 | - | 75 | - | ns | | | | V _{CC} = 4.5 V | 10 | -3 | - | 13 | - | 15 | - | ns | | | | V _{CC} = 6.0 V | 9 | -2 | - | 11 | - | 13 | - | ns | | Symbol | Parameter | Conditions | | 25 °C | | -40 °C to | o +85 °C | -40 °C to | +125 °C | Unit | |------------------|-------------------------------------|---|-----|-------|-----|-----------|----------|-----------|---------|------| | | | | Min | Тур | Max | Min | Max | Min | Max | | | t _h | hold time | CP1 to CP0; CP0 to CP1; see Fig. 10 | | | | | | | | | | | | V _{CC} = 2.0 V | 50 | 17 | - | 65 | - | 75 | - | ns | | | | V _{CC} = 4.5 V | 10 | 6 | - | 13 | - | 15 | - | ns | | | | V _{CC} = 6.0 V | 9 | 5 | - | 11 | - | 13 | - | ns | | t _{rec} | recovery time | MR to CP0 and
MR to CP1; see Fig. 9 | | | | | | | | | | | | V _{CC} = 2.0 V | 5 | -17 | - | 5 | - | 5 | - | ns | | | | V _{CC} = 4.5 V | 5 | -6 | - | 5 | - | 5 | - | ns | | | | V _{CC} = 6.0 V | 5 | -5 | - | 5 | - | 5 | - | ns | | f _{max} | maximum | CP0 or CP1; see Fig. 9 | | | | | | | | | | | frequency | V _{CC} = 2.0 V | 6.0 | 23 | - | 4.8 | - | 4.0 | - | MHz | | | | V _{CC} = 4.5 V | 30 | 70 | - | 24 | - | 20 | - | MHz | | | | V _{CC} = 5.0 V; C _L = 15 pF | - | 77 | - | - | - | - | - | MHz | | | | V _{CC} = 6.0 V | 25 | 83 | - | 28 | - | 24 | - | MHz | | C _{PD} | power
dissipation
capacitance | V_I = GND to V_{CC} ; V_{CC} = 5 V; [3] f_i = 1 MHz | - | 35 | - | - | - | - | - | pF | | 74HCT4 | 017-Q100 | <u> </u> | | | | | | | | | | t _{pd} | propagation delay | CP0 to Qn; CP0 to Q5-9; [1] see Fig. 8 | | | | | | | | | | | | V _{CC} = 4.5 V | - | 25 | 46 | - | 58 | - | 69 | ns | | | | V _{CC} = 5.0 V; C _L = 15 pF | _ | 21 | - | _ | _ | _ | - | ns | | | | CP1 to Qn; CP1 to Q5-9;
see Fig. 8 | | | | | | | | | | | | V _{CC} = 4.5 V | - | 25 | 50 | - | 63 | - | 75 | ns | | | | V _{CC} = 5.0 V; C _L = 15 pF | - | 21 | - | - | _ | _ | _ | ns | | t _{PHL} | HIGH to LOW | MR to Qn; see Fig. 9 | | | | | | | | | | 1112 | propagation delay | V _{CC} = 4.5 V | - | 22 | 46 | - | 58 | - | 69 | ns | | t _{PLH} | | MR to \(\overline{Q}\)5-9, Q0; see \(\overline{Fig. 9}\) | | | | | | | | | | | propagation delay | V _{CC} = 4.5 V | - | 20 | 46 | - | 58 | - | 69 | ns | | t _t | transition | see <u>Fig. 8</u> [2] | | | | | | | | | | | time | V _{CC} = 4.5 V | - | 7 | 15 | - | 19 | - | 22 | ns | | t _W | pulse width | CP0 and CP1 (HIGH or LOW); see Fig. 9 | | | | | | | | | | | | V _{CC} = 4.5 V | 16 | 7 | - | 20 | - | 24 | - | ns | | | | MR (HIGH); see Fig. 9 | | | | | | | | | | | | V _{CC} = 4.5 V | 16 | 4 | - | 20 | - | 24 | - | ns | | t _{su} | set-up time | CP1 to CP0; CP0 to CP1; see Fig. 10 | | | | | | | | | | | | V _{CC} = 4.5 V | 10 | -3 | - | 13 | - | 15 | - | ns | | t _h | hold time | CP1 to CP0; CP0 to CP1; see Fig. 10 | | | | | | | | | | | | V _{CC} = 4.5 V | 10 | 6 | _ | 13 | _ | 15 | _ | ns | | Symbol | Parameter | Conditions | | 25 °C | | | -40 °C to +85 °C | | -40 °C to +125 °C | | |------------------|-------------------------------------|---|-----|-------|-----|-----|------------------|-----|-------------------|-----| | | | | Min | Тур | Max | Min | Max | Min | Max | | | t _{rec} | recovery time | MR to CP0 and
MR to CP1; see <u>Fig. 9</u> | | | | | | | | | | | | V _{CC} = 4.5 V | 5 | -5 | - | 5 | - | 5 | - | ns | | f _{max} | maximum | CP0 or CP1; see Fig. 9 | | | | | | | | | | | frequency | V _{CC} = 4.5 V | 30 | 61 | - | 24 | - | 20 | - | MHz | | | | $V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$ | - | 67 | - | - | - | - | - | MHz | | C _{PD} | power
dissipation
capacitance | $V_I = GND \text{ to } V_{CC} - 1.5 \text{ V};$ [3] $V_{CC} = 5 \text{ V}; f_i = 1 \text{ MHz}$ | - | 36 | - | - | - | - | - | pF | - [1] t_{pd} is the same as t_{PHL} and t_{PLH} . - t_t is the same as t_{THL} and t_{TLH} . C_{PD} is used to determine the dynamic power dissipation (P_D in μW): $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz; f_o = output frequency in MHz; C_L = output load capacitance in pF; V_{CC} = supply voltage in V; N = number of inputs switching; $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$ ## 10.1. Waveforms and test circuit Measurement points are given in Table 8. V_{OL} and V_{OH} are typical voltage output levels that occur with the output load. Conditions: $\overline{\text{CP}}1$ = LOW while CP0 is triggered on a LOW-to-HIGH transition and CP0 = HIGH, while $\overline{\text{CP}}1$ is triggered on a HIGH-to-LOW transition. Waveforms showing the propagation delays for CP0, $\overline{\text{CP1}}$ to Qn, $\overline{\text{Q}}$ 5-9 outputs and the output transition Fig. 8. times Fig. 9. Waveforms showing the minimum pulse width for CP0, $\overline{\text{CP1}}$ and MR input; the maximum frequency for CP0 and $\overline{\text{CP1}}$ input; the recovery time for MR and the MR input to Qn and $\overline{\text{Q5-9}}$ output propagation delays **Table 8. Measurement points** | Туре | Input | Output | |----------------|-----------------------|-----------------------| | | V _M | V _M | | 74HC4017-Q100 | 0.5 x V _{CC} | 0.5 x V _{CC} | | 74HCT4017-Q100 | 1.3 V | 1.3 V | Test data is given in Table 9. Definitions test circuit: R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator. C_L = Load capacitance including jig and probe capacitance. R_{I} = Load resistance. S1 = Test selection switch. Fig. 11. Test circuit for measuring switching times Table 9. Test data | Туре | Input | | Load | | S1 position | | | |----------------|-----------------|---------------------------------|--------------|-------|-------------------------------------|-------------------------------------|--------------------| | | V _I | t _r , t _f | CL | R_L | t _{PHL} , t _{PLH} | t _{PZH} , t _{PHZ} | t_{PZL}, t_{PLZ} | | 74HC4017-Q100 | V _{CC} | 6 ns | 15 pF, 50 pF | 1 kΩ | open | GND | V _{CC} | | 74HCT4017-Q100 | 3 V | 6 ns | 15 pF, 50 pF | 1 kΩ | open | GND | V _{CC} | ## 11. Application information Some examples of applications for the 74HC4017-Q100; 74HCT4017-Q100 are: - Decade counter with decimal decoding - 1 out of n decoding counter (when cascaded) - · Sequential controller - Time Fig. 12 shows a technique for extending the number of decoded output states for the 74HC4017-Q100; 74HCT4017-Q100. Decoded outputs are sequential within each stage and from stage to stage, with no dead time (except propagation delay). **Remark:** It is essential not to enable the counter on $\overline{CP}1$ when CP0 is HIGH, or on CP0 when $\overline{CP}1$ is LOW, as this would cause an extra count. Fig. 13 shows an example of a divide-by 2 through divide-by 10 circuit using one 74HC4017-Q100; 74HCT4017-Q100. Since the 74HC4017-Q100; 74HCT4017-Q100 has an asynchronous reset, the output pulse widths are narrow (minimum expected pulse width is 6 ns). The output pulse widths can be enlarged by inserting an RC network at the MR input. ## 12. Package outline #### SO16: plastic small outline package; 16 leads; body width 3.9 mm SOT109-1 | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E ⁽¹⁾ | е | HE | L | Lp | Q | v | w | у | Z ⁽¹⁾ | θ | |--------|-----------|----------------|----------------|----------------|--------------|------------------|------------------|------------------|------|----------------|-------|----------------|----------------|------|------|-------|------------------|----| | mm | 1.75 | 0.25
0.10 | 1.45
1.25 | 0.25 | 0.49
0.36 | 0.25
0.19 | 10.0
9.8 | 4.0
3.8 | 1.27 | 6.2
5.8 | 1.05 | 1.0
0.4 | 0.7
0.6 | 0.25 | 0.25 | 0.1 | 0.7
0.3 | 8° | | inches | 0.069 | 0.010
0.004 | 0.057
0.049 | 0.01 | | 0.0100
0.0075 | 0.39
0.38 | 0.16
0.15 | 0.05 | 0.244
0.228 | 0.041 | 0.039
0.016 | 0.028
0.020 | 0.01 | 0.01 | 0.004 | 0.028
0.012 | 0° | 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | | |----------|--------|--------|----------|------------|------------|---------------------------------|--| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | | SOT109-1 | 076E07 | MS-012 | | | | 99-12-27
03-02-19 | | Fig. 14. Package outline SOT109-1 (SO16) **Product data sheet** TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm SOT403-1 #### Notes - 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. - 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | | |----------|-----|--------|----------|------------|------------|---------------------------------|--| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | | SOT403-1 | | MO-153 | | | | 99-12-27
03-02-18 | | Fig. 15. Package outline SOT403-1 (TSSOP16) DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1 Fig. 16. Package outline SOT763-1 (DHVQFN16) ## 13. Abbreviations #### **Table 10. Abbreviations** | Acronym | Description | |---------|---| | CMOS | Complementary Metal Oxide Semiconductor | | DUT | Device Under Test | | ESD | ElectroStatic Discharge | | НВМ | Human Body Model | | MIL | Military | | MM | Machine Model | | TTL | Transistor-Transistor Logic | ## 14. Revision history #### **Table 11. Revision history** | Document ID | Release date | Data sheet status | Change notice | Supersedes | |-----------------------|--|---|-------------------|-----------------------| | 74HC_HCT4017_Q100 v.2 | 20200701 | Product data sheet | - | 74HC_HCT4017_Q100 v.1 | | Modifications: | of Nexperia. • Legal texts have • Section 1 and S | e been adapted to the ne
ection 2 updated.
g values for P _{tot} total po | ew company name v | | | 74HC_HCT4017_Q100 v.1 | 20140324 | Product data sheet | - | - | ## equipment, nor in applications where failure or malfunction of an Nexperia ## 15. Legal information #### **Data sheet status** | Document status [1][2] | Product
status [3] | Definition | |--------------------------------|-----------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions". - The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com. #### **Definitions** **Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### **Disclaimers** Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia. Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. **Suitability for use in automotive applications** — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Johnson decade counter with 10 decoded outputs **Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. **Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. #### **Trademarks** Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. ## **Contents** | 1. General description | <i>'</i> | |-------------------------------------|----------| | 2. Features and benefits | <i>'</i> | | 3. Ordering information | 2 | | 4. Functional diagram | 2 | | 5. Pinning information | | | 5.1. Pinning | | | 5.2. Pin description | | | 6. Functional description | | | 7. Limiting values | (| | 8. Recommended operating conditions | 6 | | 9. Static characteristics | | | 10. Dynamic characteristics | 9 | | 10.1. Waveforms and test circuit | 1 | | 11. Application information | 14 | | 12. Package outline | 1 | | 13. Abbreviations | | | 14. Revision history | 18 | | 15. Legal information | | | | | For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 1 July 2020 [©] Nexperia B.V. 2020. All rights reserved ## **ПОСТАВКА** ЭЛЕКТРОННЫХ КОМПОНЕНТОВ Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107 ## Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip. Для оперативного оформления запроса Вам необходимо перейти по данной ссылке: ## http://moschip.ru/get-element Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора. В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов. Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair. Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки. На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров. Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009 ## Офис по работе с юридическими лицами: 105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский» Телефон: +7 495 668-12-70 (многоканальный) Факс: +7 495 668-12-70 (доб.304) E-mail: info@moschip.ru Skype отдела продаж: moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9