

Description

The ZXRE060 is a 5-terminal adjustable shunt regulator offering excellent temperature stability and output handling capability. The ZXRE060 simplifies the design of isolated low voltage DC-DC regulators. With its low 0.6V FB pin, it can control the regulation of rails as low 0.6V. This makes it ideal for state of the art PLD microprocessor/DSP and core voltage POL converters.

The device open-collector output can operate from 0.2V to 18V and regulated output voltage can be set by selection of two external divider resistors.

Separating the input from the open collector output enables the ZXRE060 to be used to make low-cost low drop-out regulators operating at low input voltages.

The ZXRE060 is available in two grades with initial tolerances of 0.5% and 1% for the A and standard grades respectively. It is available in space saving low profile 5 pin SC70/SOT353, thin SOT23 and very small DFN1520 packages.

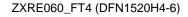
The ZXRE060 in TSOT23-5 has its OUT, GND and FB pins matching the Cathode, Anode and reference pins of the TL432 and TLV431 in SOT23-3, thereby facilitating simple upgrade paths.

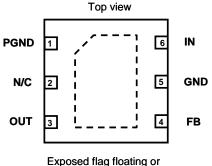
Features

- Low reference voltage ($V_{FB} = 0.6V$)
- -40 to 125°C temperature range
- Reference voltage tolerance at 25°C
 - 0.5% ZXRE060A 0
 - 1% ZXRE060 0
- Typical temperature drift
 - <4 mV (0°C to 70°C) 0
 - <6 mV (-40°C to 85°C) 0
 - <12mV (-40°C to 125°C) 0
- 0.2V to 18V open-collector output
- High power supply rejection
 - (>45dB at 300kHz) 0
- Lead Free by design/RoHS Compliant (Note 1)
- "Green"/Halogen free device (Note 2)

Applications

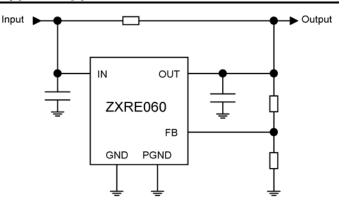
- Isolated DC-DC converters
- Core voltage POL
- Low Voltage Low-Dropout linear regulators
- Shunt regulators
- Adjustable voltage reference


Notes: 1 No purposefully added lead


2. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.

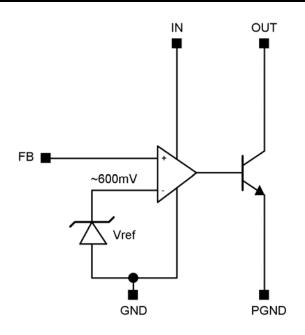
ZXRE060_H5 (SC70-5/SOT353) and ZXRE060_ET5 (TSOT23-5) Top view

Pin Assignments


5 OUT PGND GND 2 IN 3 4 FB

connect to GND

Typical Application Circuit



Pin Description

Pin (SC70-5 /SOT353, TSOT23-5)	Pin (DFN)	Name	Function
1	1	PGND	Power Ground: Ground return for emitter of output transistor: Connect PGND and GND together.
-	2		No connection
5	3	OUT	Output. Connect a capacitor close to device between OUT and GND. See the <i>Applications Information</i> section.
4	4	FB	Feedback Input. Regulates to 600mV nominal.
2	5	GND	Analog Ground: Ground return for reference and amplifier: Connect GND and PGND together.
3	6	IN	Supply Input. Connect a $0.1\mu F$ ceramic capacitor close to the device from IN to GND.
-	Flag		Floating or connect to GND

Function Block Diagram

The ZXRE060 differs from most other shunt regulators in that it has separate input and output pins and a low voltage reference. This enables it to regulate rails down to 600mV and makes the part ideal for isolated power supply applications that use optocouplers in the feedback loop and where the open-collector output is required to operate down to voltages as low as 200mV.

The wide input voltage range of 2V to 18V and output voltage range of 0.2V to 18V enables the ZXRE060 to be powered from an auxiliary rail, while controlling a master rail which is above the auxiliary rail voltage, or below the minimum V_{IN} voltage. This allows it to operate as a low-dropout voltage regulator for microprocessor/DSP/PLD cores.

As with other shunt regulators (and shunt references), the ZXRE060 compares its internal amplifier FB pin to a high accuracy internal reference; if FB is below the reference then OUT turns off, but if FB is above the reference then OUT sinks current – up to a maximum of 15mA.

Absolute Maximum Ratings (Voltages to GND Unless Otherwise Stated)

Symbol	Parameter	Rating	Unit
VIN	IN Voltage relative to GND	20	V
V _{OUT}	OUT Voltage relative to GND	20	V
V _{FB}	FB Voltage relative to GND	20	V
PGND	PGND Voltage relative to GND	-0.3 to +0.3	V
Ι _{ουτ}	OUT Pin Current	20	mA
T_J	Operating Junction Temperture	-40 to 150	°C
T _{ST}	Storage Temperature	55 to 150	°C

These are stress ratings only. Operation outside the absolute maximum ratings may cause device failure. Operation at the absolute maximum rating for extended periods may reduce device reliability.

Semiconductor devices are ESD sensitive and may be damaged by exposure to ESD events.

Suitable ESD precautions should be taken when handling and transporting these devices.

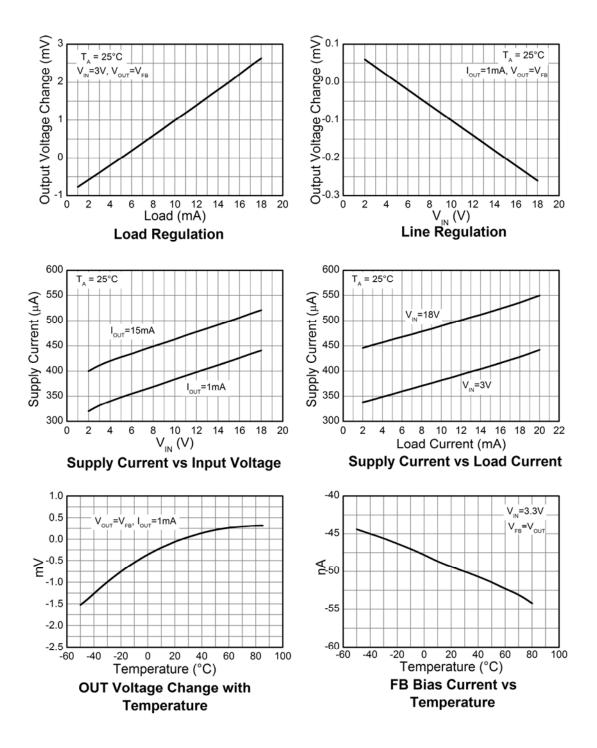
Package Thermal Data

Package	θ _{JA}	P _{DIS} T _A = 25°C, T _J = 150°C
SC70-5/SOT353	400°C/W	310mW
TSOT23-5	250°C/W	500mW
DFN1520H4-6	TBD	TBD

Recommended Operating Conditions

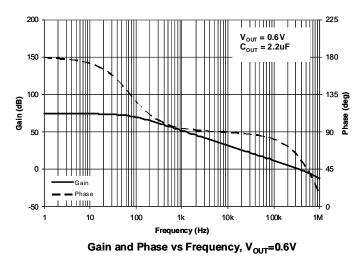
Symbol	Parameter	Min	Max	Units
V _{IN}	IN Voltage Range (0 to 125°C)	2	18	
V _{IN}	IN Voltage Range (-40 to 0°C)	2.2	18	V
V _{OUT}	OUT Voltage Range	0.2	18	
I _{OUT}	OUT Pin Current	0.3	15	mA
T _A	Operating Ambient Temperature Range	-40	125	°C

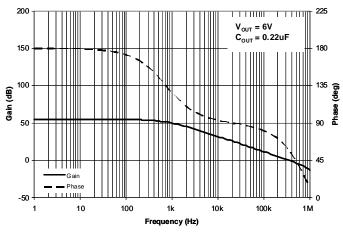
Electrical Characteristics

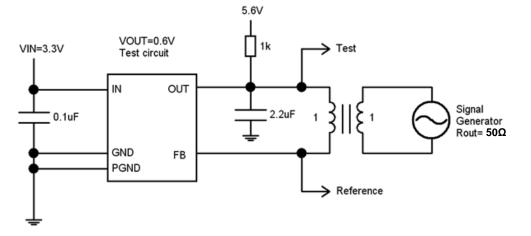

	Parameter	JT = 5mA unless otherwise stated (No Conditions		Min	Тур	Max	Units
-			ZXRE060A	0.597	0.6	0.603	
			ZXRE060	0.594	0.6	0.606	
			ZXRE060A	0.595		0.605	
		$T_A = 0^{\circ}C$ to $85^{\circ}C$	ZXRE060	0.592		0.608	
V_{FB}	Feedback voltage	$T_A = -40^{\circ}C$ to $85^{\circ}C$	ZXRE060A	0.594		0.606	
			ZXRE060	0.591		0.609	
		T 4000 to 40500	ZXRE060A	0.593		0.607	
		$T_A = -40^{\circ}C$ to $125^{\circ}C$	ZXRE060	0.590		0.610	
	Feedback pin load	1 1 to 15m			3.8	6	
FB _{LOAD}	regulation	$I_{OUT} = 1$ to 15mA	$T_{A} = -40$ to $125^{\circ}C$			10	mV
FB _{LINE}	Feedback pin line	$V_{IN} = 2V$ to $18V$			0.1	1	m\/
FDLINE	regulation	V _{IN} = 2.2V to 18V	T _A = -40 to 125°C			1.5	mV
	Output voltage regulation	$V_{OUT} = 0.2V$ to 18V,				1	mV
FB_{OVR}		I _{OUT} =1mA (Ref. Figure 1)	T _A = -40 to 125°C			1.5	
	FB input bias				-45		nA
I _{FB}	current	V _{IN} = 18V	$T_{A} = -40$ to $125^{\circ}C$	-200		0	
	Input current	V _{IN} = 2V to 18V			0.35	0.7	mA
		$V_{IN} = 2.2V$ to 18V $I_{OUT} = 0.3$ mA	$T_{A} = -40$ to 125°C			1	
I _{IN}		$V_{IN} = 2V$ to 18V			0.48	1	
		$V_{IN} = 2.2V$ to 18V	$T_A = -40$ to 125°C			1.5	mA
	OUT leakage	V _{IN} = 18V,				0.1	
I _{OUT(LK)}	current	V _{OUT} = 18V, V _{FB} =0V	T _A = 125°C			1	μΑ
7	Dynamic Output	$I_{OUT} = 1$ to 15mA			0.25	0.4	Ω
Z _{OUT}	Impedance	f < 1kHz	T _A = -40 to125°C			0.6	
PSRR	Power supply rejection ratio	f=300kHz V _{AC} = 0.3V _{PP}			>45		dB
BW	Amplifier Unity Gain Frequency	Ref: Fig 2	•		600		kHz
G	Amplifier Transconductance				5000		mA/V

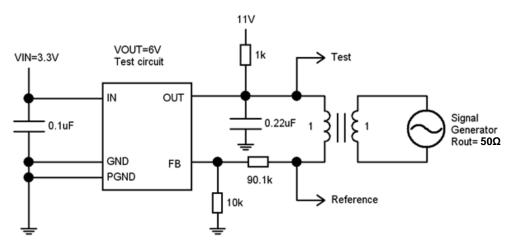
Note:

 Production testing of the device is performed at 25 °C. Functional operation of the device and parameters specified over the operating temperature range are guaranteed by design, characterisation and process control.

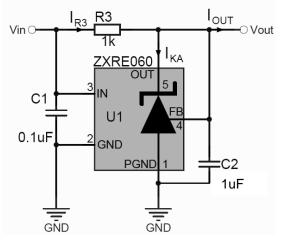



Typical Characteristics




Typical Operating Conditions (Cont.)

Gain and Phase vs Frequency, V_{OUT} =6V



Application Information

The following show some typical application examples for the ZXRE060. It is recommended to include the compensation capacitor C2 to guarantee stability. C2 may range in value from 0.1μ F to 10μ F depending on the application. The time constant formed by C2 and R3 should be greater than 1ms multiplied by the feedback factor R2/(R1 + R2).

Both C1 and C2 should be as close to the ZXRE060 as possible and connected to it with the shortest possible track. In the case of fig 9 and fig10, it means the opto-coupler will have to be carefully positioned to enable this.

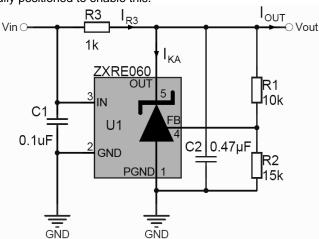
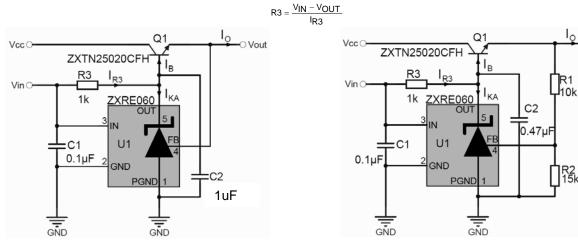
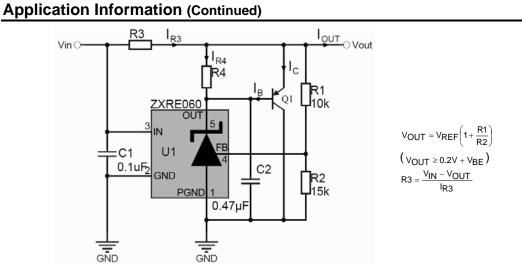



Figure 3. 0.6V Shunt Regulator V_{OUT} = V_{REF}

Figure 4. 1.0V Shunt Regulator $V_{OUT} = V_{REF} \left(1 + \frac{R1}{R2}\right)$

$V_{OUT} = V_{REF}$



Design guides

- 1. Determine I_{OUT} and choose a suitable transistor taking power dissipation into consideration.
- 2. Determine I_B from $I_B = \frac{I_{OUT(max)}}{(h_{FE(min)} + 1)}$
- 3. Determine I_{R3} from $I_{R3} \ge I_B + I_{KA(min)}$. The design of the ZXRE060 effectively means there is no $I_{KA(min)}$ limitation as in conventional references. There is only an output leakage current which is a maximum of 1µA. Nevertheless, it is necessary to determine an $I_{KA(min)}$ to ensure that the device operates within its linear range at all times. $I_{KA(min)} \ge 10\mu$ A should be adequate for this.
- 4. Determine R3 from $_{R3} = \frac{V_{IN} (V_{OUT} + V_{BE})}{I_{R3}}$.
- 5. Although unlikely to be a problem, ensure that $I_{R3} \le 15$ mA.

⊖ Vout

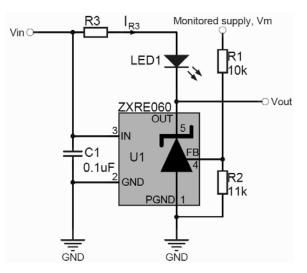
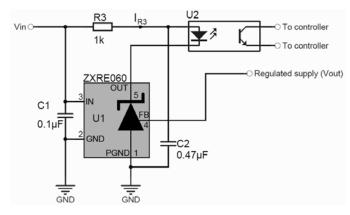


Figure 7. 1V Current-boosted shunt regulator

Design guides

- Determine I_{OUT} and choose a suitable transistor taking power dissipation into consideration.
 Determine I_B from , I_{OUT(max)}
 - Determine I_B from $I_B = \frac{I_{OUT(max)}}{(h_{FE(min)} + 1)}$
- 3. Determine I_{R3} from $I_{R3} = I_{OUT(max)}$
- 4. Determine R3 from $_{R3} = \frac{V_{IN} V_{OUT}}{I_{R3}}$
- It is best to let the ZXRE060 supply as much current as it can before bringing Q1 into conduction. Not
 only does this minimise the strain on Q1, it also guarantees the most stable operation. Choose a nominal
 value between 10mA and <15mA for this current, I_{R4}.
- 6. Calculate R4 from $_{R4} = \frac{V_{BE}}{I_{R4}}$

 $V_{\mbox{\scriptsize OUT}}$ goes low and LED is lit when monitored supply


$$\begin{split} V_M > V_{REF} \left(1 + \frac{R1}{R2} \right) \\ R3 = \frac{V_{IN} - (V_F + 0.2)}{I_{R3}} \\ 15mA \ge I_{R3} \le I_{F(MAX)} \end{split}$$

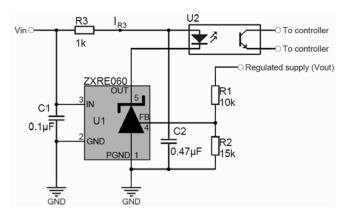

 V_F and I_F are forward voltage drop and current of LED1.

Figure 8. 1.15V over-voltage indicator

Application Information (Continued)

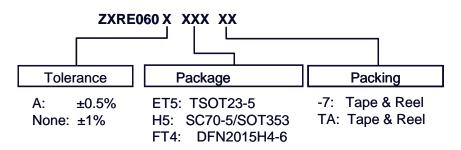
Figure 9. Opto-isolated 0.6V shunt regulator

VOUT = VREF

Figure 10. Opto-isolated 1.0V shunt regulator
$$V_{OUT} = V_{REF} \left(1 + \frac{R1}{R2} \right)$$

$$R3 = \frac{V_{IN} - (V_F + 0.2)}{I_{R3}}$$

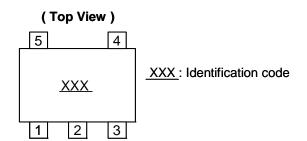
$$15mA \ge I_{R3} \le I_F(MAX)$$


 V_F and I_F are forward voltage drop and forward current respectively for the optocoupler LED.

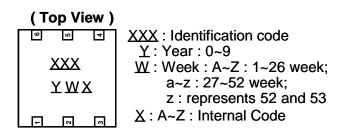
More applications information is available in the following publications which can be found on Diodes' web site.

- AN58 Designing with Diodes' References Shunt Regulation
- AN59 Designing with Diodes' References Series Regulation
- AN60 Designing with Diodes' References Fixed Regulators and Opto-Isolation
- AN61 Designing with Diodes' References Extending the operating voltage range
- AN62 Designing with Diodes' References Other Applications
- AN63 Designing with Diodes' References ZXRE060 Low Voltage Regulator

Ordering Information

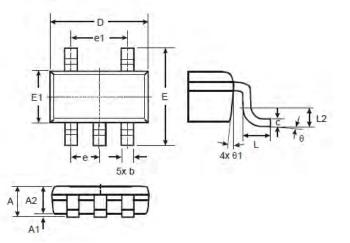


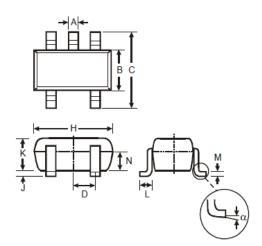
	Tol.	Order Code	Part	Identification Code	Reel Size	Tape Width	Quantity/Reel
0		ZXRE060AET5TA	TSOT23-5	S6A	7", 180mm	8mm	3000
Pb	0.5%	ZXRE060AH5TA	SC70-5/SOT353	S6A	7", 180mm	8mm	3000
lead-free		ZXRE060AFT4-7	DFN1520H4-6	S6A	7", 180mm	8mm	3000
0		ZXRE060ET5TA	TSOT23-5	S06	7", 180mm	8mm	3000
Pb	1%	ZXRE060H5TA	SC70-5/SOT353	S06	7", 180mm	8mm	3000
lead-free	1 70	ZXRE060FT4-7	DFN1520H4-6	S06	7", 180mm	8mm	3000


Notes: 4. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf

Marking Information

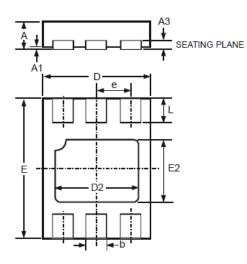
1. TSOT23-5, SC70-7/SOT353


2. DFN1520H4-6

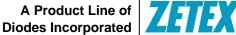


Package Outline Dimensions (All Dimensions in mm)

1. TSOT23-5


2. SC70-7/SOT353

TSOT23-5					
Dim	Min	Max	Тур		
Α	-	1.00	-		
A1	0.01	0.10	-		
A2	0.84	0.90	-		
D	-	-	2.90		
Ε	-	-	2.80		
E1	-	_	1.60		
b	0.30	0.45	-		
С	0.12	0.20	-		
е	-	-	0.95		
e1	-	-	1.90		
L	0.30	0.50			
L2	-	-	0.25		
θ	0°	8°	4°		
θ1	4°	12°	_		
All Dimensions in mm					


SOT-353				
Dim	Min	Max		
Α	0.10	0.30		
В	1.15	1.35		
С	2.00	2.20		
D	0.65	Тур		
F	0.40	0.45		
Н	1.80	2.20		
J	0	0.10		
K	0.90	1.00		
L	0.25	0.40		
Μ	0.10	0.22		
ά	0°	8°		
All Dimensions in mm				

3. DFN1520H4-6

	DFN1520H4-6				
Dim	Min	Max	Тур		
Α	_	0.40	_		
A1	0	0.05	-		
A3	-	_	0.13		
b	0.20	0.30	-		
D	1.45	1.575	-		
D2	1.00	1.20	-		
e	-	-	0.50		
E	1.95	2.075	-		
E2	0.70	0.90	-		
L	0.25	0.35	-		
All Dimensions in mm					

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2011, Diodes Incorporated

www.diodes.com

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9