

AS4C4M16D1

4M x 16 DDR Synchronous DRAM (SDRAM)

Alliance Memory Confidential

Advanced (Rev. 1.0, May /2011)

Features

- Fast clock rate: 200MHz
- Differential Clock CK & CK
- Bi-directional DQS
- DLL enable/disable by EMRS
- Fully synchronous operation
- Internal pipeline architecture
- Four internal banks, 1M x 16-bit for each bank
- Programmable Mode and Extended Mode Registers
 - CAS Latency: 3
 - Burst length: 2, 4, 8
 - Burst Type: Sequential & Interleaved
- Individual byte writes mask control
- DM Write Latency = 0
- Auto Refresh and Self Refresh
- 4096 refresh cycles / 64ms
- Operating temperature range
 Commercial (0 ~ 70°C)
 Industrial (-40 ~ 85°C)
- Precharge & active power down
- Power supplies: V_{DD} & V_{DDQ} = 2.5V \pm 0.2V
- Interface: SSTL 2 I/O Interface
- Package: 66 Pin TSOP II, 0.65mm pin pitch
 Pb free and Halogen free

Overview

The AS4C4M16D1 DDR SDRAM is a highspeed CMOS double data rate synchronous DRAM containing 64 Mbits. It is internally configured as a quad 1M x 16 DRAM with a synchronous interface (all signals are registered on the positive edge of the clock signal, CK). Data outputs occur at both rising edges of CK and \overline{CK} . Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of a BankActivate command which is then followed by a Read or Write command.

The AS4C4M16D1 provides programmable Read or Write burst lengths of 2, 4, 8. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst sequence. The refresh functions, either Auto or Self Refresh are easy to use. In addition, AS4C4M16D1 features programmable DLL option. By having a programmable mode register and extended mode register, the system can choose the most suitable modes to maximize its performance. These devices are well suited for applications requiring high memory bandwidth and high performance.

Table 1.Ordering Information

Part Number	Clock	Data Rate	Package	Temperature	Temp Range
AS4C4M16D1-5TCN	200MHz	400Mbps/pin	66pin TSOPII	Commercial	0 ~ 70°C
AS4C4M16D1-5TIN	200MHz	400Mbps/pin	66pin TSOPII	Industrial	-40 ~ 85°C

T: indicates TSOP II package

C: indicates Commercial temp.

I: indicates Industrial temp.

N: indicates lead free ROHS

Alliance Memory, Inc.

551 Taylor Way, San Carlos, CA 94070 TEL: (650) 610-6800 FAX: (650) 620-9211

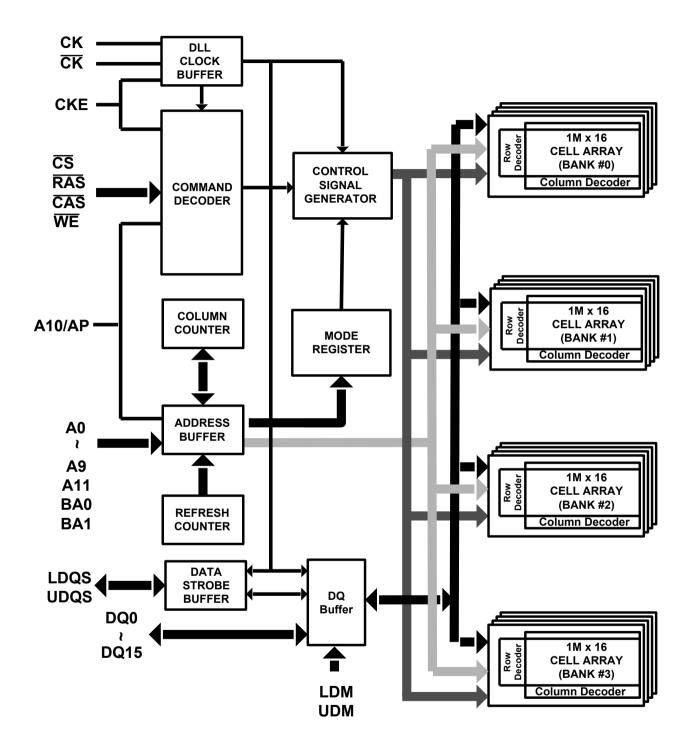

			1
VDD 🗔	10	66	🔲 vss
	2	65	DQ15
VDDQ 🗔	3	64	
DQ1 🗔	4	63	DQ14
DQ2 🗔	5	62	DQ13
VSSQ 🗔	6	61	
DQ3 🗔	7	60	DQ12
DQ4 🗔	8	59	DQ11
VDDQ 🕅	9	58	VSSQ
DQ5 🗔	10	57	DQ10
DQ6 🗔	11	56	DQ9
VSSQ 🕅	12	55	
DQ7 🗔	13	54	
NC 🗔	14	53	
VDDQ 🕅	15	52	
LDQS 🗔	16	51	
NC 🗔	17	50	
VDD 🗔	18	49	VREF
NC 🗔	19	48	🗀 vss
LDM 🗔	20	47	— UDM
WE	21	46	🗀 ск
CAS 🕅	22	45	🗀 ск
RAS 🗔	23	44	🗀 СКЕ
CS 🕅	24	43	
NC 🗔	25	42	
BA0 🗔	26	41	🔲 A11
BA1 🗔	27	40	🔲 A9
A10/AP	28	39	A8
A0 🗔	29	38	🗀 A7
A1 🗔	30	37	🗀 A6
A2 🗔	31	36	🔲 A5
A3 🗔	32	35	🔲 A4
VDD 🗔	33	34	🗀 vss

Figure 1. Pin Assignment (Top View)

AS4C4M16D1

Figure 2. Block Diagram

Pin Descriptions

Table 2. Pin Details

Symbol	Туре	Description
CK, CK	Input	Differential Clock: CK and \overline{CK} are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of \overline{CK} . Input and output data is referenced to the crossing of CK and \overline{CK} (both directions of the crossing)
CKE	Input	Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CK signal. If CKE goes low synchronously with clock, the internal clock is suspended from the next clock cycle and the state of output and burst address is frozen as long as the CKE remains low. When all banks are in the idle state, deactivating the clock controls the entry to the Power Down and Self Refresh modes.
BA0, BA1	Input	Bank Activate: BA0 and BA1 define to which bank the BankActivate, Read, Write, or BankPrecharge command is being applied.
A0-A11	Input	Address Inputs: A0-A11 are sampled during the BankActivate command (row address A0-A11) and Read/Write command (column address A0-A7 with A10 defining Auto Precharge).
ĊŚ	Input	Chip Select: \overline{CS} enables (sampled LOW) and disables (sampled HIGH) the command decoder. All commands are masked when \overline{CS} is sampled HIGH. \overline{CS} provides for external bank selection on systems with multiple banks. It is considered part of the command code.
RAS	Input	Row Address Strobe: The \overrightarrow{RAS} signal defines the operation commands in conjunction with the \overrightarrow{CAS} and \overrightarrow{WE} signals and is latched at the positive edges of CK. When \overrightarrow{RAS} and \overrightarrow{CS} are asserted "LOW" and \overrightarrow{CAS} is asserted "HIGH," either the BankActivate command or the Precharge command is selected by the \overrightarrow{WE} signal. When the \overrightarrow{WE} is asserted "HIGH," the BankActivate command is selected and the bank designated by BA is turned on to the active state. When the \overrightarrow{WE} is asserted "LOW," the Precharge command is selected and the bank designated by BA is selected by
CAS	Input	Column Address Strobe: The \overline{CAS} signal defines the operation commands in conjunction with the \overline{RAS} and \overline{WE} signals and is latched at the positive edges of CK. When \overline{RAS} is held "HIGH" and \overline{CS} is asserted "LOW," the column access is started by asserting \overline{CAS} "LOW." Then, the Read or Write command is selected by asserting \overline{WE} "HIGH " or LOW"."
WE	Input	Write Enable: The \overline{WE} signal defines the operation commands in conjunction with the \overline{RAS} and \overline{CAS} signals and is latched at the positive edges of CK. The \overline{WE} input is used to select the BankActivate or Precharge command and Read or Write command.
LDQS, UDQS	Input / Output	Bidirectional Data Strobe: Specifies timing for Input and Output data. Read Data Strobe is edge triggered. Write Data Strobe provides a setup and hold time for data and DQM. LDQS is for DQ0~7, UDQS is for DQ8~15.
LDM, UDM	Input	Data Input Mask: Input data is masked when DM is sampled HIGH during a write cycle. LDM masks DQ0-DQ7, UDM masks DQ8-DQ15.
DQ0 - DQ15	Input / Output	Data I/O: The DQ0-DQ15 input and output data are synchronized with positive and negative edges of LDQS & UDQS. The I/Os are byte-maskable during Writes.

Vdd	Supply	Power Supply: +2.5V±0.2V
Vss	Supply	Ground
Vddq	Supply	DQ Power: +2.5V±0.2V. Provide isolated power to DQs for improved noise immunity.
Vssq	Supply	DQ Ground: Provide isolated ground to DQs for improved noise immunity.
VREF	Supply	Reference Voltage for Inputs: +0.5*VDDQ
NC	-	No Connect: No internal connection, these pins suggest to be left unconnected.

Operation Mode

Fully synchronous operations are performed to latch the commands at the positive edges of CK. Table 3 shows the truth table for the operation commands.

Command	State	CKEn-1	CKEn	UDM	LDM	BA0,1	A10	A0-9,11	CS	RAS		WE
BankActivate	Idle ⁽³⁾	Н	Х	Х	Х	V	Row	address	L	L	Н	Н
BankPrecharge	Any	Н	Х	Х	Х	V	L	Х	L	L	Н	L
PrechargeAll	Any	Н	Х	Х	Х	Х	Н	Х	L	L	Н	L
Write	Active ⁽³⁾	Н	Х	Х	Х	V	L	Column	L	Н	L	L
Write and AutoPrecharge	Active ⁽³⁾	Н	Х	Х	Х	V	Н	address (A0 ~ A7)	L	Н	L	L
Read	Active ⁽³⁾	Н	Х	Х	Х	V	L	Column	L	Н	L	Н
Read and Autoprecharge	Active ⁽³⁾	Н	Х	Х	Х	V	н	address (A0 ~ A7)	L	Н	L	Н
Mode Register Set	Idle	Н	Х	Х	Х	(OP co	ode	L	L	L	L
Extended MRS	Idle	Н	Х	Х	Х	(OP co	ode	L	L	L	L
No-Operation	Any	Н	Х	Х	Х	Х	Х	Х	L	Н	Н	Н
Burst Stop	Active ⁽⁴⁾	Н	Х	Х	Х	Х	Х	Х	L	Н	Н	L
Device Deselect	Any	н	Х	Х	Х	Х	Х	Х	Н	Х	Х	Х
AutoRefresh	Idle	Н	Н	Х	Х	Х	Х	Х	L	L	L	Н
SelfRefresh Entry	Idle	Н	L	Х	Х	Х	Х	Х	L	L	L	Н
SelfRefresh Exit	Idle	L	Н	Х	Х	Х	Х	Х	н	Х	Х	Х
	(SelfRefresh)								L	Н	Н	Н
Precharge Power Down Mode	Idle	Н	L	Х	Х	Х	Х	Х	Н	Х	Х	Х
Entry									L	Н	Н	Н
Precharge Power Down Mode	Any	L	Н	Х	Х	Х	Х	Х	Н	Х	Х	Х
Exit	(PowerDown)								L	Н	Н	Н
Active Power Down Mode	Active	Н	L	Х	Х	Х	Х	Х	Н	Х	Х	Х
Entry									L	V	V	V
Active Power Down Mode	Any	L	Н	Х	Х	Х	Х	Х	Н	Х	Х	Х
Exit	(PowerDown)								L	Н	Н	Н
Data Input Mask Disable	Active	Н	Х	L	L	Х	Х	Х	Х	Х	Х	Х
Data Input Mask Enable(5)	Active	Н	Х	Н	Н	Х	Х	Х	Х	Х	Х	Х

 Table 3. Truth Table (Note (1), (2))

Note: 1. V=Valid data, X=Don't Care, L=Low level, H=High level

2. CKE_n signal is input level when commands are provided.

CKEn-1 signal is input level one clock cycle before the commands are provided.

3. These are states of bank designated by BA signal.

- 4. Device state is 2, 4, 8, burst operation.
- 5. LDM and UDM can be enabled respectively.

Mode Register Set (MRS)

The Mode Register stores the data for controlling various operating modes of a DDR SDRAM. It programs CAS Latency, Burst Type, and Burst Length to make the DDR SDRAM useful for a variety of applications. The default value of the Mode Register is not defined; therefore the Mode Register must be written by the user. Values stored in the register will be retained until the register is reprogrammed. The Mode Register is written by asserting Low on \overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WE} , BA1 and BA0 (the device should have all banks idle with no bursts in progress prior to writing into the mode register, and CKE should be High). The state of address pins A0~A11 and BA0, BA1 in the same cycle in which \overline{CS} , \overline{RAS} , \overline{CAS} and \overline{WE} are asserted Low is written into the Mode Register. A minimum of two clock cycles, tMRD, are required to complete the write operation in the Mode Register. The Mode Register is divided into various fields depending on functionality. The Burst Length uses A0~A2, Burst Type uses A3, and CAS Latency (read latency from column address) uses A4~A6. A logic 0 should be programmed to all the undefined addresses to ensure future compatibility. Reserved states should not be used to avoid unknown device operation or incompatibility with future versions. Refer to the table for specific codes for various burst lengths, burst types and CAS latencies.

BA1 BA0 A11 A10 A9 A8 A7 A6 A5 Α4 A3 Α2 A1 A0 Address Field 0 0 0 T.M. CAS Latency ΒT **Burst Length** Mode Register A8 A7 Test Mode A6 A5 A4 CAS Latency A3 Burst Type A2 A1 A0 **Burst Length** 0 0 0 0 Reserved 0 0 0 Reserved 0 Sequential 0 Normal mode 0 0 0 1 2 1 1 1 Interleave 0 **DLL Reset** 0 Reserved Х 0 1 1 0 0 1 4 Test mode 0 Reserved 8 0 1 1 3 0 1 1 1 0 0 Reserved 1 0 0 Reserved BA0 0 0 Reserved Mode 1 1 Reserved 1 1 1 0 1 1 0 Reserved 0 MRS 1 Reserved EMRS 1 1 1 Reserved 1 1 Reserved 1 1

Table 4. Mode Register Bitmap

• Burst Length Field (A2~A0)

This field specifies the data length of column access using the A2~A0 pins and selects the Burst Length to be 2, 4, and 8.

Table 5. Burst Length

A2	A1	A0	Burst Length	
0	0	0	Reserved	
0	0	1	2	
0	1	0	4	
0	1	1	8	
1	0	0	Reserved	
1	0	1	Reserved	
1	1	0	Reserved	
1	1	1	Reserved	

• Addressing Mode Select Field (A3)

The Addressing Mode can be one of two modes, either Interleave Mode or Sequential Mode. Both Sequential Mode and Interleave Mode support burst length of 2, 4, and 8.

Table 6. Addressing Mode

A3	Addressing Mode
0	Sequential
1	Interleave

Burst Definition, Addressing Sequence of Sequential and Interleave Mode

Table 7: Burst Address ordering

Burst	Sta	rt Addro	ess	Seguential	Interleave
Length	A2	A1	A0	Sequential	Interleave
2	Х	Х	0	0, 1	0, 1
2	Х	Х	1	1, 0	1, 0
	Х	0	0	0, 1, 2, 3	0, 1, 2, 3
4	Х	0	1	1, 2, 3, 0	1, 0, 3, 2
4	Х	1	0	2, 3, 0, 1	2, 3, 0, 1
	Х	1	1	3, 0, 1, 2	3, 2, 1, 0
	0	0	0	0, 1, 2, 3, 4, 5, 6, 7	0, 1, 2, 3, 4, 5, 6, 7
	0	0	1	1, 2, 3, 4, 5, 6, 7, 0	1, 0, 3, 2, 5, 4, 7, 6
	0	1	0	2, 3, 4, 5, 6, 7, 0, 1	2, 3, 0, 1, 6, 7, 4, 5
8	0	1	1	3, 4, 5, 6, 7, 0, 1, 2	3, 2, 1, 0, 7, 6, 5, 4
0	1	0	0	4, 5, 6, 7, 0, 1, 2, 3	4, 5, 6, 7, 0, 1, 2, 3
	1	0	1	5, 6, 7, 0, 1, 2, 3, 4	5, 4, 7, 6, 1, 0, 3, 2
	1	1	0	6, 7, 0, 1, 2, 3, 4, 5	6, 7, 4, 5, 2, 3, 0, 1
	1	1	1	7, 0, 1, 2, 3, 4, 5, 6	7, 6, 5, 4, 3, 2, 1, 0

• CAS Latency Field (A6~A4)

This field specifies the number of clock cycles from the assertion of the Read command to the first read data. The minimum whole value of CAS Latency depends on the frequency of CK. The minimum whole value satisfying the following formula must be programmed into this field. t_{CAC} (min) \leq CAS Latency X t_{CK}

Table 8. CAS Latency

A6	A5	A4	CAS Latency		
0	0	0	Reserved		
0	0	1	Reserved		
0	1	0	Reserved		
0	1	1	3 clocks		
1	0	0	Reserved		
1	0	1	Reserved		
1	1	0	Reserved		
1	1	1	Reserved		

• Test Mode Field (A8~A7)

These two bits are used to enter the test mode and must be programmed to "00" in normal operation.

Table 9. 1	Table 9. Test Mode						
A8	A7	Test Mode					
0	0	Normal mode					
1	0	DLL Reset					
Х	1	Test mode					

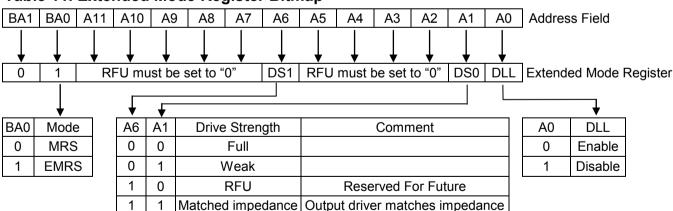

• (BA0, BA1)

Table 10. MRS/EMRS

BA1	BA0	A11 ~ A0		
RFU 0		MRS Cycle		
RFU 1		Extended Functions (EMRS)		

Extended Mode Register Set (EMRS)

The Extended Mode Register Set stores the data for enabling or disabling DLL and selecting output driver strength. The default value of the extended mode register is not defined, therefore must be written after power up for proper operation. The extended mode register is written by asserting low on \overline{CS} , \overline{RAS} , \overline{CAS} , and \overline{WE} . The state of A0 ~ A12, BA0 and BA1 is written in the mode register in the same cycle as \overline{CS} , \overline{RAS} , \overline{CAS} , and \overline{WE} going low. (the device should have all banks idle with no bursts in progress prior to writing into the mode register, and CKE should be High). A1 is used for setting driver strength to normal, or weak. Two clock cycles are required to complete the write operation in the extended mode register. The mode register contents can be changed using the same command and clock cycle requirements during operation as long as all banks are in the idle state. A0 is used for DLL enable or disable. "High" on BA0 is used for EMRS. Refer to the table for specific codes.

Table 11. Extended Mode Register Bitmap

Table 12. Absolute Maximum Rating

Querra ha a l	li e m		Rating		Nata
Symbol	Item		-5	Unit	Note
VIN, VOUT	I/O Pins Voltage		- 0.5~V _{DDQ} + 0.5	V	1,2
VIN	VREF and Inputs Voltage		- 1~3.6	V	1,2
Vdd, Vddq	Power Supply Voltage		- 1~3.6	V	1,2
	Ambient Temperature	Commercial	0~70	°C	1
TA		Industrial	-40~85	°C	1
Tstg	Storage Temperature		- 55~150	°C	1
TSOLDER	Soldering Temperature		260	°C	1
PD	Power Dissipation		1	W	1
los	Short Circuit Output Current		50	mA	1

Note1. Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage of the devices

Note2. All voltages are referenced to Vss.

Table 13. Recommended D.C. Operating Conditions (V_{DD} = 2.5V ± 0.2V, T_A = -40~85 °C)

Symbol	Parameter	Min.	Max.	Unit	Note
Vdd	Power Supply Voltage	2.3	2.7	V	
Vddq	Power Supply Voltage (for I/O Buffer)	2.3	2.7	V	
VREF	Input Reference Voltage	0.49* Vddq	0.51* Vddq	V	
VTT	Termination Voltage	Vref - 0.04	VREF + 0.04	V	
VIH (DC)	Input High Voltage (DC)	VREF + 0.15	V _{DD} + 0.3	V	
Vı∟(DC)	Input Low Voltage (DC)	-0.3	Vref – 0.15	V	
VIN (DC)	Input Voltage Level, CK and \overline{CK} inputs	-0.3	VDDQ + 0.3	V	
١L	Input leakage current	-2	2	μA	
loz	Output leakage current	-5	5	μA	
Іон	Output High current	-16.2	-	mA	Vон = 1.95V
lol	Output Low current	16.2	-	mA	Vol = 0.35V

Table 14. Capacitance (V _{DD} = 2.5V±0.2V, f = 1MHz, T _A = 25 °C)
-------------------------	--

Symbol	ol Parameter		Max.	Delta	Unit
CIN1	Input Capacitance (CK, CK)	2	3	0.25	pF
CIN2	Input Capacitance (All other input-only pins)	2	3	0.5	рF
Cı/o	DM, DQ, DQS Input/Output Capacitance	4	5	0.5	рF

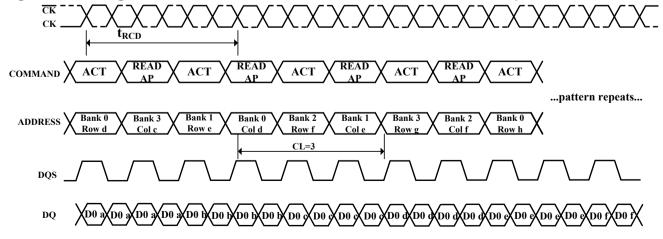

Note. These parameters are guaranteed by design, periodically sampled and are not 100% tested.

Table 15. D.C. Characteristics (V_{DD} = 2.5V ± 0.2V, T_A = -40~85 °C)

•	-		
Parameter & Test Condition	Symbol	-5	Unit
		Max.	onic
OPERATING CURRENT: One bank; Active-Precharge; tRC=tRC (min); tCK=tCK(min); DQ,DM and DQS inputs changing once per clock cycle; Address and control inputs changing once every two clock cycles.	IDD0	120	mA
OPERATING CURRENT : One bank; Active-Read-Precharge; BL=4; tRC=tRC(min); tCK=tCK(min); lout=0mA; Address and control inputs changing once per clock cycle	IDD1	140	mA
PRECHARGE POWER-DOWN STANDBY CURRENT: All banks idle; power-down mode; tcк=tck(min); CKE=LOW	IDD2P	15	mA
IDLE STANDLY CURRENT : CKE = HIGH; CS =HIGH(DESELECT); All banks idle; tck=tck(min); Address and control inputs changing once per clock cycle; VIN=VREF for DQ, DQS and DM	IDD2N	50	mA
ACTIVE POWER-DOWN STANDBY CURRENT : one bank active; power-down mode; CKE=LOW; tck=tck(min)	IDD3P	40	mA
ACTIVE STANDBY CURRENT : CS =HIGH;CKE=HIGH; one bank active ; tRC=tRC(max);tCK=tCK(min);Address and control inputs changing once per clock cycle; DQ,DQS,and DM inputs changing twice per clock cycle	IDD3N	80	mA
OPERATING CURRENT BURST READ : BL=2; READs; Continuous burst; one bank active; Address and control inputs changing once per clock cycle; tcκ=tcκ(min); lout=0mA;50% of data changing on every transfer	IDD4R	180	mA
OPERATING CURRENT BURST Write : BL=2; WRITEs; Continuous Burst ;one bank active; address and control inputs changing once per clock cycle; tck=tck(min); DQ,DQS,and DM changing twice per clock cycle; 50% of data changing on every transfer	IDD4W	180	mA
AUTO REFRESH CURRENT : trc=trFc(min); tck=tck(min)	IDD5	180	mA
SELF REFRESH CURRENT: Self Refresh Mode ; CKE≦ 0.2V;tcκ=tcκ(min)	IDD6	4	mA
BURST OPERATING CURRENT 4 bank operation: Four bank interleaving READs; BL=4;with Auto Precharge; tRC=tRC(min); tck=tck(min); Address and control inputs change only during Active, READ, or WRITE command	IDD7	240	mA

Figure 3. Timing Waveform for IDD7 Measurement at 200 MHz CK Operation

Table 16. Electrical AC Characteristics (V_{DD} = $2.5V \pm 0.2V$, T_A = -40~85 °C)

Symbol	Parameter		-5		11014	Note
Symbol			Min.	Max.	Unit	NOte
tск	Clock cycle time	CL = 3	5	12	ns	
tсн	Clock high level width		0.45	0.55	tск	
tc∟	Clock low level width		0.45	0.55	tск	
t DQSCK	DQS-out access time from CK, \overline{CK}		-0.6	0.6	ns	
tac	Output access time from CK, \overline{CK}		-0.7	0.7	ns	
tDQSQ	DQS-DQ Skew		-	0.4	ns	
tнz	DQ & DQS high-impedance time from	CK / CK	-	0.7	ns	
t∟z	DQ & DQS low-impedance time from	CK / CK	-0.7	0.7	ns	
t RPRE	Read preamble		0.9	1.1	tск	
t RPST	Read postamble		0.4	0.6	tск	
toqss	CK to valid DQS-in		0.72	1.25	tск	
twpres	DQS-in setup time		0	_	ns	<u> </u>
twpre	DQS write preamble		0.25	-	tск	
twpst	DQS write postamble		0.4	0.6	tск	
tDQSH	DQS in high level pulse width		0.35	-	tск	ł
tDQSL	DQS in low level pulse width		0.35	-	tск	ł
tDSS	DQS falling edge to CK setup time			_	tск	
t _{DSH}	DQS falling edge hold time from CK		0.2	_	tск	<u> </u>
CDOIT		fast slew rate	0.6	_	ns	4, 6-
tıs	Address and Control input setup time	slow slew rate	0.7	-	ns	5-8
tıн	Address and Control input hold time	fast slew rate	0.6	-	ns	4, 6-
uH	Address and Control input hold time	slow slew rate	0.7	-	ns	5-8
tos	DQ & DM setup time to DQS		0.4	-	ns	
tон	DQ & DM hold time to DQS		0.4	-	ns	
t _{QHS}	Data Hold Skew Factor		-	0.5	ns	
tнр	Clock half period		tclmin or tchmin	-	ns	
tqн	DQ/DQS output hold time from DQS		thp - tqhs	-	ns	
trc	Row cycle time		55	-	ns	
t RFC	Refresh row cycle time		70	-	ns	
tras	Row active time		40	70k	ns	
trcdrd	Active to Read delay		15	-	ns	
trcdwr	Active to Write delay		15	-	ns	
t _{RP}	Row precharge time		15	-	ns	
trrd	Row active to Row active delay		10	-	ns	
twr	Write recovery time		15	-	ns	
twrr	Internal Write to Read Delay		2	-	tск	
tccD	Col. Address to Col. Address delay		1	-	tск	
t MRD	Mode register set cycle time		2	-	tск	
tdal	Auto precharge write recovery + Precharge time		7	-	tск	1
tipw	Control and Address input pulse width		2.2	-	ns	<u> </u>
tDIPW	DQ & DM input pulse width (for each in			-	ns	
txsrd	Self refresh exit to read command dela		1.75 200	-	tск	
txsnr	Exit Self Refresh to non-Read Comma		75	-	ns	
tPDEX	Power down exit time		tcк + tis	-	ns	<u> </u>

trefi	Average Refresh interval time	-	15.6	μS	
t RAP	Active to Read with Auto Precharge Enable	t RASmin	-	ns	

Table 17. Recommended A.C. Operating Conditions (VDD = 2.5V ± 0.2V, TA = -40~85 °C)

Symbol	Parameter	Min.	Max.	Unit
VIH (AC)	Input High Voltage (AC)	VREF + 0.31	-	V
VIL (AC)	Input Low Voltage (AC)	-	Vref – 0.31	V
VID (AC)	Input Different Voltage, CK and \overline{CK} inputs	0.7	Vddq + 0.6	V
VIX (AC)	Input Crossing Point Voltage, CK and \overline{CK} inputs	0.5*Vddq-0.2	0.5*VDDQ+0.2	V

Note:

- 1. Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
- 2. All voltages are referenced to Vss.
- 3. These parameters depend on the cycle rate and these values are measured by the cycle rate under the minimum value of t_{CK} and t_{RC}. Input signals are changed one time during t_{CK}.
- 4. For command/address input slew rate ≥1.0 V/ns
- 5. For command/address input slew rate ≥0.5 V/ns, and <1.0 V/ns
- 6. For CK & CK slew rate ≥1.0 V/ns (single--ended)
- 7. These parameters guarantee device timing, but they are not necessarily tested on each device.

They may be guaranteed by device design or tester correlation.

- 8. Slew Rate is measured between VOH(AC) and VOL(AC).
- 9. Power-up sequence is described in Note 11.

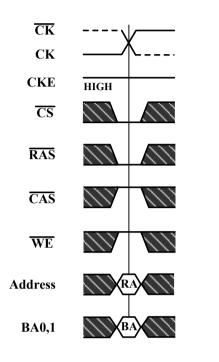
10.A.C. Test Conditions

Table 18. SSTL_2 Interface

Reference Level of Output Signals (VREF)	0.5 * VDDQ		
Output Load	Reference to the Test Load		
Input Signal Levels	V _{REF} +0.31 V / V _{REF} -0.31 V		
Input Signals Slew Rate	1 V/ns		
Reference Level of Input Signals	0.5 * VDDQ		

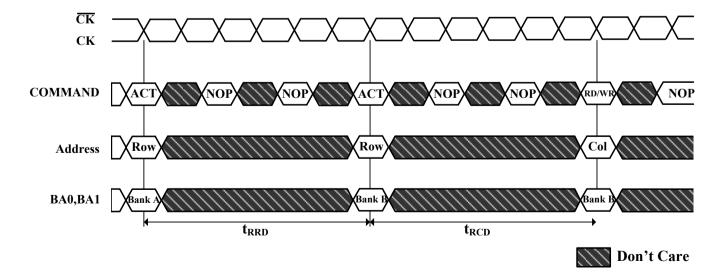
Figure 4. SSTL_2 A.C. Test Load 0.5 * VDDQ 50Ω DQ, DQS \sim $Z0=50\Omega$ 30pF

11. Power up Sequence


Power up must be performed in the following sequence.

- 1) Apply power to VDD before or at the same time as VDDQ, VTT and VREF when all input signals are held "NOP" state and maintain CKE "LOW".
- 2) Start clock and maintain stable condition for minimum 200 µs.
- 3) Issue a "NOP" command and keep CKE "HIGH"
- 4) Issue a "Precharge All" command.
- 5) Issue EMRS enable DLL.
- 6) Issue MRS reset DLL. (An additional 200 clock cycles are required to lock the DLL).
- 7) Precharge all banks of the device.
- 8) Issue two or more Auto Refresh commands.
- 9) Issue MRS with A8 to low to initialize the mode register.

Timing Waveforms


Figure 5. Activating a Specific Row in a Specific Bank

RA=Row Address BA=Bank Address

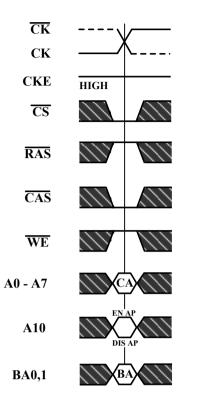
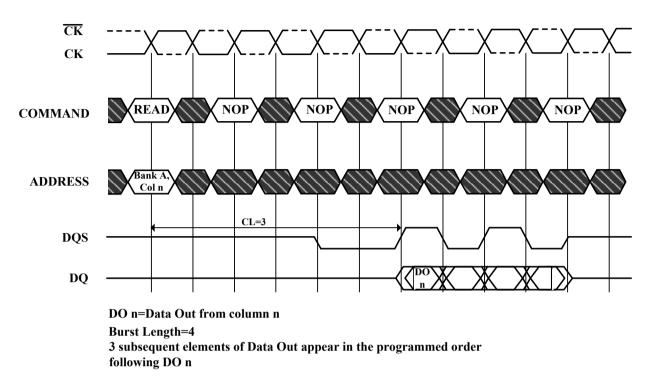
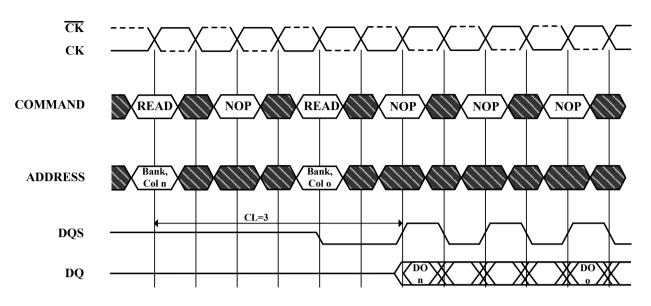


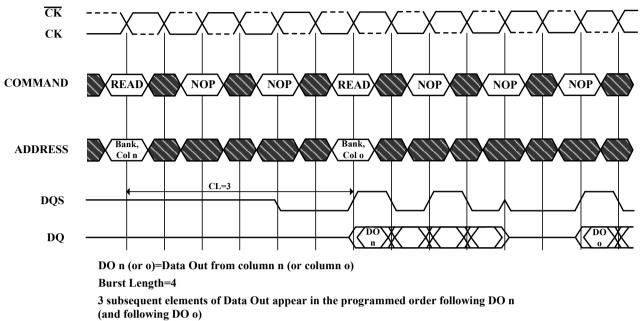
Figure 6. tRCD and tRRD Definition

Figure 7. READ Command

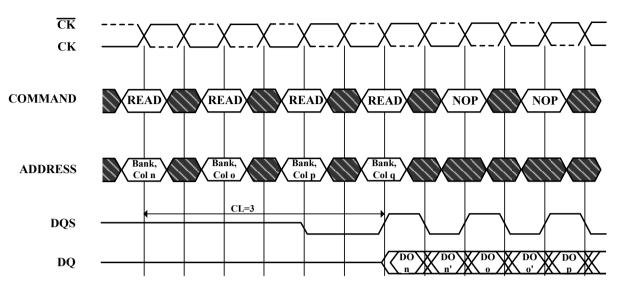


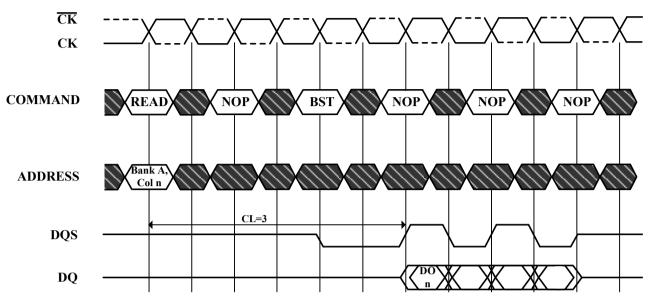
CA=Column Address BA=Bank Address EN AP=Enable Autoprecharge DIS AP=Disable Autoprecharge


Figure 8. Read Burst Required CAS Latencies (CL=3)



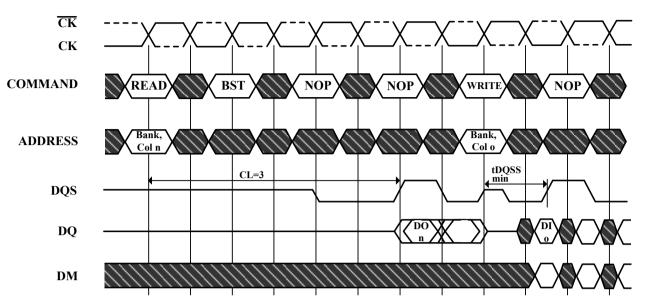
DO n (or o)=Data Out from column n (or column o) Burst Length=4 or 8 (if 4, the bursts are concatenated; if 8, the second burst interrupts the first) 3 subsequent elements of Data Out appear in the programmed order following DO n 3 (or 7) subsequent elements of Data Out appear in the programmed order following DO o Read commands shown must be to the same device




DO n, etc. =Data Out from column n, etc.

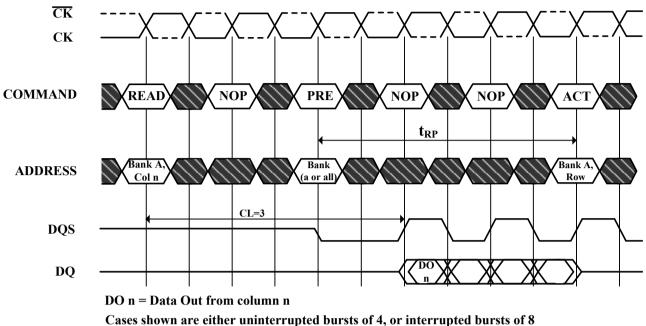
n', etc. =the next Data Out following DO n, etc. according to the programmed burst order Burst Length=2,4 or 8 in cases shown. If burst of 4 or 8, the burst is interrupted Reads are to active rows in any banks

DO n = Data Out from column n


Cases shown are bursts of 8 terminated after 4 data elements

3 subsequent elements of Data Out appear in the programmed order following DO n

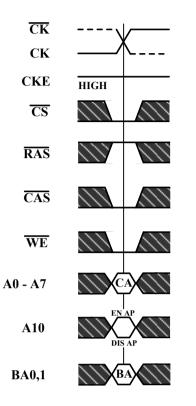
DO n (or o)= Data Out from column n (or column o)


Burst Length= 4 in the cases shown (applies for bursts of 8 as well; if burst length is 2, the BST command shown can be NOP)

1 subsequent element of Data Out appears in the programmed order following DO n Data in elements are applied following DI o in the programmed order

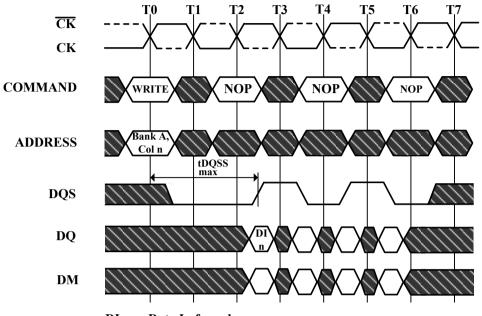
3 subsequent elements of Data Out appear in the programmed order following DO n

Precharge may be applied at (BL/2) tCK after the READ command Note that Precharge may not be issued before tRAS ns after the ACTIVE


command for applicable banks

The Active command may be applied if tRC has been met

Figure 15. Write Command

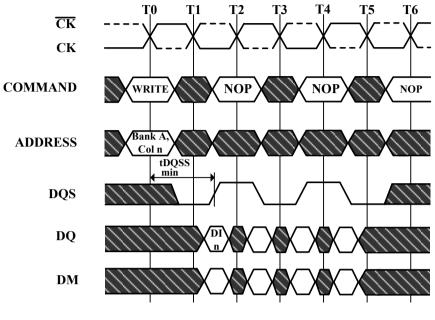


CA=Column Address BA=Bank Address EN AP=Enable Autoprecharge DIS AP=Disable Autoprecharge

Figure 16. Write Max DQSS

DI n = Data In for column n

3 subsequent elements of Data In are applied in the programmed order following DI n

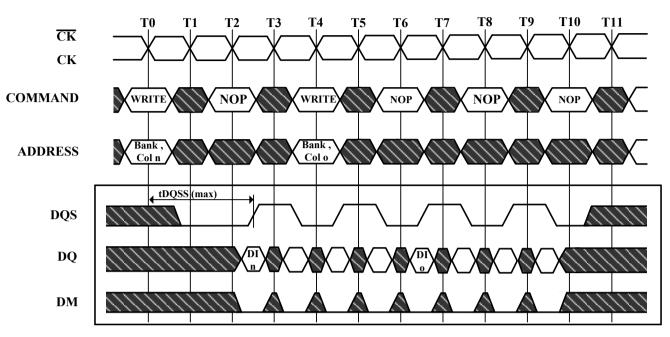

A non-interrupted burst of 4 is shown

A10 is LOW with the WRITE command (AUTO PRECHARGE disabled)

Figure 17. Write Min DQSS

DI n = Data In for column n 3 subsequent elements of Data In are applied in the programmed order following DI n A non-interrupted burst of 4 is shown A10 is LOW with the WRITE command (AUTO PRECHARGE disabled)

Figure 18. Write Burst Nom, Min, and Max tDQSS



DI n = Data In for column n 3 subsequent elements of Data are applied in the programmed order following DI n A non-interrupted burst of 4 is shown A10 is LOW with the WRITE command (AUTO PRECHARGE disabled) DM=UDM & LDM

Figure 19. Write to Write Max tDQSS

DI n, etc. = Data In for column n, etc.

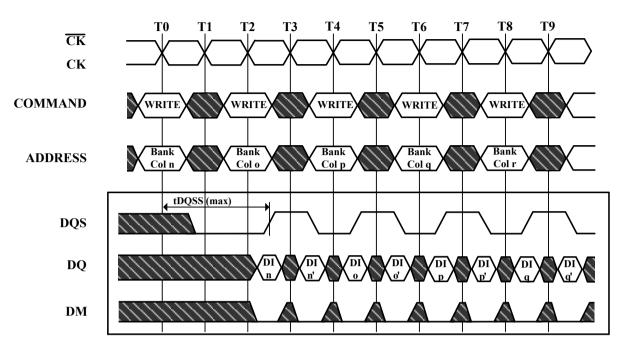
3 subsequent elements of Data In are applied in the programmed order following DI n 3 subsequent elements of Data In are applied in the programmed order following DI o Non-interrupted bursts of 4 are shown DM= UDM & LDM

T11

DM

Т9 T0 **T1** T2 Т5 **T6 T7 T8** T10 **T3 T4** CK СК COMMAND WRITE NOP NOP WRITE NOP NOP Bank Col n Bank ADDRESS Col o tDQSS (max) DQS DQ

Figure 20. Write to Write Max tDQSS, Non Consecutive

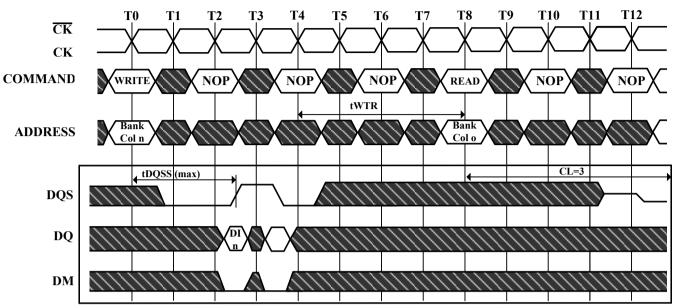

DI n, etc. = Data In for column n, etc.

3 subsequent elements of Data In are applied in the programmed order following DI n 3 subsequent elements of Data In are applied in the programmed order following DI o Non-interrupted bursts of 4 are shown DM= UDM & LDM

Figure 21. Random Write Cycles Max tDQSS

DI n, etc. = Data In for column n, etc.

n', etc. = the next Data In following DI n, etc. according to the programmed burst order Programmed Burst Length 2, 4, or 8 in cases shown


If burst of 4 or 8, the burst would be truncated

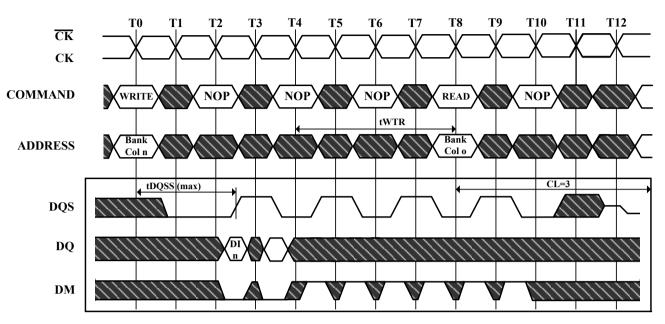
Each WRITE command may be to any bank and may be to the same or different devices DM= UDM & LDM

Figure 22. Write to Read Max tDQSS Non Interrupting

DI n, etc. = Data In for column n, etc.

1 subsequent elements of Data In are applied in the programmed order following DI n A non-interrupted burst of 2 is shown

tWTR is referenced from the first positive CK edge after the last Data In Pair


A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)

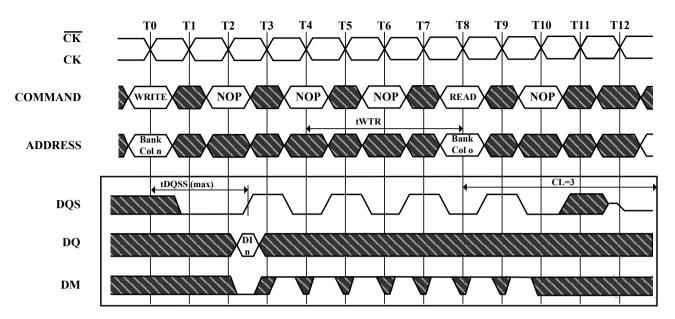
The READ and WRITE commands are to the same devices but not necessarily to the same bank DM= UDM & LDM

Figure 23. Write to Read Max tDQSS Interrupting

DI n, etc. = Data In for column n, etc.

1 subsequent elements of Data In are applied in the programmed order following DI n An interrupted burst of 8 is shown, 2 data elements are written

tWTR is referenced from the first positive CK edge after the last Data In Pair

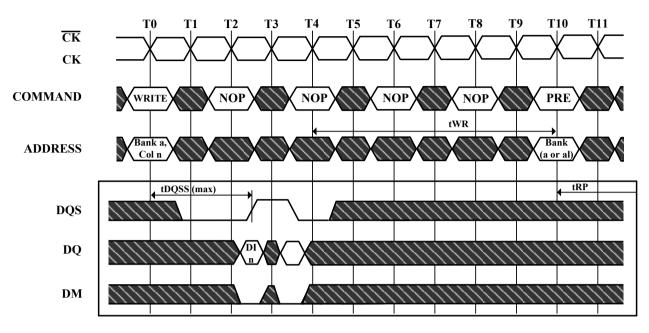

A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)

The READ and WRITE commands are to the same devices but not necessarily to the same bank DM= UDM & LDM

Figure 24. Write to Read Max tDQSS, ODD Number of Data, Interrupting

DI n = Data In for column n

An interrupted burst of 8 is shown, 1 data elements are written

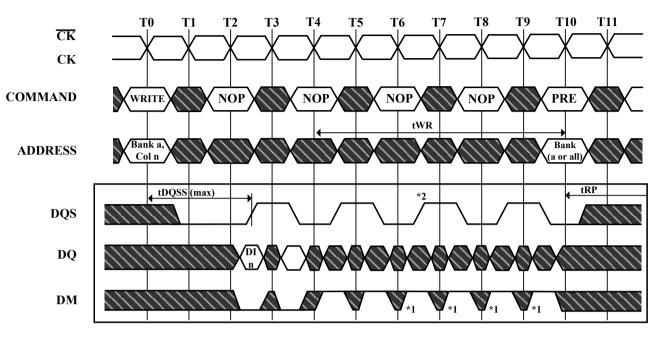

tWTR is referenced from the first positive CK edge after the last Data In Pair (not the last desired Data In element)

A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)

The READ and WRITE commands are to the same devices but not necessarily to the same bank DM= UDM & LDM

Figure 25. Write to Precharge Max tDQSS, NON- Interrupting

DI n = Data In for column n


1 subsequent elements of Data In are applied in the programmed order following DI n A non-interrupted burst of 2 is shown

tWR is referenced from the first positive CK edge after the last Data In Pair A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled) DM= UDM & LDM

Figure 26. Write to Precharge Max tDQSS, Interrupting

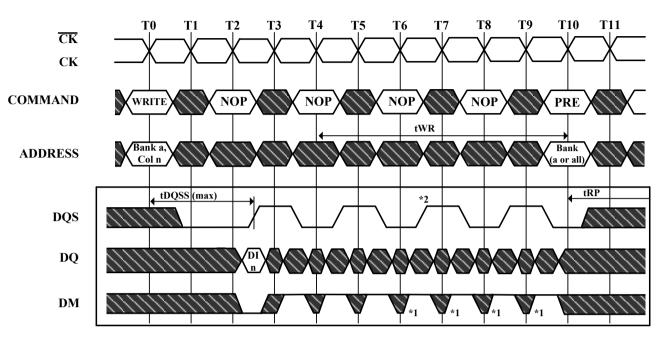
DI n = Data In for column n

An interrupted burst of 4 or 8 is shown, 2 data elements are written

tWR is referenced from the first positive CK edge after the last Data In Pair

A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)

*1 = can be don't care for programmed burst length of 4


*2 = for programmed burst length of 4, DQS becomes don't care at this point

DM= UDM & LDM

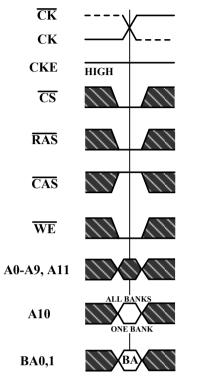
Figure 27. Write to Precharge Max tDQSS ODD Number of Data Interrupting

DI n = Data In for column n

An interrupted burst of 4 or 8 is shown, 1 data element is written

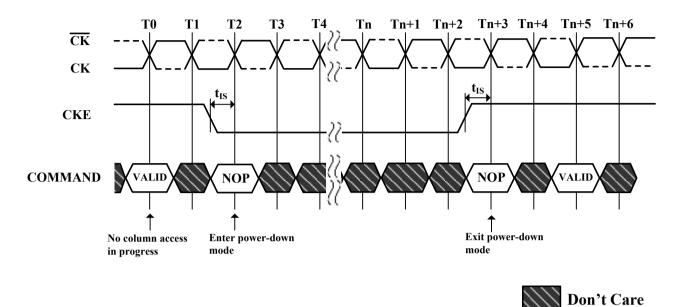
tWR is referenced from the first positive CK edge after the last Data In Pair

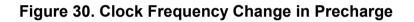
A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)


*1 = can be don't care for programmed burst length of 4

*2 = for programmed burst length of 4, DQS becomes don't care at this point DM= UDM & LDM

Figure 28. Precharge Command




BA= Bank Address (if A10 is LOW, otherwise don't care)

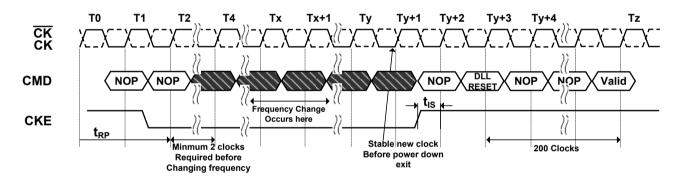


Figure 29. Power-Down

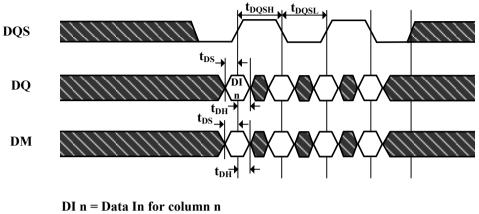
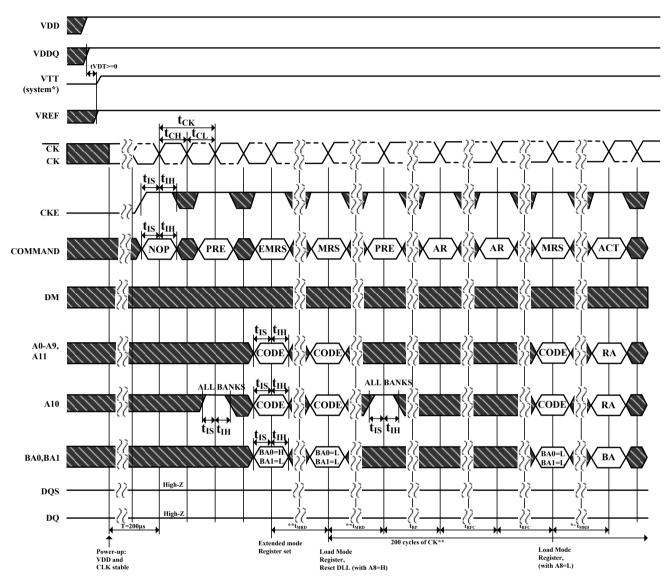


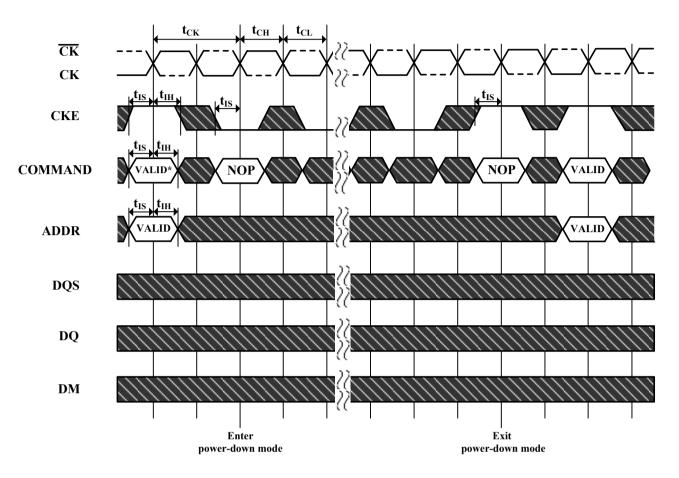
Figure 31. Data input (Write) Timing

Burst Length = 4 in the case shown 3 subsequent elements of Data In are applied in the programmed order following DI n


Figure 32. Data Output (Read) Timing

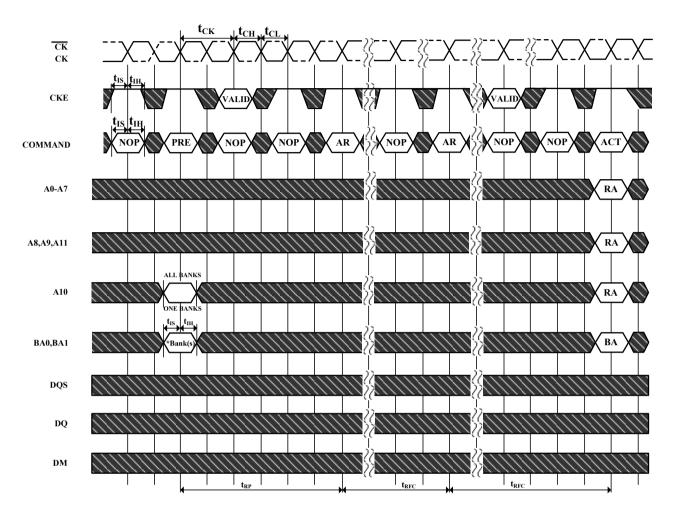
Burst Length = 4 in the case shown

Figure 33. Initialize and Mode Register Sets



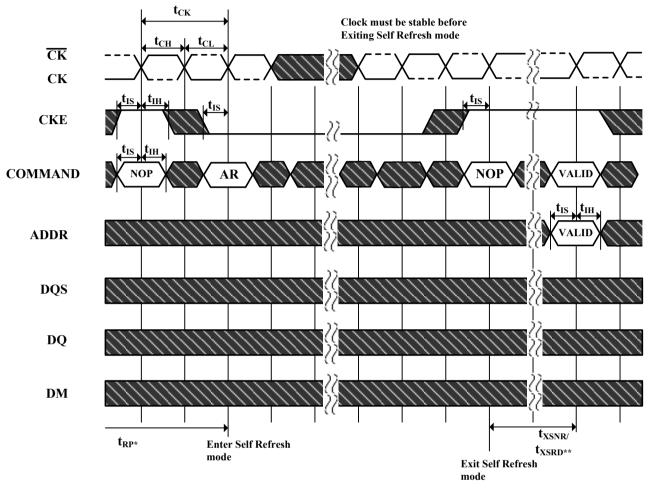
*=VTT is not applied directly to the device, however tVTD must be greater than or equal to zero to avoid device latch-up **=tMRD is required before any command can be applied, and 200 cycles of CK are required before any executable command can be applied The two Auto Refresh commands may be moved to follow the first MRS but precede the second PRECHARGE ALL command

Figure 34. Power Down Mode



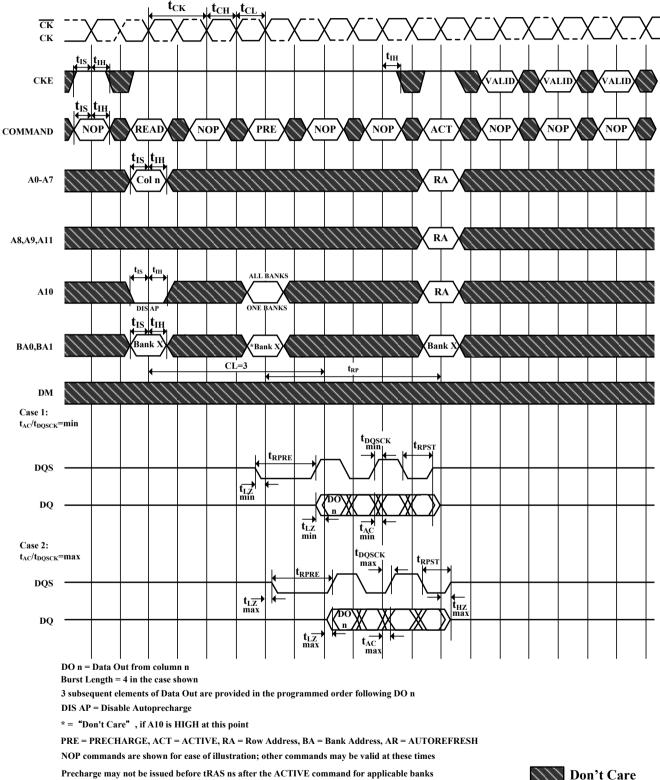
No column accesses are allowed to be in progress at the time Power-Down is entered *=If this command is a PRECHARGE ALL (or if the device is already in the idle state) then the Power-Down mode shown is Precharge Power Down. If this command is an ACTIVE (or if at least one row is already active) then the Power-Down mode shown is active Power Down.

Figure 35. Auto Refresh Mode



* = "Don't Care", if A10 is HIGH at this point; A10 must be HIGH if more than one bank is active (i.e., must precharge all active banks) PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address, AR = AUTOREFRESH NOP commands are shown for ease of illustration; other valid commands may be possible after tRFC DM, DQ and DQS signals are all "Don't Care" /High-Z for operations shown

Figure 36. Self Refresh Mode


* = Device must be in the "All banks idle" state prior to entering Self Refresh mode ** = tXSNR is required before any non-READ command can be applied, and tXSRD (200 cycles of CK) is required before a READ command can be applied.

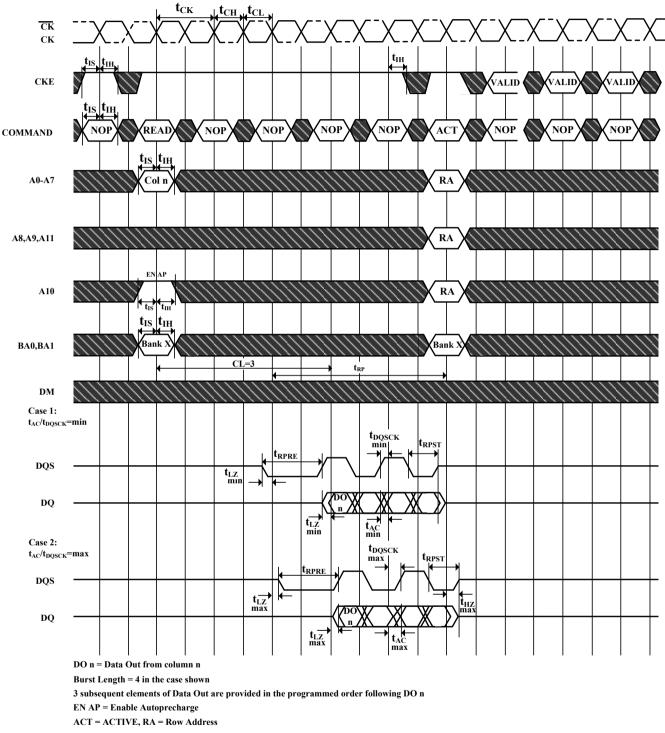
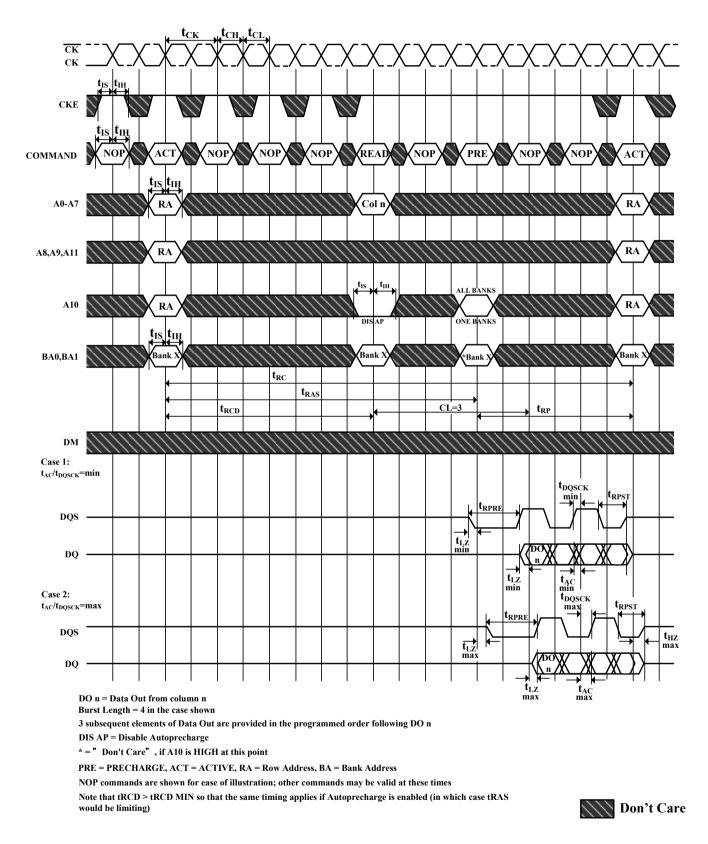


Figure 37. Read without Auto Precharge

Figure 38. Read with Auto Precharge

NOP commands are shown for ease of illustration; other commands may be valid at these times


The READ command may not be issued until tRAP has been satisfied. If Fast Autoprecharge is supported, tRAP = tRCD, else the READ may not be issued prior to tRASmin - (BL*tCK/2)

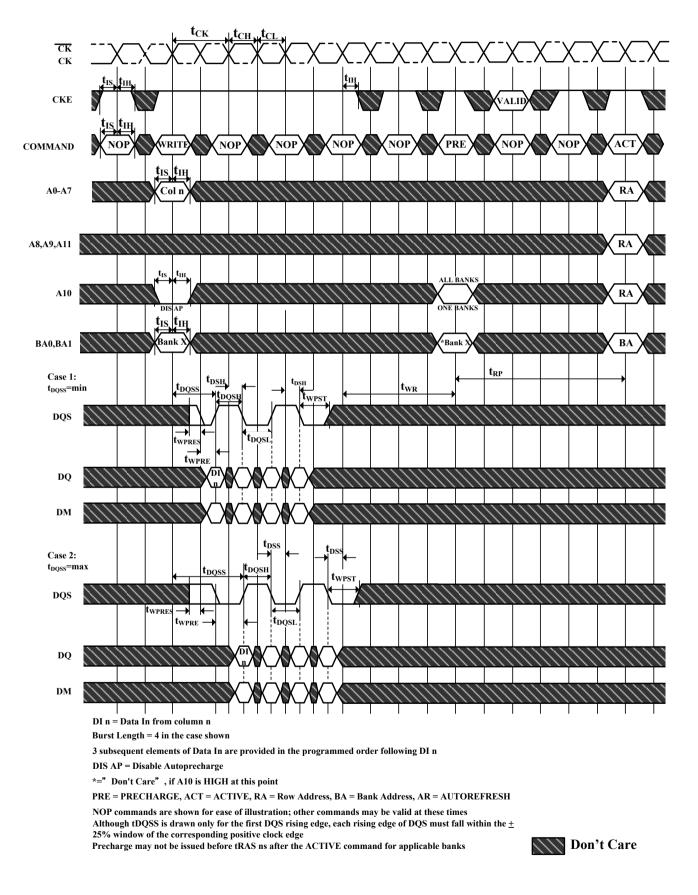

AS4C4M16D1

Figure 39. Bank Read Access

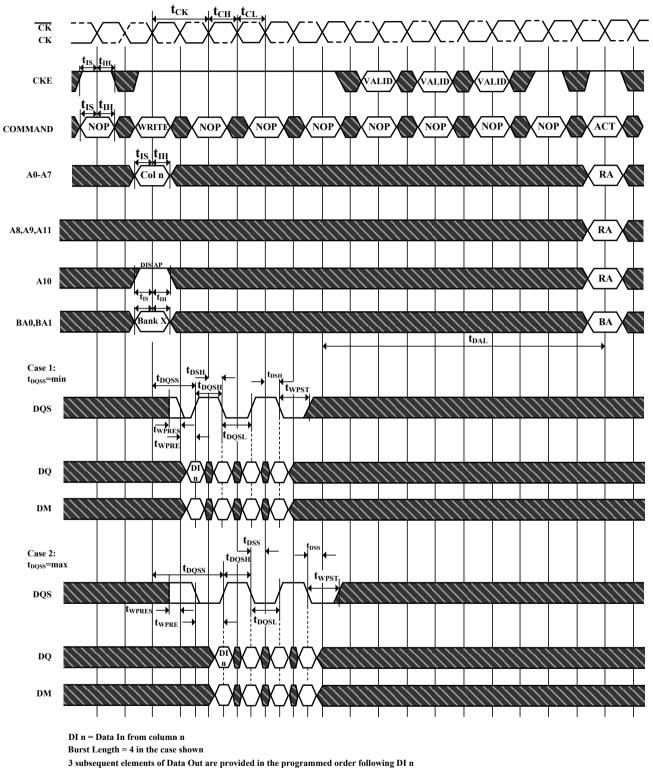
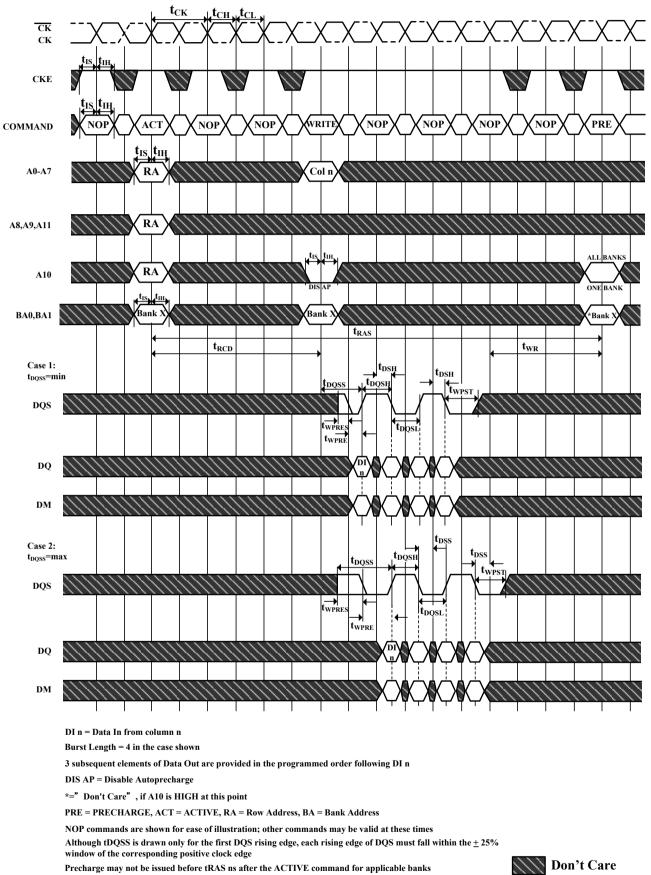


Figure 40. Write without Auto Precharge

Figure 41. Write with Auto Precharge

EN AP = Enable Autoprecharge

ACT = ACTIVE, RA = Row Address, BA = Bank Address


NOP commands are shown for ease of illustration; other commands may be valid at these times

Although tDQSS is drawn only for the first DQS rising edge, each rising edge of DQS must fall within the \pm 25% window of the corresponding positive clock edge

Don't Care

Figure 42. Bank Write Access

Figure 43. Write DM Operation

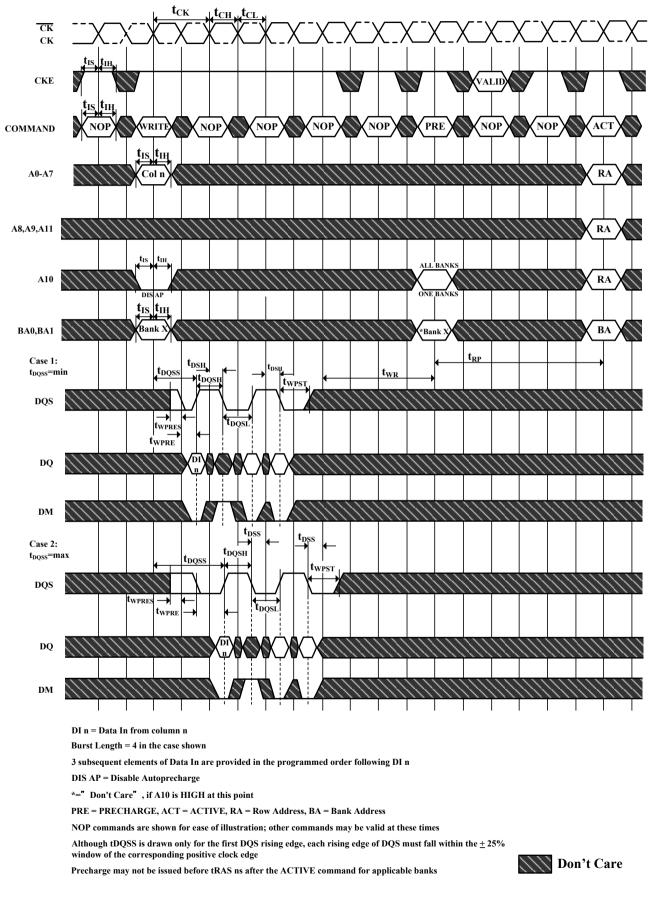
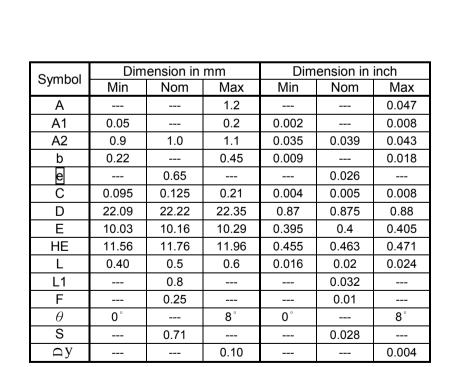
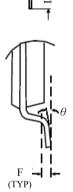




Figure 44. 66 Pin TSOP II Package Outline Drawing Information Units: mm

Alliance Memory, Inc 511 Taylor Way, San Carlos, CA 94070, USA Phone: 650-610-6800 Fax: 650-620-9211

www.alliancememory.com

Copyright © Alliance Memory All Rights Reserved

© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwett are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to thisdocument and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The detacontianed herein represents Alliance's best data and/or estimates at the time of issuence. Alliance reserves the right to change or correct this data at anytime, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information inthis product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of anyproduct described herein, and disclaims any express or implied warrantize related to the sale and/or use of Alliance products including liability or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of anyproduct described herein, and disclaims any express or implied warrantize related to the sale and/or use of Alliance products including liability orwarrantizes related to fitness for a particular purpose, menchantability, or infringement of any intellectual property rights, except as express agreed to inAlliance's Terms and Conditions of Sale. (which are available from Alliance does not outwork a licence products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not authorize its products for use as critical components infie-supporting systems where a malfunction or failure may reasonably be expected to result in significan

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9