

ICL8201

AC/DC Buck Controller with PFC for LED Lamps

Data Sheet Revision V2.0 2015-05-25

Power Management & Multimarket

Edition 2015-05-25 Published by Infineon Technologies AG, 81726 Munich, Germany. © 2015 Infineon Technologies AG All Rights Reserved.

LEGAL DISCLAIMER

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (**www.infineon.com**).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-11-11

Revision History

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of our documentation. Please send your proposal (including a reference to this document title/number) to: **ctdd@infineon.com**

Table of Contents

ICL8201 – Single-Stage Floating Buck Controller IC with Power Factor Correction for LED Lamps

Product Highlights

- **Low external component count for smallest form factors and easy design-in**
- **IC concept allows standard single chokes without auxiliary winding**
- **True universal AC line input voltage or DC supply**
- **Compensation of sudden line input voltage changes**
- **Supports wide output voltage**
- **Capable of providing an average LED output current up to 800 mA at 50% Duty Cycle**
- **Typical ± 5% output current accuracy over line, load and temperature variation**
- **Supports PF > 90% / iATHD < 20% over a wide line input voltage range**
- **System efficiency up to 90%**
- **Thermally-optimized package PG-SOT23-6-1 for small form factor designs**
- **Smooth start-up with minimized current overshoot**
- **Advanced cascode topology eliminates the requirement of high voltage startup cell**
- **External power switch supports fast time-to-light and high operating temperature**
- **Operation specified for junction temperature up to** $T_i = 150$ **°C**

IC Features

- **Critical Conduction operation mode without detection winding**
- Constant t_{ON} operation with variable frequency 40 kHz to 150 kHz
- **Integrated low-side MOSFET for rated peak current up to 2.65A**
- **Digital soft-start**
- **Fully integrated protection:**
- Short load
- Support open load
- Short winding at buck inductor
- Over-current protection (power limitation)
- Intelligent Over-Temperature Protection @ Tjmax = 150 °C
- V_{CC} Under-Voltage Lock-Out
- Short-to-GND of CS pin and Con pin
- Floating CS pin and Con pin
- Phase cut dimmer-safe

Target Applications

- A-lamps
- GU10 lamps
- PAR lamps
- Candelabra lamps
- Down lights
- T8 lamps

Block Diagram

1 Block Diagram

Figure 1 Internal Block Diagram

IC and Application Feature Overview

2 IC and Application Feature Overview

2.1 Application Feature SET

Table 1 Application Feature SET

2.2 IC Feature SET

Table 2 IC Feature SET

2.3 Regulation Feature SET

Table 3 Regulation Feature SET

IC and Application Feature Overview

2.4 Protection Feature SET

Table 4 Protection Feature SET

IC and Application Feature Overview

Pin Configuration and Functionality

3 Pin Configuration and Functionality

3.1 Pin Configuration with PG-SOT23-6-1

Table 5 Pin configuration

3.2 Package

Figure 2 Pin configuration PG-SOT23-6-1 (top view)

3.3 Pin Description

Vcs (current sense, pin 1)

This pin is directly connected to the shunt resistor, which is located between the source terminal of the integrated low-side MOSFET and ground.

Internal clamping structures and filtering measures allow sensing of the source current for the low-side power MOSFET without additional filter components.

This pin is for power limitation, output average current regulation & the integrated protection features.

GND (ground, pin 2)

This pin is connected to ground and represents the ground level of the IC for the supply voltage, gate drive and sense signals.

Con (constant current, pin 3)

Regulate the constant current in the output stage of the Floating BUCK converter.

Pin Configuration and Functionality

Vcc (supply voltage, pin 4)

This pin provides the power supply of the ground-related section of the IC. There is a UVLO turn-on threshold at 7.5 V (V_{CC.ON}) and a UVLO turn-off threshold at 6.0 V (V_{CC.OFF}). The maximum V_{CC} supply voltage level is 18.0 V. The chip supply current is typically at I_{VCC} = 0.82 mA.

GND (ground, pin 5)

This pin is connected to ground and represents the ground level of the IC for the supply voltage, gate drive and sense signals.

DRAIN (DRAIN, pin 6)

This pin is connected to the drain of the internal low side MOSFET. It is also used for protection features.

4 Functional Description

4.1 Typical Application Circuit

Figure 3 Application Circuit of a LED Driver in a Floating BUCK Topology

Description

The ICL8201 is a cascode structure current mode controller for non-isolated single-choke floating BUCK topologies. The device is tailored for LED applications and provides constant current operation with low output current ripple in a real universal line input voltage range as well as load compensation for a wide output voltage range.

The low PIN count PG-SOT23-6-1 package supports small form factor and low-cost designs. The high level of integration enables a minimum of effort for addition of external components. The ICL8201 control concept supports DC and AC input as well as high Power Factor Correction (PFC), high efficiency levels and reduced EMI designs in critical conduction operation mode without zero crossing detection winding. Along with outstanding integrated regulation and protection features, the cascode arrangement simplifies V_{CC} supply of the IC, that eliminates the need of a depletion MOS. The regulation is done without detecting the AC line input voltage or sensing the output voltage. All these features are implemented with a minimum amount of external components. The device operates in a wide junction temperature range from -25°C to 150°C. The highly efficient integrated low-voltage MOSFET will eliminate the need for any additional thermal management.

4.2 Internal Functional Description

4.2.1 VCC Pre-Charging and Typical VCC voltage profile During Start-up

In ICL8201, a startup cell is not needed. As shown in Figure 4, once the mains input voltage is applied, a rectified voltage V_{BUS} appears across the capacitor C_{IN} . The pull up resistor R_{GD} provides a current to charge the C_{GD} capacitor and gradually generate one voltage level for the gate of external power MOSFET Q_1 . If voltage over C_{GD} is high enough, V_{CC} capacitor will be charged through external LED load, choke inductor L_{BUCK} , external power MOSFET Q_1 , and diode D_{VCC}. Because capacitor C_{GD} is quite small (around 10nF), so charging this capacitor and consequently charging V_{CC} capacitor C_{VCC} will be within very short time. There is one zener diode, D_{ZGD} which is used to clamp voltage over C_{GD} and its breakdown voltage can be 12V, so during startup, V_{CC} voltage will be charged up to 12V - V_{threshold} - V_F (where V_{threshold} is threshold voltage of power MOSFET Q₁ and V_F is forward voltage of D_{VCC}).

When V_{CC} voltage reach UVLO turn-on threshold (which is 7.5V), the whole chip will be turned on and system will enter into normal operation after soft start. During normal operation, V_{CC} capacitor will be charged through bypass capacitor C_{DS} and power MOSFET (when V_{CC} is lower than 12V - V_{threshold} - V_F).

Figure 4 V_{cc} voltage at start up

When the V_{CC} voltage exceeds the V_{CC} turned-on threshold V_{VCC.ON} at time t1, the IC begins to operate with softstart. V_{CC} capacitor will be charged through bypass capacitor C_{DS}, as shown in **Figure 6.** After some time, when V_{CC} voltage is high enough, it will be clamped by the external Zener diode D_{ZGD} .

4.2.2 Soft Start

Figure 6 Soft-Start profile

As shown in Figure 7, at time t_{on} , the IC begins to operate with a soft-start. By using this soft-start, the switching stresses for the switch, diode and choke inductor are minimized. The Soft-Start implemented in ICL8201 is a digital time-based function. The preset soft-start time is t_{SS} (24ms) with 4 steps. If not limited by other functions, the peak voltage on Vcs pin will increase step by step from 0.1V to 0.4V finally. After soft start, the peak V_{CS} is limited by 0.9V current limitation.

4.2.3 Normal Regulation Operation

Figure 7 Normal regulation operation of ICL8201

4.2.4 Zero Current Detection

In the ICL8201 system, when power MOSFET is being turned on, current through choke inductor L_{BUCK} will linearly ramp up, when power MOSFET is being turned off, current through choke inductor will linearly ramp down until 0A.

Later when current through choke inductor reaches 0A, system will start to oscillate. In order to turn on power MOSFET when current through choke inductor reduce to 0A, it is necessary to do zero current detection for system.

As shown in Figure 9, zero current detection is achieved by the following circuit.

Figure 8 Zero current detection circuit implemented in ICL8201

The above block diagram shown in Figure 9, where capacitor C_{DS} is used to couple the high frequency signal to IC Drain and internally IC will accept the oscillation signal and do zero current detection. Internally, capacitor C_1 will be used to further couple oscillation signal at DRAIN pin into low voltage signal; current source I_1 and operational amplifier is used to ensure the maximum V_{cross} voltage to be 1.4V when there is no oscillation at the Drain pin; diode D_1 is used to clamp point V_{cross} voltage not lower than -0.7V when power MOSFET is being turned on; when there is some high frequency signal transferred to point V_{cross} , the V_{cross} will be pulled down, and there is one comparator which is used to detect if V_{cross} is lower than 1.0V. When V_{cross} is lower than 1.0V, zero current point is detected. The typical DRAIN voltage Slew Rate necessary for zero current detection is 50V/us for a delta V_{DRAIN} of 0.5V and 2.5V/us for a delta V_{DRAIN} of 0.8V.

As shown in Figure 10, upper side power MOSFET drain voltage and lower side power MOSFET drain & current through choke inductor with zero current detection used.

Figure 9 Waveform to show how is the drain voltage and current through choke inductor behave when zero current detection used

4.2.5 Peak Detection

In order to do output current measurement and regulation, it is necessary to do V_{CS} voltage peak detection. As shown in Figure 11, the peak voltage value of V_{CS} is sample and hold for output current regulation purpose.

4.2.6 Voltage to Current Converter

Figure 11 Block diagram to show peak detection & Voltage to Current block with current mirror circuit diagram

From the above block diagram, at first V_{CS} peak voltage is sample and hold, which will be applied to one Voltage to Current converter block, this voltage to Current converter block includes OPAMP A_3 , NMOS transistor N_4 and resistor $R₂$.

The current I_{CSpeak} will be equal to V_{CSpeak} / R_2 . This I_{CSpeak} will be mirrored by P_2 and P_3 into 7-times current source to charge external capacitor C_{ON} . Also there is one resistor R_3 which is connected from Con to GND. The external C_{ON} works together with this internal resistor R_3 establish the C_{on} voltage which will be applied to the internal coarse and fine tuning block to determine the ON time, T_{ON} .

4.2.7 ON time generation

ICL8201 uses constant on time control method, it can accept universal input voltage with wide output voltage range. The On time range is between 0.8µs and 20µs. The On Time is preset to 800ns during start up. The percentage of On time change is dependent on V_{Con} voltage. V_{Con} voltage is sensed every 12ms typically. The percentage of On time change with respect to V_{Con} voltage is shown in Table 2.

V_{Con} voltage	On time
V_{Con} > 1.8V	Decrease by 50%
1.8V $>V_{Con}$ $>1.6V$	Decrease by 10%
1.6V $>V_{\text{Con}}$ $>1.5V$	Decrease by 0.2%
1.4V <v<sub>Con <1.5V</v<sub>	Increase by 0.2%
1.2V <v<math>_{\rm Con}<1.4V</v<math>	Increase by 10%
V_{Con} <1.2V	Increase by 50%

Table 6 Tuning mechanism used in ICL8201

4.2.8 How to calculate output average current

The average of the V_{CS} peak voltage divided by external sense resistor R_{CS} will be the 2 times of the average current through choke inductor. Output average current only depends on sense resistor value, in order to get target output average current, equation 5.1 can be followed

$$
I_{output} = \frac{1}{2} \times \frac{1.5}{3.5 \times (R_{CS})}
$$
\n^(5.1)

Where R_{cs} is sense resistor value and 3.5 is Peak V $_{\mathsf{cs}}$ amplifier gain, 1.5V is C_{ON} threshold voltage.

4.2.9 Leading Edge Blanking

Figure 12 Leading Edge Blanking

Whenever the power MOSFET is switched on, a leading edge spike is generated due to parasitic capacitances. This spike can cause the gate drive to switch off unintentionally. In order to avoid a premature termination of the switching pulse, this spike is blanked out with a time constant of t_{LEB} =205ns.

4.2.10 Driver Stage

Cascode topology is adopted in ICL8201 system, one fixed voltage (for example: 12V) is applied to the Gate of the upper side power MOSFET, then if lower side power MOSFET is turned on, the whole current path will be turned on; if lower side power MOSFET is turned off, the whole current path will also be turned off.

4.3 System Functional description

4.3.1 Start-Up behaviour

4.3.1.1 Start-Up: Into Normal Operation

Start-up is executed in 3 phases: UVLO, power-up and soft start, as shown in figure 14. When the bus voltage is applied, the V_{CC} capacitor C_{VCC} is charged up until V_{CC} reaches the V_{CC} 'ON' threshold of V_{CC.ON} = 7.5 V. After exceeding this threshold, the IC powers up into the soft start. V_{CON} is charged up, the internal MOSFET starts switching.

There is one fast charge function which is used to charge Con pin quickly to 1.5V after IC start to work.

Figure 13 Start Up

4.3.1.2 Start-Up: Soft-Start Phase

During the digital Soft-Start phase, the current sensing voltage V_{CS} is limited from 0.1 V up to 0.4 V. After the soft start phase (24 ms), the peak current sensing voltage threshold is set to V_{CS} = 0.9 V for current limitation. Two additional thresholds are set in order to detect output short and short winding conditions. The first set to be $V_{CSthShort}$ = 0.6 V with no zero current detection as protection against short OUTPUT and second set to be $V_{CSthShort}$ = 1.2 V when a short winding at the BUCK choke, L_{BUCK}, happens. In figure 15, shows the voltage behavior during start-up into normal operation.

Figure 14 Soft-Start

4.3.1.3 Start-Up: Short Output

During the digital Soft-Start phase, a short output is detected when the current sensing voltage V_{CS} exceeds the $V_{CSthShort}$ = 0.6 V threshold and the internal zero current detection signal is missing. The controller stops working after a consecutive 126 switching cycles and enters into the LATCH OFF mode.

Figure 15 Short Output

4.3.1.4 Start-Up: Floating Load Protection

There is no effective floating load protection available. The risks during open or floating load are that the output voltage will be charged to the same voltage as input. If output capacitor, C_{OUT}, is not selected **above the rated input voltage, it is recommended to include an output clamp circuit to prevent output capacitor, COUT, from operating above its rated voltage during open or floating load conditions.**

An open output (floating load) is detected when the current sensing voltage V_{CS} stays below V_{CSthFLP} = 0.12 V for 24 ms (soft start time) + 160 ms. After this blanking time, the controller stops working and enters into the LATCH OFF mode.

Figure 16 Floating Load Protection

4.3.1.5 Start-Up and Run Mode: Short Winding Protection

A short winding (short on L_{BUCK}) is detected when the current sensing voltage V_{CS} exceeds the V_{CSthShort} = 1.2 V threshold with a blanking time of 100ns and triggered after LEB signal with 3 continuous switching cycles. The controller stops working and enters into the LATCH OFF mode.

Figure 17 Short Winding Protection

4.3.2 Run Mode behaviour

4.3.2.1 Typical Curves during RUN Mode

The chart below shows the typical curves of a BUCK converter:

The black signal is the drain-to-source voltage of the MOSFET

The blue signal is the MOSFET current during ON time

The red signal shows the inductor current through the BUCK choke

The red signal is the voltage at the BUCK choke

Purple is the current through the free-wheeling diode when the MOSFET is turned OFF

Figure 18 Typical Curves for Floating BUCK Topology

4.3.2.2 Run Mode: Short Output

During normal operation (RUN mode), a short output is detected when the current sensing voltage V_{CS} exceeds the $V_{CSthShort}$ = 0.6 V threshold and the internal zero current detection signal is missing. The controller stops working after 126 switching cycles and enters into the LATCH OFF mode.

Figure 19 Short Output During Run Mode

4.3.2.3 Run Mode: Floating Load Protection

There is no effective floating load protection available. The risks during open or floating load are that the output voltage will be charged to the same voltage as input. If output capacitor, C_{OUT}, is not selected **above the rated input voltage, it is recommended to include an output clamp circuit to prevent output capacitor, COUT, from operating above its rated voltage during open or floating load conditions.**

An open output (floating load) is detected when the current sensing voltage V_{CS} stays below the $V_{CSthEIP}$ = 0.12 V threshold. The controller stops working after 160 ms blanking time and enters into the LATCH OFF mode.

Figure 20 Floating Load Protection in Run Mode

4.3.3 Intelligent Over-Temperature Protection (iOTP)

The chart below shows the digital integrated intelligent over-temperature protection. In the event of overheating of the IC (T_i > 150 °C), the integrated thermal sensing on the IC reduces the output current (black signal) in $\bar{7}$ digital steps down to 50% of the target value of I_{OUT} . This thermal downgrading is independent of time. When the temperature decreases, the IC returns in reverse into the value which is allowed, or back to the target value of I_{OUT} . If the temperature continues to increase and exceeds $T_i > 160$ °C, the IC will enter LATCH OFF mode.

Figure 21 Intelligent Over-Temperature Protection iOTP

4.3.4 IC Working and Typical BUCK Curves

4.3.4.1 Critical Conduction operation with Constant TON Time and variable Frequency

The chart below shows the working behavior over one AC half-cycle in critical conduction operation with constant t_{ON} time (see Gate Voltage) with variable frequency. The red signal shows the primary current through the MOSFET during ON time. The secondary (free-wheeling diode) current is shown in black.

Figure 22 TON Characteristics

4.3.4.2 Typical Curves of a BUCK Converter

Figure 23 Typical Curves of a Floating BUCK converter

Absolute Maximum Ratings and thermal Characteristics

5 Absolute Maximum Ratings and thermal Characteristics

5.1 Absolute Maximum Ratings

Absolute maximum ratings are defined as ratings, which when exceeded may lead to destruction of the Integrated Circuit. For the same reason make sure that any capacitor connected to pin 3 (V_{CC}) is discharged before assembling the application circuit.

Parameter	Symbol	Values				
		Min.	Typ.	Max.	Units	Notes/Test Conditions
Supply voltage	$V_{\rm CC}$	-0.3	$\overline{}$	18	V	$\overline{}$
Con	V_{Con}	-0.3		3.3	\vee	$\overline{}$
V_{CS}	V_{CS}	-0.3		3.3	\vee	$\overline{}$
DRAIN	V _{DRAIN}	-0.3		27	V	$\overline{}$
Maximum Peak Drain current	I DRAINPeak			2.65	A	For DC Input less than 31% Duty Cycle
Maximum DC Drain current	I DRAIN			400	mA	
CS Shunt Resistor	R_{CS}	0.34		$\overline{}$	Ω	
ESD capability at all pins	V_{ESD_HBM}			$\overline{2}$	kV	HBM according to. JESD22-A114

Table 7 Absolute Maximum Ratings

Attention: Stresses above the maximum values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Absolute Maximum Ratings and thermal Characteristics

5.2 Thermal Characteristics

1 For calculation of R_{thJS}, please refer to application note AN077 (Thermal Resistance Calculation)

The major part of the IC power dissipation is caused by the switch resistance in the conductive state. Therefore **Equation 6.1** is an initial estimation used to calculate the power dissipation of the IC:

 $P_{out} = R_{ON} \times I_{OUT}^2$

(6.1)

Electrical Characteristics

6 Electrical Characteristics

All voltages without the high-side signals are measured in reference to ground (pin 2 & 5). The voltage levels are valid if other ratings are not violated.

6.1 DC Characteristics

All parameters at T_{amb} = +25 °C, unless otherwise specified.

Electrical Characteristics

1 IC is deactivated once the supply voltage drops below $V_{CC,OFF}$ and becomes operative once the supply voltage rises above V_{CC.ON}

6.2 Switching Characteristics

All parameters at T_{amb} = +25 °C, unless otherwise specified.

Application Example

7 Application Example

Figure 24 Application Circuit for a 10W LED Lamp

Bill of Materials

8 Bill of Materials

Figure 25 Bill of Materials(BOM)

Package Outline

Figure 26 Package Outline (dimensions in mm)

www.infineon.com

Published by Infineon Technologies AG

info@moschip.ru

 $\circled{1}$ +7 495 668 12 70

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

 Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@[moschip](mailto:info@moschip.ru).ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9