
A product of SEGGER Microcontroller GmbH & Co. KG

embOS

Document: UM01001
Software version 3.88e

Revision: 0
Date: September 6, 2013

CPU-independent

User & reference guide

Real-Time
Operating System

www.segger.com

2 CHAPTER

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil-
ity for any errors or omissions. SEGGER makes and you receive no warranties or con-
ditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particu-
lar purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of SEGGER. The software described in this document is
furnished under a license and may only be used or copied in accordance with the
terms of such a license.

© 1995- 2013 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
E-mail: support@segger.com
Internet: http://www.segger.com

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

3

Manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: September 6, 2013

Software Revision Date By Description
3.88e 0 130906 TS Update to latest software version.
3.88d 0 130904 AW Update to latest software version.
3.88c 0 130808 TS Update to latest software version.
3.88b 0 130528 TS Update to latest software version.

3.88a 0 130503 AW

Software update.
Event handling modified, the reset behaviour of events can be
controlled. New functions added, chapter "Events":
OS_EVENT_CreateEx();
OS_EVENT_SetResetMode();
OS_EVENT_GetResetMode();
Mailbox message size limits enlarged.

3.88 0 130219 TS Minor corrections.

3.86n 0 121210
AW
/TS

Update to latest software version.

3.86l 0 121122 AW
Software update
OS_AddTickHook() function corrected.
Several functions modified to allow most of MISRA rule checks

3.86k 0 121004 TS
Chapter "Queue"
 * OS_Q_GetMessageSize() and OS_Q_PeekPtr() added.

3.86i 0 120926 TS Update to latest software version.

3.86h 0 120906 AW
Software update,
OS_EVENT handling with timeout corrected.

3.86g 0 120806 AW
Software update, OS_RetriggerTimer() corrected.
Task events explained more in detail. Additional software
examples in the manual.

3.86f 0 120723 AW

Task events modified, default set to 32bit on 32bit CPUs.
Chapter 4: New API function OS_AddOnTerminateHook()
OS_ERR_TIMESLICE removed. A timeslice value of 0 is legal
when creating tasks.

3.86e 0 120529 AW

Update to latest software version with corrected functions:
OS_GetSysStackBase()
OS_GetSysStackSize()
OS_GetSysStackSpace()
OS_GetSysStackUsed()
OS_GetIntStackBase()
OS_GetIntStackSize()
OS_GetIntStackSpace()
OS_GetIntStackUsed()
could not be used in release builds of embOS.
Manual corrections:
Several index entries corrected.
OS_EnterRegion() described more in detail.

3.86d 0 120510 TS Update to latest software version.
3.86c 0 120508 TS Update to latest software version.

3.86b 0 120502 TS

Chapter "Mailbox"
 * OS_PeekMail() added.
Chapter "Support" added.
Chapter "Debugging":
 * Application defined error codes added.

4 CHAPTER

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

3.86 0 120323 AW

Timeout handling for waitable objects modified. A timeout will
be returned from the waiting function, when the obeject was
not avaialbale during the timeout time. Previous implementa-
tion of timeout functions might have returned a signaled state
when the object was signaled after the timeout when the call-
ing task was blocked for a longer period by higher priorized
tasks.
Modified functions:
OS_UseTimed(), Chapter 6.2.3
OS_WaitCSemaTimed(), Chapter 7.2.6
OS_GetMailTimed(), Chapter 8.5.8
OS_WaitMailTimed(), Chapter 8.5.10
OS_Q_GetPtrTimed(), Chapter 9.3.7
OS_EVENT_WaitTimed(), Chapter 11.2.4
OS_MEMF_AllocTimed(), Chapter 13.2.4

New Chapter 4.3. "Extending the task context" added.

New functions added and described in the manual:
Chapter 4.4.14: OS_GetTaskName()
Chapter 4.4.14: OS_GetTimeSliceRem()

Handling of queues described mor in detail:
Chapter 9.3.5: OS_Q_GetPtr()
Chapter 9.3.6: OS_Q_GetPtrCond()
Chapter 9.3.7: OS_Q_GetPtrTimed()
Chapter 9.3.8: OS_Q_Purge()

Chapter 10, Task Events:
Type for task events OS_TASK_EVENT introduced. This type is
used for all events and event masks. it defaults to unsigned
char.

Chapter 2.4.3 "Priority inversion / inheritance" updated

Chapter 17.3.1 function names OS_Timing_Start() and
OS_Timing_End() corrected in the API table.

3.84c 1 120130
AW
/TS

Since version 3.82w of embOS, all pointer parameter pointing
to objects which were not modified by the function were
declared as const, but the manual was not updated accord-
ingly.
The prototype descriptions of the following API functions are
corrected now:
OS_GetTimerValue()
OS_GetTimerStatus()
OS_GetTimerPeriod()
OS_GetSemaValue()
OS_GetResourceOwner()
OS_Q_IsInUse()
OS_Q_GetMessageCnt()
OS_IsTask()
OS_GetEventsOccurred()
OS_GetCSemaValue()
OS_TICK_RemoveHook()
OS_MEMF_IsInPool()
OS_MEMF_GetMaxUsed()
OS_MEMF_GetNumBlocks()
OS_MEMF_GetBlockSize()
OS_GetSuspendCnt()
OS_GetPriority()
OS_EVENT_Get()
OS_Timing_Getus()
Chapter "Preface"
 * Segger Logo replaced.
Chapter "Mailbox"
 * OS_CREARTEMB() changed to OS_CreateMB().
Chapter "Queues"
 * Typos corrected.

3.84c 0 120104
Chapter "Events"
 * Return value of OS_EVENT_WaitTimed() explained in more
detail

Software Revision Date By Description

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

5

3.84b 0 111221 TS
Chapter "Queues"
 * OS_Q_PutBlocked() added.

3.84a 0 111207 TS General updates and corrections.

3.84 0 110927 TS

Chapter "Stacks"
 * OS_GetSysStackBase() added.
 * OS_GetSysStackSize() added.
 * OS_GetSysStackUsed() added.
 * OS_GetSysStackSpace() added.
 * OS_GetIntStackBase() added.
 * OS_GetIntStackSize() added.
 * OS_GetIntStackUsed() added.
 * OS_GetIntStackSpace() added.

3.82x 0 110829 TS
Chapter "Debugging"
 * New error code "OS_ERR_REGIONCNT" added.

3.82w 0 110812 TS
New embOS generic sources.
Chapter 24 "Debugging" updated.

3.82v 0 110715 AW OS_Terminate() renamed to OS_TerminateTask().

3.82u 0 110630 TS
New embOS generic sources.
Chapter 13: Fixed size memory pools modified.

3.82t 0 110503 TS New embOS generic sources. Trial time limitation increased.

3.82s 0 110318 AW

Chapter 5.2, "Timer" API functions table corrected.
All functions can be called from main(), task, ISR or Timer.
Chapter 6: OS_UseTimed() added.
Chapter 9: OS_Q_IsInUse() added.

3.82p 0 110112 AW

Chapter "Mailboxes"
 * OS_PutMail()
 * OS_PutMailCond()
 * OS_PutMailFront()
 * OS_PutMailFrontCond()
 parameter declaration changed.
Chapter 4.3 API functions table corrected.
OS_Suspend() can not be called from ISR or Timer.

3.82o 0 110104 AW
Chapter "Mailboxes"
 * OS_WaitMailTimed() added.

3.82n 0 101206 AW

Chapter "Taskroutines"
 * OS_ResumeAllSuspendedTasks() added.
 * OS_SetInitialSuspendCnt() added.
 * OS_SuspendAllTasks() added.
Chapter "Time Measurement"
 * Description of OS_GetTime32() corrected.
Chapter "List of error codes"
 * New error codes added.

3.82k 0 100927 TS
Chapter "Taskroutines"
 * OS_Delayus() added
 * OS_Q_Delete() added

3.82i 0 100917 TS General updates and corrections.

3.82h 0 100621 AW
Chapter Event objects: Samples added.
Chapter: Configuration of target system: Detailed description
of OS_idle() added

3.82f 1 100505 TS
Chapter Profiling added
Chapter SystemTick: OS_TickHandleNoHook() added.

3.82f 0 100419 AW
Chapter Tasks: New function OS_IsRunning()added.
Chapter Tasks: Description of OS_Start() added.

3.82e 0 100309 TS

Chapter "Working with embOS - Recommendations" added
Chapter Basics
 * Priority inversion image added
Chapter Interrupt
 * subchapter "Using OS functions from high priority inter-
rupts"
 added
Added text at chapter 22 "Performance and resource usage"

3.82 0 090922 TS
API function overview now contains information about allowed
context of function usage (main, task, ISR or timer)
TOC format corrected

3.80 0 090612 AW Scheduler optimized for higher task switching speed.

Software Revision Date By Description

6 CHAPTER

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

3.62.c 0 080903 SK

Chapter structure updated.
Chapter "Interrupts":
 * OS_LeaveNestableInterruptNoSwitch() removed.
 * OS_LeaveInterruptNoSwitch() removed.
Chapter "System tick":
 * OS_TICK_Config() added.

3.60 2 080722 SK Contact address updated.

3.60 1 080617 SK
General updates.
Chapter "Mailboxes":
 - OS_GetMailCond() / OS_GetMailCond1() corrected.

3.60 0 080117 OO
General updates.
Chapter "System tick" added.

3.52 1 071026 AW Chapter "Task routines": Added OS_SetTaskName().

3.52 0 070824 OO
Chapter "Task routines": Added OS_ExtendTaskContext().
Chapter "Interrupts": Updated, added OS_CallISR() and
OS_CallNestableISR().

3.50c 0 070814 AW Chapter "List of libraries" updated, XR library type added.
3.40C 3 070716 OO Chapter �Performance and resource usage� updated,

3.40C 2 070625 SK

Chapter �Debugging�, error codes updated:
 - OS_ERR_ISR_INDEX added.
 - OS_ERR_ISR_VECTOR added.
 - OS_ERR_RESOURCE_OWNER added.
 - OS_ERR_CSEMA_OVERFLOW added.
Chapter �Task routines�:
 - OS_Yield() added.
Chapter �Counting semaphores� updated.
 - OS_SignalCSema(), additional information adjusted.
Chapter �Performance and resource usage� updated:
 - Minor changes in wording.

3.40A 1 070608 SK

Chapter �Counting semaphores� updated.
 - OS_SetCSemaValue() added.
 - OS_CreateCSema(): Data type of parameter InitValue
 changed from unsigned char to unsigned int.
 - OS_SignalCSemaMax(): Data type of parameter MaxValue
 changed from unsigned char to unsigned int.
 - OS_SignalCSema(): Additional information updated.

3.40 0 070516 SK

Chapter �Performance and resource usage� added.
Chapter �Configuration of your target system (RTOSInit.c)�
renamed to �Configuration of your target system�.
Chapter �STOP\WAIT\IDLE modes� moved into
chapter �Configuration of your target system�.
Chapter �time-related routines� renamed to �Time measure-
ment�.

3.32o 9 070422 SK
Chapter 4: OS_CREATETIMER_EX(), additional information
corrected.

3.32m 8 070402 AW
Chapter 4: Extended timer added.
Chapter 8: API overview corrected,
OS_Q_GetMessageCount()

3.32j 7 070216 AW Chapter 6: OS_CSemaRequest() function added.
3.32e 6 061220 SK About: Company description added.

Some minor formatting changes.
3.32e 5 061107 AW Chapter 7: OS_GetMessageCnt() return value corrected to

unsigned int.
3.32d 4 061106 AW

Chapter 8: OS_Q_GetPtrTimed() function added.

3.32a 3 061012 AW

Chapter 3: OS_CreateTaskEx() function, description of
parameter pContext corrected.
Chapter 3: OS_CreateTaskEx() function, type of parameter
TimeSlice corrected.
Chapter 3: OS_CreateTask() function, type of parameter
TimeSlice corrected.
Chapter 9: OS_GetEventsOccured() renamed to
OS_GetEventsOccurred().
Chapter 10: OS_EVENT_WaitTimed() added.

3.32a 2 060804 AW Chapter 3: OS_CREATETASK_EX() function added.
Chapter 3: OS_CreateTaskEx() function added.

Software Revision Date By Description

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

7

3.32 1 060717 OO Event objects introduced. Chapter 10 inserted which
describes event objects.
Previous chapter "Events" renamed to "Task events"

3.30 1 060519 OO New software version.
3.28 5 060223 OO All chapters: Added API tables.

Some minor changes.
3.28 4 051109 AW Chapter 7: OS_SignalCSemaMax() function added.

Chapter 14: Explanation of interrupt latencies and high / low
priorities added.

3.28 3 050926 AW Chapter 6: OS_DeleteRSema() function added.
3.28 2 050707 AW Chapter 4: OS_GetSuspendCnt() function added.
3.28 1 050425 AW Version number changed to 3.28 to fit to current ombOS ver-

sion.
Chapter 18.1.2: Type of return value of OS GetTime32() cor-
rected

3.26 050209 AW
Chapter 4: OS_Terminate() modified due to new features of
version 3.26.
Chapter 24: Source code version: additional compile time
switches and build process of libraries explained more in
detail.

3.24 041115
AW

Chapter 6: Some prototype declarations showed in OS_SEMA
instead of OS_RSEMA. Corrected.

3.22 1 040816 AW Chapter 8: New Mailbox functions added
OS_PutMailFront()
OS_PutMailFront1()
OS_PutMailFrontCond()
OS_PutMailFrontCond1()

3.20 5 040621 RS
AW

Software timers: Maximum timeout values and
OS_TIMER_MAX_TIME described.
Chapter 14: Description of rules for interrupt handlers
revised.
OS_LeaveNestableInterruptNoSwitch() added which was
not described before.

3.20 4 040329 AW OS_CreateCSema() prototype declaration corrected.
Return type is void.
OS_Q_GetMessageCnt() prototype declaration corrected.
OS_Q_Clear() function description added.
OS_MEMF_FreeBlock() prototype declaration corrected.

3.20 2 031128 AW OS_CREATEMB() Range for parameter MaxnofMsg cor-
rected. Upper limit is 65535, but was declared 65536 in
previous manuals.

3. 1 040831 AW Code samples modified: Task stacks defined as array of
int, because most CPUs require alignment of stack on inte-
ger aligned addresses.

Software Revision Date By Description

8 CHAPTER

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

3.20 1 031016 AW Chapter 4: Type of task priority parameter corrected to
unsigned char.
Chapter 4: OS_DelayUntil(): Sample program modified.
Chapter 4: OS_Suspend() added.
Chapter 4: OS_Resume() added.
Chapter 5: OS_GetTimerValue(): Range of return value
corrected.
Chapter 6: Sample program for usage of resource sema-
phores modified.
Chapter 6: OS_GetResourceOwner(): Type of return value
corrected.
Chapter 8: OS_CREATEMB(): Types and valid range of
parameter corrected.
Chapter 8: OS_WaitMail() added
Chapter 10: OS_WaitEventTimed(): Range of timeout
value specified.

3.12 1 021015 AW Chapter 8: OS_GetMailTimed() added
Chapter 11 (Heap type memory management) inserted
Chapter 12 (Fixed block size memory pools) inserted

3.10 3 020926
020924
020910

KG
KG
KG

Index and glossary revised.
Section 16.3 (Example) added to Chapter 16 (Time-related
routines).
Revised for language/grammar.
Version control table added.
Screenshots added: superloop, cooperative/preemptive multi-
tasking, nested interrupts, low-res and hi-res measurement.
Section 1.3 (Typographic conventions) changed to table.
Section 3.2 added (Single-task system).
Section 3.8 merged with section 3.9 (How the OS gains con-
trol).
Chapter 4 (Configuration for your target system) moved to
after Chapter 15 (System variables).
Chapter 16 (Time-related routines) added.

Software Revision Date By Description

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

9

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Sample comment Comments in programm examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections.

Table 1.1: Typographic conventions

10

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources.

embOS/IP
TCP/IP stack
embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support. Var-
ious Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack
USB device/host stack
A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

SEGGER�s intention is to cut software development time
for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

11

1 Introduction to embOS...19

1.1 What is embOS ...20
1.2 Features...21

2 Basic concepts...23

2.1 Tasks...24
2.1.1 Threads..24
2.1.2 Processes ...24
2.2 Single-task systems (superloop) ..25
2.2.1 Advantages & disadvantages...25
2.2.2 Using embOS in super-loop applications..26
2.2.3 Migrating from superloop to multi-tasking ...26
2.3 Multitasking systems..27
2.3.1 Task switches..27
2.3.2 Cooperative task switch..27
2.3.3 Preemptive task switch...27
2.3.4 Preemptive multitasking ...28
2.3.5 Cooperative multitasking ..29
2.4 Scheduling..30
2.4.1 Round-robin scheduling algorithm..30
2.4.2 Priority-controlled scheduling algorithm ..30
2.4.3 Priority inversion / priority inheritance..31
2.5 Communication between tasks ..33
2.5.1 Periodical polling ...33
2.5.2 Event driven communication mechanisms ...33
2.5.3 Mailboxes and queues ..33
2.5.4 Semaphores ...33
2.5.5 Events ...33
2.6 How task-switching works...34
2.6.1 Switching stacks..35
2.7 Change of task status...36
2.8 How the OS gains control ...37
2.9 Different builds of embOS...38
2.9.1 Profiling ...38
2.9.2 List of libraries ..38
2.9.3 embOS functions context..38

3 Working with embOS ...39

3.1 General advices...40
3.1.1 Timers or task...40

4 Tasks ...41

4.1 Introduction..42
4.1.1 Example of a task routine as an endless loop...42
4.1.2 Example of a task routine that terminates itself ...42
4.2 Cooperative vs. preemptive task switches ...43
4.2.1 Disabling preemptive task switches for tasks at same priorities......................43
4.2.2 Completely disabling preemptions for a task..43
4.3 Extending the task context ...44
4.3.1 Passing one parameter to a task during task creation44

Table of Contents

12

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.3.2 Extending the task context individually during runtime 44
4.3.3 Extending the task context by using own task structures 44
4.4 API functions .. 46
4.4.1 OS_AddOnTerminateHook().. 48
4.4.2 OS_CREATETASK().. 49
4.4.3 OS_CreateTask() .. 51
4.4.4 OS_CREATETASK_EX() .. 53
4.4.5 OS_CreateTaskEx() ... 54
4.4.6 OS_Delay() .. 55
4.4.7 OS_DelayUntil().. 56
4.4.8 OS_Delayus() ... 57
4.4.9 OS_ExtendTaskContext() ... 58
4.4.10 OS_GetpCurrentTask()... 61
4.4.11 OS_GetPriority() ... 62
4.4.12 OS_GetSuspendCnt()... 63
4.4.13 OS_GetTaskID() ... 64
4.4.14 OS_GetTaskName()... 65
4.4.15 OS_GetTimeSliceRem().. 66
4.4.16 OS_IsRunning() .. 67
4.4.17 OS_IsTask() ... 68
4.4.18 OS_Resume() ... 69
4.4.19 OS_ResumeAllSuspendedTasks()... 70
4.4.20 OS_SetInitialSuspendCnt() ... 71
4.4.21 OS_SetPriority() ... 72
4.4.22 OS_SetTaskName() ... 73
4.4.23 OS_SetTimeSlice() .. 74
4.4.24 OS_Start() ... 75
4.4.25 OS_Suspend() .. 76
4.4.26 OS_SuspendAllTasks() ... 77
4.4.27 OS_TerminateTask().. 78
4.4.28 OS_WakeTask() .. 79
4.4.29 OS_Yield() ... 80

5 Software timers ..81

5.1 Introduction ... 82
5.2 API functions .. 83
5.2.1 OS_CREATETIMER() .. 84
5.2.2 OS_CreateTimer() ... 85
5.2.3 OS_StartTimer() ... 86
5.2.4 OS_StopTimer().. 87
5.2.5 OS_RetriggerTimer() ... 88
5.2.6 OS_SetTimerPeriod()... 89
5.2.7 OS_DeleteTimer() ... 90
5.2.8 OS_GetTimerPeriod()... 91
5.2.9 OS_GetTimerValue().. 92
5.2.10 OS_GetTimerStatus() .. 93
5.2.11 OS_GetpCurrentTimer() ... 94
5.2.12 OS_CREATETIMER_EX() ... 95
5.2.13 OS_CreateTimerEx().. 96
5.2.14 OS_StartTimerEx().. 97
5.2.15 OS_StopTimerEx() .. 98
5.2.16 OS_RetriggerTimerEx() .. 99
5.2.17 OS_SetTimerPeriodEx() ..100
5.2.18 OS_DeleteTimerEx()...101
5.2.19 OS_GetTimerPeriodEx() ..102
5.2.20 OS_GetTimerValueEx() ...103
5.2.21 OS_GetTimerStatusEx() ..104
5.2.22 OS_GetpCurrentTimerEx()...105

6 Resource semaphores...107

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

13

6.1 Introduction.. 108
6.2 API functions .. 110
6.2.1 OS_CREATERSEMA().. 111
6.2.2 OS_Use() ... 112
6.2.3 OS_UseTimed()... 114
6.2.4 OS_Unuse().. 115
6.2.5 OS_Request() ... 116
6.2.6 OS_GetSemaValue() .. 117
6.2.7 OS_GetResourceOwner() .. 118
6.2.8 OS_DeleteRSema().. 119

7 Counting Semaphores ...121

7.1 Introduction.. 122
7.2 API functions .. 123
7.2.1 OS_CREATECSEMA().. 124
7.2.2 OS_CreateCSema().. 125
7.2.3 OS_SignalCSema() .. 126
7.2.4 OS_SignalCSemaMax()... 127
7.2.5 OS_WaitCSema() .. 128
7.2.6 OS_WaitCSemaTimed() .. 129
7.2.7 OS_CSemaRequest() ... 130
7.2.8 OS_GetCSemaValue() .. 131
7.2.9 OS_SetCSemaValue() .. 132
7.2.10 OS_DeleteCSema().. 133

8 Mailboxes...135

8.1 Introduction.. 136
8.2 Basics .. 137
8.3 Typical applications.. 138
8.4 Single-byte mailbox functions.. 139
8.5 API functions .. 140
8.5.1 OS_CreateMB() ... 141
8.5.2 OS_PutMail() / OS_PutMail1() ... 142
8.5.3 OS_PutMailCond() / OS_PutMailCond1() ... 143
8.5.4 OS_PutMailFront() / OS_PutMailFront1()... 144
8.5.5 OS_PutMailFrontCond() / OS_PutMailFrontCond1()..................................... 145
8.5.6 OS_GetMail() / OS_GetMail1()... 146
8.5.7 OS_GetMailCond() / OS_GetMailCond1() .. 147
8.5.8 OS_GetMailTimed().. 148
8.5.9 OS_WaitMail()... 149
8.5.10 OS_WaitMailTimed() .. 150
8.5.11 OS_PeekMail() .. 151
8.5.12 OS_ClearMB() ... 152
8.5.13 OS_GetMessageCnt() ... 153
8.5.14 OS_DeleteMB() ... 154

9 Queues ..155

9.1 Introduction.. 156
9.2 Basics .. 157
9.3 API functions .. 158
9.3.1 OS_Q_Create() ... 159
9.3.2 OS_Q_Put() .. 160
9.3.3 OS_Q_PutBlocked() ... 161
9.3.4 OS_Q_PutTimed().. 162
9.3.5 OS_Q_GetPtr().. 163
9.3.6 OS_Q_GetPtrCond()... 164
9.3.7 OS_Q_GetPtrTimed() ... 165
9.3.8 OS_Q_Purge()... 166
9.3.9 OS_Q_Clear() ... 167
9.3.10 OS_Q_GetMessageCnt() ... 168

14

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

9.3.11 OS_Q_Delete() ..169
9.3.12 OS_Q_IsInUse() ..170
9.3.13 OS_Q_GetMessageSize()...171
9.3.14 OS_Q_PeekPtr()...172

10 Task events..173

10.1 Introduction ..174
10.2 API functions ...175
10.2.1 OS_WaitEvent() ...176
10.2.2 OS_WaitSingleEvent() ..177
10.2.3 OS_WaitEvent_Timed()...178
10.2.4 OS_WaitSingleEventTimed() ..179
10.2.5 OS_SignalEvent()...180
10.2.6 OS_GetEventsOccurred() ..182
10.2.7 OS_ClearEvents()...183

11 Event objects ...185

11.1 Introduction ..186
11.2 API functions ...187
11.2.1 OS_EVENT_Create() ...188
11.2.2 OS_EVENT_CreateEx()..189
11.2.3 OS_EVENT_Wait() ..190
11.2.4 OS_EVENT_WaitTimed() ...191
11.2.5 OS_EVENT_Set()..193
11.2.6 OS_EVENT_Reset() ..194
11.2.7 OS_EVENT_Pulse() ...195
11.2.8 OS_EVENT_Get() ...196
11.2.9 OS_EVENT_Delete() ...197
11.2.10 OS_EVENT_SetResetMode() ..198
11.2.11 OS_EVENT_GetResetMode() ..199
11.3 Examples of using event objects...200
11.3.1 Activate a task from interrupt by an event object200
11.3.2 Activating multiple tasks using a single event object201

12 Heap type memory management...203

12.1 Introduction ..204
12.2 API functions ...205

13 Fixed block size memory pools..207

13.1 Introduction ..208
13.2 API functions ...209
13.2.1 OS_MEMF_Create() ..210
13.2.2 OS_MEMF_Delete() ..211
13.2.3 OS_MEMF_Alloc()...212
13.2.4 OS_MEMF_AllocTimed() ..213
13.2.5 OS_MEMF_Request() ..214
13.2.6 OS_MEMF_Release()...215
13.2.7 OS_MEMF_FreeBlock() ..216
13.2.8 OS_MEMF_GetNumBlocks() ...217
13.2.9 OS_MEMF_GetBlockSize() ...218
13.2.10 OS_MEMF_GetNumFreeBlocks() ...219
13.2.11 OS_MEMF_GetMaxUsed() ..220
13.2.12 OS_MEMF_IsInPool() ..221

14 Stacks ..223

14.1 Introduction ..224
14.1.1 System stack...224
14.1.2 Task stack...224
14.1.3 Interrupt stack...224

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

15

14.1.4 Stack size calculation ... 225
14.1.5 Stack check .. 225
14.2 API functions .. 226
14.2.1 OS_GetStackBase() ... 227
14.2.2 OS_GetStackSize() .. 228
14.2.3 OS_GetStackSpace().. 229
14.2.4 OS_GetStackUsed() ... 230
14.2.5 OS_GetSysStackBase() .. 231
14.2.6 OS_GetSysStackSize() ... 232
14.2.7 OS_GetSysStackSpace()... 233
14.2.8 OS_GetSysStackUsed() .. 234
14.2.9 OS_GetIntStackBase() ... 235
14.2.10 OS_GetIntStackSize() .. 236
14.2.11 OS_GetIntStackSpace().. 237
14.2.12 OS_GetIntStackUsed() ... 238

15 Interrupts..239

15.1 What are interrupts? .. 240
15.2 Interrupt latency ... 241
15.2.1 Causes of interrupt latencies ... 241
15.2.2 Additional causes for interrupt latencies.. 241
15.3 Zero interrupt latency .. 243
15.4 High / low priority interrupts ... 244
15.4.1 Using OS functions from high priority interrupts... 244
15.5 Rules for interrupt handlers... 246
15.5.1 General rules .. 246
15.5.2 Additional rules for preemptive multitasking .. 246
15.6 API functions .. 247
15.6.1 OS_CallISR() .. 248
15.6.2 OS_CallNestableISR() .. 249
15.6.3 OS_EnterInterrupt() .. 250
15.6.4 OS_LeaveInterrupt().. 251
15.7 Enabling / disabling interrupts from C... 252
15.7.1 OS_IncDI() / OS_DecRI() ... 253
15.7.2 OS_DI() / OS_EI() / OS_RestoreI().. 254
15.8 Definitions of interrupt control macros (in RTOS.h)..................................... 255
15.9 Nesting interrupt routines ... 256
15.9.1 OS_EnterNestableInterrupt()... 257
15.9.2 OS_LeaveNestableInterrupt().. 258
15.9.3 OS_InInterrupt() ... 259
15.10 Non-maskable interrupts (NMIs) .. 260

16 Critical Regions..261

16.1 Introduction.. 262
16.2 API functions .. 263
16.2.1 OS_EnterRegion().. 264
16.2.2 OS_LeaveRegion() ... 265

17 Time measurement ..267

17.1 Introduction.. 268
17.2 Low-resolution measurement .. 269
17.2.1 API functions .. 270
17.2.1.1 OS_GetTime()... 271
17.2.1.2 OS_GetTime32() ... 272
17.3 High-resolution measurement ... 273
17.3.1 API functions .. 274
17.3.1.1 OS_Timing_Start() .. 275
17.3.1.2 OS_Timing_End() .. 276
17.3.1.3 OS_Timing_Getus() ... 277
17.3.1.4 OS_Timing_GetCycles().. 278

16

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

17.4 Example ...279

18 System variables..281

18.1 Introduction ..282
18.2 Time variables ...283
18.2.1 OS_Global...283
18.2.2 OS_Global.Time ...283
18.2.3 OS_Global.TimeDex..283
18.3 OS internal variables and data-structures ..284

19 System tick...285

19.1 Introduction ..286
19.2 Tick handler ..287
19.2.1 API functions ...287
19.2.1.1 OS_TICK_Handle() ...288
19.2.1.2 OS_TICK_HandleEx()..289
19.2.1.3 OS_TICK_HandleNoHook() ..290
19.2.1.4 OS_TICK_Config()..291
19.3 Hooking into the system tick..292
19.3.1 API functions ...292
19.3.1.1 OS_TICK_AddHook() ..293
19.3.1.2 OS_TICK_RemoveHook() ..294

20 Configuration of target system (BSP) ..295

20.1 Introduction ..296
20.2 Hardware-specific routines ..297
20.2.1 OS_Idle()..297
20.3 Configuration defines..299
20.4 How to change settings...300
20.4.1 Setting the system frequency OS_FSYS...300
20.4.2 Using a different timer to generate the tick-interrupts for embOS300
20.4.3 Using a different UART or baudrate for embOSView300
20.4.4 Changing the tick frequency ..300
20.5 STOP / HALT / IDLE modes..302

21 Profiling ..303

21.0.1 API functions ...304
21.0.1.1 OS_STAT_Sample()..305
21.0.1.2 OS_STAT_GetLoad()...306
21.0.1.3 Sample application for OS_STAT_Sample() and OS_STAT_GetLoad()307
21.0.1.4 OS_AddLoadMeasurement() ..308
21.0.1.5 OS_GetLoadMeasurement()...309
21.0.1.6 OS_CPU_Load..310

22 embOSView: Profiling and analyzing...311

22.1 Overview ..312
22.2 Task list window...313
22.3 System variables window ..314
22.4 Sharing the SIO for terminal I/O ..315
22.5 API functions ...316
22.5.1 OS_SendString()..317
22.5.2 OS_SetRxCallback() ...318
22.6 Using the API trace...319
22.7 Trace filter setup functions ..321
22.8 API functions ...322
22.8.1 OS_TraceEnable() ..323
22.8.2 OS_TraceDisable() ...324
22.8.3 OS_TraceEnableAll()...325
22.8.4 OS_TraceDisableAll() ..326

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

17

22.8.5 OS_TraceEnableId()... 327
22.8.6 OS_TraceDisableId() .. 328
22.8.7 OS_TraceEnableFilterId().. 329
22.8.8 OS_TraceDisableFilterId() ... 330
22.9 Trace record functions.. 331
22.10 API functions .. 332
22.10.1 OS_TraceVoid()... 333
22.10.2 OS_TracePtr() ... 334
22.10.3 OS_TraceData() .. 335
22.10.4 OS_TraceDataPtr() .. 336
22.10.5 OS_TraceU32Ptr() ... 337
22.11 Application-controlled trace example .. 338
22.12 User-defined functions ... 339

23 Performance and resource usage..341

23.1 Introduction.. 342
23.2 Memory requirements .. 343
23.3 Performance ... 344
23.4 Benchmarking... 344
23.4.1 Measurement with port pins and oscilloscope... 345
23.4.1.1 Oscilloscope analysis.. 346
23.4.1.2 Example measurements AT91SAM7S, ARM code in RAM.............................. 347
23.4.1.3 Example measurements AT91SAM7S, Thumb code in FLASH 348
23.4.1.4 Measurement with high-resolution timer ... 349

24 Debugging..351

24.1 Runtime errors .. 352
24.1.1 OS_DEBUG_LEVEL... 352
24.2 List of error codes.. 353
24.3 Application defined error codes.. 357

25 Supported development tools ..359

25.1 Overview.. 360

26 Limitations..361

27 Source code of kernel and library ..363

27.1 Introduction.. 364
27.2 Building embOS libraries... 365
27.3 Major compile time switches ... 366
27.3.1 OS_RR_SUPPORTED .. 366

28 FAQ (frequently asked questions) ...367

29 Support ..369

29.1 Contacting support .. 370

30 Glossary...371

18

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

19

Chapter 1

Introduction to embOS

20 CHAPTER 1 Introduction to embOS

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

1.1 What is embOS
embOS is a priority-controlled multitasking system, designed to be used as an
embedded operating system for the development of real-time applications for a vari-
ety of microcontrollers.

embOS is a high-performance tool that has been optimized for minimum memory
consumption in both RAM and ROM, as well as high speed and versatility.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

21

1.2 Features
Throughout the development process of embOS, the limited resources of microcon-
trollers have always been kept in mind. The internal structure of the realtime operat-
ing system (RTOS) has been optimized in a variety of applications with different
customers, to fit the needs of the industry. Fully source-compatible RTOS are avail-
able for a variety of microcontrollers, making it well worth the time and effort to
learn how to structure real-time programs with real-time operating systems.

embOS is highly modular. This means that only those functions that are needed are
linked, keeping the ROM size very small. The minimum memory consumption is little
more than 1 Kbyte of ROM and about 30 bytes of RAM (plus memory for stacks). A
couple of files are supplied in source code to make sure that you do not loose any
flexibility by using embOS and that you can customize the system to fully fit your
needs.

The tasks you create can easily and safely communicate with each other using a
complete palette of communication mechanisms such as semaphores, mailboxes, and
events.

Some features of embOS include:

� Preemptive scheduling:
Guarantees that of all tasks in READY state the one with the highest priority exe-
cutes, except for situations where priority inheritance applies.

� Round-robin scheduling for tasks with identical priorities.
� Preemptions can be disabled for entire tasks or for sections of a program.
� Up to 255 priorities.
� Every task can have an individual priority => the response of tasks can be pre-

cisely defined according to the requirements of the application.
� Unlimited number of tasks

(limited only by the amount of available memory).
� Unlimited number of semaphores

(limited only by the amount of available memory).
� 2 types of semaphores: resource and counting.
� Unlimited number of mailboxes

(limited only by the amount of available memory).
� Size and number of messages can be freely defined when initializing mailboxes.
� Unlimited number of software timers

(limited only by the amount of available memory).
� 8-bit events for every task.
� Time resolution can be freely selected (default is 1ms).
� Easily accessible time variable.
� Power management.
� Unused calculation time can automatically be spent in halt mode.

power-consumption is minimized.
� Full interrupt support:

Interrupts can call any function except those that require waiting for data,
as well as create, delete or change the priority of a task.
Interrupts can wake up or suspend tasks and directly communicate with tasks
using all available communication instances (mailboxes, semaphores, events).

� Very short interrupt disable-time => short interrupt latency time.
� Nested interrupts are permitted.
� embOS has its own interrupt stack (usage optional).
� Frame application for an easy start.
� Debug version performs runtime checks, simplifying development.
� Profiling and stack check may be implemented by choosing specified libraries.
� Monitoring during runtime via UART available (embOSView).
� Very fast and efficient, yet small code.
� Minimum RAM usage.
� Core written in assembly language.
� API can be called from Assembly, C or C++ code.
� Initialization of microcontroller hardware as sources (BSP).

22 CHAPTER 1 Introduction to embOS

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

23

Chapter 2

Basic concepts

This chapter explains some basic concepts behind embOS. It should be relativly easy
to read and is recommended before moving to other chapters.

24 CHAPTER 2 Basic concepts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

2.1 Tasks
In this context, a task is a program running on the CPU core of a microcontroller.
Without a multitasking kernel (an RTOS), only one task can be executed by the CPU
at a time. This is called a single-task system. A real-time operating system allows the
execution of multiple tasks on a single CPU. All tasks execute as if they completely
�owned� the entire CPU. The tasks are scheduled, meaning that the RTOS can
activate and deactivate every task.

2.1.1 Threads
Threads are tasks which share the same memory layout. Two threads can access the
same memory locations. If virtual memory is used, the same virtual to physical
translation and access rights are used.

The embOS tasks are threads; they all have the same memory access rights and
translation (in systems with virtual memory).

2.1.2 Processes
Processs are task which their own memory layout. Two processes can not normally
access the same memory locations. Different processes typically have different
access rights and (in case of MMUs) different translation tables.

Processes are not supported by the present version of embOS.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

25

2.2 Single-task systems (superloop)
The classical way of designing embedded systems is without an RTOS. This is also
called "superloop design". Typically, no real time kernel is used, so interrupt service
routines (ISRs) must be used for real-time parts of the software or critical operations
(interrupt level). This type of system is typically used in small, uncomplex systems or
if real-time behavior is not critical.

Typically, because no real-time kernel and only one stack is used, both program
(ROM) and RAM size are smaller for small applications. Of course, there are no inter-
task synchronization problems with a superloop application. However, superloops can
become difficult to maintain if the program becomes too large. Because one software
component cannot be interrupted by another component (only by ISRs), the reaction
time of one component depends on the execution time of all other components in the
system. Real-time behavior is therefore poor.

2.2.1 Advantages & disadvantages
Advantages
� Simple structure (for small applications)
� Low Stack usage (only one stack required)

Disadvantages
� No "Delay" function
� No sleep mode (higher power consumption)
� Difficult to maintain as program grows
� Timing of all software components depends on all other software componts:

Small change in one place can have major side effects in other places
� Defeats modular programming
� Real time behavior only with interrupts

26 CHAPTER 2 Basic concepts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

2.2.2 Using embOS in super-loop applications
In a true superloop application, no tasks are used, so the biggest advantage of using
an RTOS can not be used unless the application is converted to use multitasking.
However, even with just a single task, using embOS has the following advantages:

� Software timers are available
� Power saving: Idle mode can be used
� Future extensions can be put in a separate task

2.2.3 Migrating from superloop to multi-tasking
A common situation is that an application exists for some time and has been design
as single task, super-loop type application. At a certain point, the disadvantages of
this approach lead to a decision to use an RTOS. The typically question then is: How
do I do this?

The easiest way is to take the start application that comes with the embOS and put
your existing "superloop code" into one task. You should at this point also make sure
that the stack size of this task is sufficient. At a later point in time, additional func-
tionality which is added to the software can be put in one or more additional tasks;
the functionality of the super loop can also be distributed in multiple tasks.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

27

2.3 Multitasking systems
In a multitasking system, there are different ways of distributing the CPU time
amongst different tasks. This process is called scheduling.

2.3.1 Task switches
There are basically 2 types of task switches, also called context switches: Coopera-
tive and preemptive task switches.

2.3.2 Cooperative task switch
A cooperative task switch is performed by the task itself. It requires the cooperation
of the task, hence the name. What happens is that the task blocks itself by calling a
blocking RTOS function such as OS_Delay() or OS_WaitEvent().

2.3.3 Preemptive task switch
A preemptive task switch is a task switch caused by an interrupt. Typically an other,
high priority task becomes ready for execution and as a result, the current task is
suspended.

Time

Low prio task High prio task ISR

Application level tasks

Interrupt

Interrupt serviceIdle task

Priority

OS_Start()

OS_EVENT_Wait()

OS_EVENT_Wait()

Interrupt (Tick)

Interrupt (Rx)

OS_EVENT_Set()

OS_Delay()

OS_Delay()

28 CHAPTER 2 Basic concepts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

2.3.4 Preemptive multitasking
Real-time systems like embOS operate with preemptive multitasking. The highest-
priority task in the READY state is therefore always executed as long as the task is
not suspended by a call of any operating system function. A high priority task waiting
for an event is activated as soon as the event occurs. The event can be set by an
interrupt handler which then activates the task immediately. Other tasks with lower
priority are suspended (preempted) as long as the high-priority task is executing.
A real-time operating system as embOS normally comes with a regular timer-inter-
rupt to interrupt tasks at defined times and to perform task-switches if timed task
switches are necessary.

Time

ISR

Low priority task

High priority taskISR puts high priority
task in READY state;
task switch occurs

Executing task is interrupted

Interrupted task
is completed

Higher priority task
Is executed

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

29

2.3.5 Cooperative multitasking
Cooperative multitasking expects cooperation of all tasks. A task switch can only take
place if the running task blocks itself by calling a blocking function such as
OS_Delay() or OS_Wait...(). If they do not, the system �hangs�, which means that
other tasks have no chance of being executed by the CPU while the first task is being
carried out. This is illustrated in the diagram below. Even if an ISR makes a higher-
priority task ready to run, the interrupted task will be returned to and finished before
the task switch is made.

A pure cooperative multi-tasking system has the disadvantage of longer reaction
times when high priority tasks become ready for execution. This makes their usage in
embedded systems uncommon.

Time

ISR

Low priority task

High priority task

ISR puts high priority
task in READY state

Executing task is interrupted

Interrupted task
is completed

Higher priority task
Is executed

30 CHAPTER 2 Basic concepts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

2.4 Scheduling
There are different algorithms that determine which task to execute, called
schedulers. All schedulers have one thing in common: they distinguish between tasks
that are ready to be executed (in the READY state) and the other tasks that are
suspended for any reason (delay, waiting for mailbox, waiting for semaphore, waiting
for event, and so on). The scheduler selects one of the tasks in the READY state and
activates it (executes the program of this task). The task which is currently executing
is referred to as the running task. The main difference between schedulers is in how
they distribute the computation time between the tasks in READY state.

2.4.1 Round-robin scheduling algorithm
With round-robin scheduling, the scheduler has a list of tasks and, when deactivating
the running task, activates the next task that is in the READY state. Round-robin can
be used with either preemptive or cooperative multitasking. It works well if you do
not need to guarantee response time. Round-robin scheduling can be illustrated as
follows:

All tasks are on the same level; the possession of the CPU changes periodically after
a predefined execution time. This time is called timeslice, and may be defined
individually for every task.

2.4.2 Priority-controlled scheduling algorithm
In real-world applications, different tasks require different response times. For exam-
ple, in an application that controls a motor, a keyboard, and a display, the motor usu-
ally requires faster reaction time than the keyboard and display. While the display is
being updated, the motor needs to be controlled. This makes preemptive multitask-
ing a must. Round-robin might work, but because it cannot guarantee a specific reac-
tion time, an improved algorithm should be used.

In priority-controlled scheduling, every task is assigned a priority. The order of exe-
cution depends on this priority. The rule is very simple:

Note: The scheduler activates the task that has the highest priority of all
tasks in the READY state.

This means that every time a task with higher priority than the running task gets
ready, it immediately becomes the running task. However, the scheduler can be
switched off in sections of a program where task switches are prohibited, known as
critical regions.

embOS uses a priority-controlled scheduling algorithm with round-robin between
tasks of identical priority. One hint at this point: round-robin scheduling is a nice fea-
ture because you do not have to think about whether one task is more important
than another. Tasks with identical priority cannot block each other for longer than
their timeslices. But round-robin scheduling also costs time if two or more tasks of
identical priority are ready and no task of higher priority is ready, because it will con-
stantly switch between the identical-priority tasks. It is more efficient to assign a dif-
ferent priority to each task, which will avoid unnecessary task switches.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

31

2.4.3 Priority inversion / priority inheritance
The rule to go by for the scheduler is:

Activate the task that has the highest priority of all tasks in the READY state.

But what happens if the highest-priority task is blocked because it is waiting for a
resource owned by a lower-priority task? According to the above rule, it would wait
until the low-priority-task becomes running again and releases the resource.
Up to this point, everything works as expected.
Problems arise when a task with medium priority becomes ready during the execu-
tion of the higher prioritized task.
When the higher priority task is suspended waiting for the resource, the task with the
medium priority will run until it finished its work, because it has higher priority as the
low priority task.
In this scenario, a task with medium priority runs before the task with high priority.
This is known as priority inversion.

The low priority task claims the semaphore with OS_Use(). An interrupt activates the
high priority task, which also calls OS_Use().
Meanwhile a task with medium got ready and runs when the high priority task is sus-
pended.
After doing some operations, the task with medium priority calls OS_Delay() and is
therefore suspended. The task with lower priority continues now and calls
OS_Unuse() to release the resource semaphore. After the low priority task releases
the semaphore, the high priority task is activated and claims the semaphore.

To avoid this kind of situation, the low-priority task that is blocking the highest-prior-
ity task gets assigned the highest priority until it releases the resource, unblocking
the task which originally had highest priority. This is known as priority inherit-
ance.

Time

Low priority task

OS_Use()

OS_Use()

Interrupt activates high prio task

Medium priority task High priority task

With Priority Inversion

OS_Delay()

OS_Unuse()

OS_Unuse()

32 CHAPTER 2 Basic concepts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

With priority inheritance, the low priority task inherits the priority of the waiting high
priority task as long as it holds the resource semaphore. The lower priority task is
activated instead of the medium priority task when the high priority task tries to
claim the semaphore.

Time

OS_Use()

OS_Use()

OS_Unuse()

Interrupt activates high prio task

OS_Unuse()

Priority inheritance

Low priority task Medium priority task High priority task

With Priority Inheritance

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

33

2.5 Communication between tasks
In a multitasking (multithreaded) program, multiple tasks and ISRs work completely
separately. Because they all work in the same application, it will sometimes be nec-
essary for them to exchange information with each other.

2.5.1 Periodical polling
The easiest way to do this is by using global variables. In certain situations, it can
make sense for tasks to communicate via global variables, but most of the time this
method has various disadvantages.

For example, if you want to synchronize a task to start when the value of a global
variable changes, you have to poll this variable, wasting precious calculation time
and power, and the reaction time depends on how often you poll.

2.5.2 Event driven communication mechanisms
When multiple tasks work with one another, they often have to:

� exchange data,
� synchronize with another task, or
� make sure that a resource is used by no more than one task at a time.

For these purposes embOS offers mailboxes, queues, semaphores and events.

2.5.3 Mailboxes and queues
A mailbox is basically a data buffer managed by the RTOS and is used for sending a
message to a task. It works without conflicts even if multiple tasks and interrupts try
to access it simultaneously. embOS also automatically activates any task that is wait-
ing for a message in a mailbox the moment it receives new data and, if necessary,
automatically switches to this task.

A queue works in a similar manner, but handles larger messages than mailboxes, and
every message may have a individual size.
For more information, see the Chapter Mailboxes on page 135 and Chapter Queues
on page 155.

2.5.4 Semaphores
Two types of semaphores are used for synchronizing tasks and to manage resources.
The most common are resource semaphores, although counting semaphores are also
used. For details and samples, refer to the Chapter Resource semaphores on
page 107 and Chapter Counting Semaphores on page 121. Samples can also be
found on our website at www.segger.com.

2.5.5 Events
A task can wait for a particular event without using any calculation time. The idea is
as simple as it is convincing; there is no sense in polling if we can simply activate a
task the moment the event that it is waiting for occurs. This saves a great deal of
calculation power and ensures that the task can respond to the event without delay.
Typical applications for events are those where a task waits for data, a pressed key, a
received command or character, or the pulse of an external real-time clock.
For further details, refer to the Chapter Task events on page 173 and Chapter Event
objects on page 185.

34 CHAPTER 2 Basic concepts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

2.6 How task-switching works
A real-time multitasking system lets multiple tasks run like multiple single-task pro-
grams, quasi-simultaneously, on a single CPU. A task consists of three parts in the
multitasking world:

� The program code, which usually resides in ROM (though it does not have to)
� A stack, residing in a RAM area that can be accessed by the stack pointer
� A task control block, residing in RAM.

The stack has the same function as in a single-task system: storage of return
addresses of function calls, parameters and local variables, and temporary storage of
intermediate calculation results and register values. Each task can have a different
stack size. More information can be found in chapter Stacks on page 223.

The task control block (TCB) is a data structure assigned to a task when it is created.
It contains status information of the task, including the stack pointer, task priority,
current task status (ready, waiting, reason for suspension) and other management
data. Knowledge of the stack pointer allows access to the other registers, which are
typically stored (pushed onto) the stack when the tasked is created and every time it
is suspended. This information allows an interrupted task to continue execution
exactly where it left off. TCBs are only accessed by the RTOS.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

35

2.6.1 Switching stacks
The following diagram demonstrates the process of switching from one stack to
another.

The scheduler deactivates the task to be suspended (Task 0) by saving the processor
registers on its stack. It then activates the higher-priority task (Task n) by loading
the stack pointer (SP) and the processor registers from the values stored on Task n's
stack.

Deactivating a task

The scheduler deactivates the task to be suspended (Task 0) as follows:

1. Save (push) the processor registers on the task's stack.
2. Save the stack pointer in the Task Control Block (TCB).

Activating a task

It then activates the higher-priority task (Task n) by performing the opposite
sequence in reverse order:

1. Load (pop) the stack pointer (SP) from the TCB.
2. Load the processor registers from the values stored on Task n's stack..

Scheduler

CPU

Task 0
StackTask Control

block

CPU
registers

Free Stack
area

variables
temp. storage

ret. addresses

SP

Task n
StackTask Control

block

CPU
registers

Free Stack
area

variables
temp. storage

ret. addresses

SP

36 CHAPTER 2 Basic concepts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

2.7 Change of task status
A task may be in one of several states at any given time. When a task is created, it is
automatically put into the READY state (TS_READY).

A task in the READY state is activated as soon as there is no other READY task with
higher priority. Only one task may be running at a time. If a task with higher priority
becomes READY, this higher priority task is activated and the preempted task
remains in the READY state.

The running task may be delayed for or until a specified time; in this case it is put
into the DELAY state (TS_DELAY) and the next highest priority task in the READY
state is activated.

The running task may also have to wait for an event (or semaphore, mailbox, or
queue). If the event has not yet occurred, the task is put into the waiting state and
the next highest priority task in the READY state is activated.

A non-existent task is one that is not yet available to embOS; it has either not been
created yet or it has been terminated.

The following illustration shows all possible task states and transitions between
them.

Waiting

Ready RunningScheduler

Not existing

OS_Terminate()
OS_CreateTask()
OS_CreateTaskEx()

API class such as
OS_Delay()
OS_Wait_...()

API class such as
OS_Signal...() or
delay expiration

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

37

2.8 How the OS gains control
When the CPU is reset, the special-function registers are set to their respective val-
ues. After reset, program execution begins. The PC register is set to the start
address defined by the start vector or start address (depending on the CPU). This
start address is usually in a startup module shipped with the C compiler, and is some-
times part of the standard library.

The startup code performs the following:

� Loads the stack pointer(s) with the default values, which is for most CPUs
the end of the defined stack segment(s)

� Initializes all data segments to their respective values
� Calls the main() routine.

The main() routine is the part of your program which takes control immediately after
the C startup. Normally, embOS works with the standard C startup module without
any modification. If there are any changes required, they are documented in the CPU
& Compiler Specifics manual of embOS documentation.

With embOS, the main() routine is still part of your application program. Basically,
main() creates one or more tasks and then starts multitasking by calling
OS_Start(). From then on, the scheduler controls which task is executed.

The main() routine will not be interrupted by any of the created tasks, because those
tasks are executed only after the call to OS_Start(). It is therefore usually recom-
mended to create all or most of your tasks here, as well as your control structures
such as mailboxes and semaphores. A good practice is to write software in the form
of modules which are (up to a point) reusable. These modules usually have an initial-
ization routine, which creates the required task(s) and/or control structures.
A typical main() looks similar to the following example:

Example

/***
*
* main
*
**
*/

void main(void) {
 OS_IncDI();
 OS_InitKern(); /* Initialize OS (should be first !) */
 OS_InitHW(); /* Initialize Hardware for OS (in RtosInit.c) */
 /* Call Init routines of all program modules which in turn will create
 the tasks they need ... (Order of creation may be important) */
 MODULE1_Init();
 MODULE2_Init();
 MODULE3_Init();
 MODULE4_Init();
 MODULE5_Init();
 OS_Start(); /* Start multitasking */
}

With the call to OS_Start(), the scheduler starts the highest-priority task that has
been created in main().
Note that OS_Start() is called only once during the startup process and does not
return.

Startup code
main()
OS_IncDI()
OS_InitKern()
OS_InitHW()
Additional initialization code;
creating at least one task.
OS_Start()

38 CHAPTER 2 Basic concepts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

2.9 Different builds of embOS
embOS comes in different builds, or versions of the libraries. The reason for different
builds is that requirements vary during development. While developing software, the
performance (and resource usage) is not as important as in the final version which
usually goes as release version into the product. But during development, even small
programming errors should be caught by use of assertions. These assertions are
compiled into the debug version of the embOS libraries and make the code a bit
bigger (about 50%) and also slightly slower than the release or stack check version
used for the final product.

This concept gives you the best of both worlds: a compact and very efficient build for
your final product (release or stack check versions of the libraries), and a safer
(though bigger and slower) version for development which will catch most of the
common application programming errors. Of course, you may also use the release
version of embOS during development, but it will not catch these errors.

2.9.1 Profiling
embOS supports profiling in profiling builds. Profiling makes precise information
available about the execution time of individual tasks. You may always use the profil-
ing libraries, but they induce certain overhead such as bigger task control blocks,
additional ROM (approximately 200 bytes) and additional runtime overhead. This
overhead is usually acceptable, but for best performance you may want to use non-
profiling builds of embOS if you do not use this feature.

2.9.2 List of libraries
In your application program, you need to let the compiler know which build of embOS
you are using. This is done by defining a single identifier prior to including RTOS.h.

2.9.3 embOS functions context
Not all embOS functions can be called from every place in your application. We have
to differ between Main (before the call of OS_Start()), Task, ISR and Software timer.

Please check the embOS API tables to be sure that an embOS function is allowed to
be called from your e.g, ISR. The embOS debug build helps you to check automati-
cally that you do not break these rules.

Build Define Description

XR: Extreme
 Release OS_LIBMODE_XR

Smallest fastest build. Does not support
round robin scheduling and task names.

R: Release OS_LIBMODE_R
Small, fast build, normally used for release
version of application.

S: Stack check OS_LIBMODE_S Same as release, plus stack checking.
SP: Stack check
 plus profiling OS_LIBMODE_SP Same as stack check, plus profiling.

D: Debug OS_LIBMODE_D Maximum runtime checking.
DP: Debug
 plus profiling OS_LIBMODE_DP Maximum runtime checking, plus profiling.

DT: Debug
 including
 trace,
 profiling

OS_LIBMODE_DT
Maximum runtime checking, plus tracing API
calls and profiling.

Table 2.1: List of libraries

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

39

Chapter 3

Working with embOS

This chapter gives some recommendations on how to use embOS in your applica-
tions. These are simply recommendations that we feel can be helpful when designing
& structuring an application.

40 CHAPTER 3 Working with embOS

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

3.1 General advices
- Avoid RR if possible

- Avoid Dynamically creating / terminating tasks

- Avoid nesting of interrupts if possible

3.1.1 Timers or task
For periodically jobs you can use either a task or a software timer. An embOS soft-
ware timer has the advantage that it does not need an own task stack since it runs
on the C-stack.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

41

Chapter 4

Tasks

This chapter explains some basic about tasks and embOS task API functions. It
should be relatively easy to read and is recommended before moving to other chap-
ters.

42 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.1 Introduction
A task that should run under embOS needs a task control block (TCB), a stack, and a
normal routine written in C. The following rules apply to task routines:

� The task routine can either not take parameters (void parameter list), in which
case OS_CreateTask() is used to create it, or take one void pointer as parame-
ter, in which case OS_CreateTaskEx() is used to create it.

� The task routine must not return.
� The task routine should be implemented as an endless loop, or it must terminate

itself (see examples below).

4.1.1 Example of a task routine as an endless loop
/* Example of a task routine as an endless loop */
void Task1(void) {
 while(1) {
 DoSomething() /* Do something */
 OS_Delay(1); /* Give other tasks a chance */
 }
}

4.1.2 Example of a task routine that terminates itself
/* Example of a task routine that terminates */
void Task2(void) {
 char DoSomeMore;
 do {
 DoSomeMore = DoSomethingElse() /* Do something */
 OS_Delay(1); /* Give other tasks a chance */
 } while(DoSomeMore);
 OS_TerminateTask(0); /* Terminate yourself */
}

There are different ways to create a task; embOS offers a simple macro that makes
this easy and which is fully sufficient in most cases. However, if you are dynamically
creating and deleting tasks, a routine is available allowing �fine-tuning� of all param-
eters. For most applications, at least initially, using the macro as in the sample start
project works fine.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

43

4.2 Cooperative vs. preemptive task switches
In general, preemptive task switches are an important feature of an RTOS. Preemp-
tive task switches are required to guarantee responsiveness of high priority, time
critical tasks. However, it may be desireable to disable preemptive task switches for
certain tasks under certain circumstances. The default behavior of embOS is to
always allow preemptive task switches.

4.2.1 Disabling preemptive task switches for tasks at same
priorities

In some situations, preemptive task switches between tasks running at identical pri-
orities is not desireable. To achieve this, the time slice of the tasks running at identi-
cal priority levels needs to be set to 0 as in the example below:

#include "RTOS.h"

#define PRIO_COOP 10
#define TIME_SLICE_NULL 0

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */
/**/
static void TaskEx(void * pData) {
 while (1) {
 OS_Delay ((OS_TIME) pData);
 }
}
/***
*
* main
*
***/
int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task before calling OS_Start() */
 OS_CreateTaskEx(&TCBHP, "HP Task", PRIO_COOP, TaskEx, StackHP,
 sizeof(StackHP), TIME_SLICE_NULL, (void*) 50);
 OS_CreateTaskEx(&TCBLP, "LP Task", PRIO_COOP, TaskEx, StackLP,
 sizeof(StackLP), TIME_SLICE_NULL, (void*) 200);
 OS_Start(); /* Start multitasking */
 return 0;
}

4.2.2 Completely disabling preemptions for a task
This is simple: The first line of code should be OS_EnterRegion() as shown in the
following sample:

void MyTask(void *pContext) {
 OS_EnterRegion(); // Disable preemptive context switches
 while (1) {
 // Do something. In the code, make sure that you call a blocking funtion
 // periodically to give other tasks a chance to run
 }
}

Note: This will entirely disallow preemptive context switches from that particular
task and will therefor affect the timing of higher priority task. You should do this only
if you know what you are doing.

44 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.3 Extending the task context
For some applications it might be useful or required to have individual data in tasks
that are unique to the task.
Local variables, declared in the task, are unique to the task and remain valid, even
when the task is suspended and resumed again.
When the same task function shall be used for multiple tasks, local variables in the
task may be used, but can not be initialized individually for every task.
embOS offers different options to extend the task context.

4.3.1 Passing one parameter to a task during task creation
Very often it is sufficient to have just one individual parameter passed to a task.
Using the OS_CREATETASK_EX() or OS_CreateTaskEx() function to create a task
allows passing a void-pointer to the task. The pointer may point to individual data, or
may reperent any data type that can be covered by a pointer.

4.3.2 Extending the task context individually during runtime
Sometimes it may be required to have an extended task context for individual tasks
to store global data or special CPU registers like floatingpoint registers in the task
context.
The standard libraries for file I/O, locale support and others may require task local
storage for specific data like errno and other variables.
embOS allows extension of the task context for individual tasks during runtime by a
call of OS_ExtendTaskContext().
The task context does not need to be extended for tasks which do not need these
resources.
The sample application file ExtendTaskContext.c delivered in the application sam-
ples folder of embOS schows how the individual task context extension can be used.

4.3.3 Extending the task context by using own task structures
When complex data is needed as individual task context, the OS_CREATETASK_EX() or
OS_CreateTaskEx() functions may be used, passing a pointer to individual data
structures to the task.
Alternatively you may define your own task structure which can be used.
Note, that the first item in the task structure has to be an embOS task control struc-
ture OS_TASK. This can be followed by any amount and kind of additional data of dif-
ferent types.
The following printout shows the example application Start_Extended_OS_TASK.c
which is delivered in the sample application folder of embOS.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

45

/***
* SEGGER MICROCONTROLLER GmbH & Co KG *
* Solutions for real time microcontroller applications *
**
--
File : Start_Extended_OS_TASK.c
Purpose : Skeleton program for OS to demonstrate extended tasks
-------- END-OF-HEADER ---
*/

#include "RTOS.h"
#include <stdio.h>

/****** Define an own task structure with extended task context *****/

typedef struct {
 OS_TASK Task; // OS_TASK has to be the first element
 OS_TIME Timeout; // Any other data may follow
 char* pString;
} MY_APP_TASK;

/* Variables */
OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
MY_APP_TASK TCBHP, TCBLP; /* Task-control-blocks */

/***
*
* Task function
*/
static void MyTask(void) {
 char* pString;
 OS_TIME Delay;
 MY_APP_TASK* pThis;

 pThis = (MY_APP_TASK*) OS_GetTaskID();
 while (1) {
 Delay = pThis->Timeout;
 pString = pThis->pString;
 printf(pString);
 OS_Delay (Delay);
 }
}

/****** main() **/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 /*
 * Create the extended tasks just as normal tasks.
 * Note that the first paramater has to be of type OS_TASK
 */
 OS_CREATETASK(&TCBHP.Task, "HP Task", MyTask, 100, StackHP);
 OS_CREATETASK(&TCBLP.Task, "LP Task", MyTask, 50, StackLP);
 /*
 * Give task contexts individual data
 */
 TCBHP.Timeout = 200;
 TCBHP.pString = "HP task running\n";
 TCBLP.Timeout = 500;
 TCBLP.pString = "LP task running\n";

 OS_Start(); /* Start multitasking */
 return 0;
}

46 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.4 API functions

Routine
Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_AddOnTerminateHook()
Adds a hook (callback) function to the
list of functions which are called when
a task is terminated.

X X

OS_CREATETASK() Creates a task. X X
OS_CreateTask() Creates a task. X X
OS_CREATETASK_EX() Creates a task with parameter. X X
OS_CreateTaskEx() Creates a task with parameter. X X

OS_Delay()
Suspends the calling task for a speci-
fied period of time. X X

OS_DelayUntil()
Suspends the calling task until a spec-
ified time. X X

OS_Delayus()
Waits for the given time in microsec-
onds X X

OS_ExtendTaskContext()
Make global variables or processor
registers task specific. X X

OS_GetpCurrentTask()
Returns a pointer to the task control
block structure of the currently run-
ning task.

X X X X

OS_GetPriority() Returns the priority of a specified task X X X X
OS_GetSuspendCnt() Returns the suspension count. X X X X

OS_GetTaskID()
Returns the ID of the currently run-
ning task. X X X X

OS_GetTaskName() Returns the name of a task. X X X X

OS_GetTimeSliceRem()
Returns the remaining time slice time
of a task. X X X X

OS_IsRunning()
Exxamine whether OS_Start() was
called. X X X X

OS_IsTask()
Determines whether a task control
block actually belongs to a valid task. X X X X

OS_Resume()
Decrements the suspend count of
specified task and resumes the task, if
the suspend count reaches zero.

X X

OS_ResumeAllSuspendedTasks()
Decrements the suspend count of
specified task and resumes the task, if
the suspend count reaches zero.

X X

OS_SetInitialSuspendCnt()
Sets an initial suspension count for
newly created tasks. X X X X

OS_SetPriority()
Assigns a specified priority to a speci-
fied task. X X

OS_SetTaskName()
Allows modification of a task name at
runtime. X X X X

OS_SetTimeSlice()
Assigns a specified timeslice value to a
specified task. X X X X

OS_Start() Start the embOS kernel. X

OS_Suspend()
Suspends the specified task and incre-
ments a counter. X

OS_SuspendAllTasks()
Suspends all tasks except the running
task. X X X X

Table 4.1: Task routine API list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

47

OS_TerminateTask() Ends (terminates) a task. X X
OS_WakeTask() Ends delay of a task immediately. X X X

OS_Yield()
Calls the scheduler to force a task
switch. X

Routine
Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

Table 4.1: Task routine API list

48 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.4.1 OS_AddOnTerminateHook()
Description

Adds a handler function into a list of functions that are called when a task is termi-
nated.

Prototype
void OS_AddOnTerminateHook (OS_ON_TERMINATE_HOOK * pHook,

 OS_ON_TERMINATE_FUNC * pfUser);

Additional Information

For some applications, it may be useful to allocate memory or objects specific to
tasks. For other applications, it may be usefull to have task specific information on
the stack.
When a task is terminated, the task specific objects may become invalid.
A callback function may be hooked into OS_TerminateTask() by calling
OS_AddOnTerminateHook() to allow the application to invalidate all task specific
objects, before the task is terminated.

The callback function of type OS_ON_TERMINATE_FUNC gets the ID of the terminated
task as parameter.
OS_ON_TERMINATE_FUNC is defined as:
typedef void OS_ON_TERMINATE_FUNC(OS_CONST_PTR OS_TASK * pTask);

Important

The variable of type OS_ON_TERMINATE_HOOK has to reside in memory as global or
static variable. It may be located on a task stack, as local variable, but it MUST NOT
be located on any stack of any task that might be terminated.

Example

OS_ON_TERMINATE_HOOK _OnTerminateHook; /* Stack-space */

...
void OnTerminateHookFunc(OS_CONST_PTR OS_TASK * pTask) {
 // This function is called, when OS_TerminateTask() is called.
 if (pTask == &MyTask) {
 free(MytaskBuffer);
 }
}
...
main(void) {
 OS_AddOnTerminateHook(&_OnTerminateHook, OnTerminateHookFunc);
 ...
}

Parameter Description

pHook
Pointer to a variable of type OS_ON_TERMINATE_HOOK which will
be inserted into the linked list of functions to be
called during OS_TerminateTask().

pfUser
Pointer to the function of type OS_TERMINATE_FUNC which shall
be called when a task is terminated.

Table 4.2: OS_AddOnTerminateHook() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

49

4.4.2 OS_CREATETASK()
Description

Creates a task.

Prototype
void OS_CREATETASK (OS_TASK * pTask,
 char * pName,
 void * pRoutine,
 unsigned char Priority,

 void * pStack);

Additional Information

OS_CREATETASK() is a macro calling an OS library function. It creates a task and
makes it ready for execution by putting it in the READY state. The newly created task
will be activated by the scheduler as soon as there is no other task with higher
priority in the READY state. If there is another task with the same priority, the new
task will be placed right before it. This macro is normally used for creating a task
instead of the function call OS_CreateTask(), because it has fewer parameters and is
therefore easier to use.

OS_CREATETASK() can be called at any time, either from main() during initialization
or from any other task. The recommended strategy is to create all tasks during ini-
tialization in main() to keep the structure of your tasks easy to understand.
The absolute value of Priority is of no importance, only the value in comparison to
the priorities of other tasks.

OS_CREATETASK() determines the size of the stack automatically, using sizeof().
This is possible only if the memory area has been defined at compile time.

Important

The stack that you define has to reside in an area that the CPU can actually use as
stack. Most CPUs cannot use the entire memory area as stack. Most CPUs require
alignment of stack in multiples of bytes. This is automatically done, when the task
stack is defined as an array of integers.
The task stack has to be assigned to one task only. The memory used as task stack
can not be used for other purposes as long as the task exists. The stack can not be
shared with other tasks.

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which will be used as
task control block (and reference) for this task.

pName Pointer to the name of the task. Can be NULL (or 0) if not used.
pRoutine Pointer to a routine that should run as a task

Priority
Priority of the task. Must be within the following range:
1 <= Priority <=255
Higher values indicate higher priorities.

pStack
Pointer to an area of memory in RAM that will serve as stack area
for the task. The size of this block of memory determines the size
of the stack area.

Table 4.3: OS_CREATETASK() parameter list

50 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

Example

OS_STACKPTR int UserStack[150]; /* Stack-space */
OS_TASK UserTCB; /* Task-control-blocks */

void UserTask(void) {
 while (1) {
 Delay (100);
 }
}

void InitTask(void) {
 OS_CREATETASK(&UserTCB, "UserTask", UserTask, 100, UserStack);
}

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

51

4.4.3 OS_CreateTask()
Description

Creates a task.

Prototype
void OS_CreateTask (OS_TASK * pTask,
 char * pName,
 unsigned char Priority,
 voidRoutine * pRoutine,
 void * pStack,
 unsigned StackSize,
 unsigned char TimeSlice);

Additional Information

This function works the same way as OS_CREATETASK(), except that all parameters of
the task can be specified.
The task can be dynamically created because the stack size is not calculated auto-
matically as it is with the macro.
When using a debug build of embOS, setting of an illegal TimeSlice value will call the
error handler OS_Error() with error code OE_ERR_TIMSLICE.

Important

The stack that you define has to reside in an area that the CPU can actually use as
stack. Most CPUs cannot use the entire memory area as stack.
Most CPUs require alignment of stack in multiples of bytes. This is automatically
done, when the task stack is defined as an array of integers.
The task stack has to be assigned to one task only. The memory used as task stack
can not be used for other purposes as long as the task exists. The stack can not be
shared with other tasks.

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which will be used as
the task control block (and reference) for this task.

pName Pointer to the name of the task. Can be NULL (or 0) if not used.

Priority
Priority of the task. Must be within the following range:
1 <= Priority <=255
Higher values indicate higher priorities.

pRoutine Pointer to a routine that should run as task

pStack
Pointer to an area of memory in RAM that will serve as stack area
for the task. The size of this block of memory determines the size
of the stack area.

StackSize Size of the stack in bytes.

TimeSlice

Time slice value for round-robin scheduling. Has an effect only if
other tasks are running at the same priority. TimeSlice denotes
the time in embOS timer ticks that the task will run until it sus-
pends; thus enabling another task with the same priority. This
parameter has no effect on some ports of embOS for efficiency
reasons.
The timeslice value has to be in the following range:
1 <= TimeSlice <= 255.

Table 4.4: OS_CreateTask() parameter list

52 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

Example

/* Demo-program to illustrate the use of OS_CreateTask */

OS_STACKPTR int StackMain[100], StackClock[50];
OS_TASK TaskMain,TaskClock;
OS_SEMA SemaLCD;

void Clock(void) {
 while(1) {
 /* Code to update the clock */
 }
}

void Main(void) {
 while (1) {
 /* Your code */
 }
}

void InitTask(void) {
 OS_CreateTask(&TaskMain, NULL, 50, Main, StackMain, sizeof(StackMain), 2);
 OS_CreateTask(&TaskClock, NULL, 100, Clock,StackClock,sizeof(StackClock),2);
}

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

53

4.4.4 OS_CREATETASK_EX()
Description

Creates a task and passes a parameter to the task.

Prototype
void OS_CREATETASK_EX (OS_TASK * pTask,
 char * pName,
 void * pRoutine,
 unsigned char Priority,
 void * pStack,

 void * pContext);

Additional Information

OS_CREATETASK_EX() is a macro calling an embOS library function. It works like
OS_CREATETASK(), but allows passing a parameter to the task.
Using a void pointer as additional parameter gives the flexibility to pass any kind of
data to the task function.

Example

The following example is delivered in the Samples folder of embOS.

/*--
File : Main_TaskEx.c
Purpose : Sample program for embOS using OC_CREATETASK_EX
--------- END-OF-HEADER --*/

#include "RTOS.h"
OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */
/**/
static void TaskEx(void* pVoid) {
 while (1) {
 OS_Delay ((OS_TIME) pVoid);
 }
}
/***
*
* main
*
***/
int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task before calling OS_Start() */
 OS_CREATETASK_EX(&TCBHP, "HP Task", TaskEx, 100, StackHP, (void*) 50);
 OS_CREATETASK_EX(&TCBLP, "LP Task", TaskEx, 50, StackLP, (void*) 200);
 OS_SendString("Start project will start multitasking !\n");
 OS_Start(); /* Start multitasking */
 return 0;
}

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which will be used as
task control block (and reference) for this task.

pName Pointer to the name of the task. Can be NULL (or 0) if not used.
pRoutine Pointer to a routine that should run as a task.

Priority
Priority of the task. Must be within the following range:
1 <= Priority <=255
Higher values indicate higher priorities.

pStack
Pointer to an area of memory in RAM that will serve as stack area
for the task. The size of this block of memory determines the size
of the stack area.

pContext Parameter passed to the created task function.
Table 4.5: OS_CREATETASK_EX() parameter list

54 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.4.5 OS_CreateTaskEx()
Description

Creates a task and passes a parameter to the task.

Prototype
void OS_CreateTaskEx (OS_TASK * pTask,
 char * pName,
 unsigned char Priority,
 voidRoutine * pRoutine,
 void * pStack,
 unsigned StackSize,
 unsigned char TimeSlice,
 void * pContext);

Additional Information

This function works the same way as OS_CreateTask(), except that a parameter is
passed to the task function.
An example of parameter passing to tasks is shown under OS_CREATETASK_EX().
When using a debug build of embOS, setting of an illegal TimeSlice value will call the
error handler OS_Error() with error code OE_ERR_TIMSLICE.

Important

The stack that you define has to reside in an area that the CPU can actually use as
stack. Most CPUs cannot use the entire memory area as stack.
Most CPUs require alignment of stack in multiples of bytes. This is automatically
done, when the task stack is defined as an array of integers.
The task stack has to be assigned to one task only. The memory used as task stack
can not be used for other purposes as long as the task exists. The stack can not be
shared with other tasks.

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which will be used as
the task control block (and reference) for this task.

pName Pointer to the name of the task. Can be NULL (or 0) if not used.

Priority
Priority of the task. Must be within the following range:
1 <= Priority <=255
Higher values indicate higher priorities.

pRoutine Pointer to a routine that should run as task.

pStack
Pointer to an area of memory in RAM that will serve as stack area
for the task. The size of this block of memory determines the size
of the stack area.

StackSize Size of the stack in bytes.

TimeSlice

Time slice value for round-robin scheduling. Has an effect only if
other tasks are running at the same priority.TimeSlice denotes
the time in embOS timer ticks that the task will run until it sus-
pends; thus enabling another task with the same priority. This
parameter has no effect on some ports of embOS for efficiency
reasons.
The timeslice value has to be in the following range:
1 <= TimeSlice <= 255.

pContext Parameter passed to the created task.
Table 4.6: OS_Create_TaskEx() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

55

4.4.6 OS_Delay()
Description

Suspends the calling task for a specified period of time.

Prototype
void OS_Delay (OS_TIME ms);

Additional Information

The calling task will be put into the TS_DELAY state for the period of time specified.
The task will stay in the delayed state until the specified time has expired. The
parameter ms specifies the precise interval during which the task has to be sus-
pended given in basic time intervals (usually 1/1000 seconds). The actual delay (in
basic time intervals) will be in the following range: ms - 1 <= delay <= ms, depending
on when the interrupt for the scheduler will occur.
After the expiration of a delay, the task is made ready again and activated according
to the rules of the scheduler. A delay can be ended prematurely by another task or by
an interrupt handler calling OS_WakeTask().

Example

void Hello() {
 printf("Hello");
 printf("The next output will occur in 5 seconds");
 OS_Delay (5000);
 printf("Delay is over");
}

Parameter Description

ms

Time interval to delay. Must be within the following range:
1 <= ms <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= ms <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 4.7: OS_Delay() parameter list

56 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.4.7 OS_DelayUntil()
Description

Suspends the calling task until a specified time.

Prototype
void OS_DelayUntil (OS_TIME t);

Additional Information

The calling task will be put into the TS_DELAY state until the time specified.
The OS_DelayUntil() function delays until the value of the time-variable OS_Time
has reached a certain value. It is very useful if you have to avoid accumulating
delays.
An embOS systick timer overflow is no problem as long as parameter t is within the
above mentioned range.

Example

int sec,min;

void TaskShowTime() {
 int t0;
 t0 = OS_GetTime();
 while (1) {
 ShowTime(); /* Routine to display time */
 t0 += 1000;
 OS_DelayUntil (t0);
 if (sec < 59) {
 sec++;
 } else {
 sec=0;
 min++;
 }
 }
}

In the example above, the use of OS_Delay() could lead to accumulating delays and
would cause the simple �clock� to be slow.

Parameter Description

t

Time to delay until. Must be within the following range:
0 <= t <= 216-1 = 0xFFFF = 65535 for 8/16-bit CPUs
0 <= t <= 232-1 = 0xFFFFFFFF for 32-bit CPUs
and has to meet the following additional condition
1 <= (t - OS_Time) <= 215-1 = 0x7FFF = 32767 for 8/16-bit
CPUs
1 <= (t- OS_Time) <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 4.8: OS_DelayUntil() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

57

4.4.8 OS_Delayus()
Description

Waits for the given time in microseconds.

Prototype
void OS_Delayus (OS_U16 us);

Additional Information

This function can be used for short delays.

OS_Delayus() must only be called with enabled interrupts and after OS_InitKern()
and OS_InitHW(). With embOS debug build OS_Delayus() checks if interrupts are
enabled, otherwise OS_Error() is called.

Example

void Hello() {
 printf("Hello");
 printf("The next output will occur in 500 microseconds");
 OS_Delayus (500);
 printf("Delay is over");
}

Parameter Description

us
Time interval to delay. Must be within the following range:
1 <= us <= 215-1 = 0x7FFF = 32767

Table 4.9: OS_Delay() parameter list

58 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.4.9 OS_ExtendTaskContext()
Description

The function may be used for a variety of purposes. Typical applications include, but
are not limited to:

� global variables such as �errno� in the C-library, making the C-lib functions
thread-safe.

� additional, optional CPU / registers such as MAC / EMAC registers (multiply and
accumulate unit) if they are not saved in the task context per default.

� Co-processor registers such as registers of a VFP (floating point coprocessor).
� Data registers of an add. hardware unit such as a CRC calculation unit

This allows the user to extend the task context as required by his system. A major
advantage is that the task extension is task specific. This means that the additional
information (such as floating point registers) needs to be saved only by tasks that
actually use these registers. The advantage is that the task switching time of the
other tasks is not affected. The same thing is true for the required stack space: Add.
stack space is required only for the tasks which actually save the add. registers.

Prototype
void OS_ExtendTaskContext(const OS_EXTEND_TASK_CONTEXT * pExtendContext);

Additional Information

The OS_EXTEND_TASK_CONTEXT structure is defined as follows:

typedef struct OS_EXTEND_TASK_CONTEXT {
 void (*pfSave) (void * pStack);
 void (*pfRestore)(const void * pStack);
} OS_EXTEND_TASK_CONTEXT;

The save and restore functions have to be declared according the function type used
in the structure. The sample below shows, how the task stack has to be addressed to
save and restore the extended task context.

OS_ExtendTaskContext() is not available in the XR libraries.

Important

The task context can be extended only once per task. The function must not be called
multple times for one task.

Note that some ports of embOS use the mechanism of extending the task context for
individual tasks for CPU or compiler specific purposes like storing floating point regis-
ters or deliver a thread local storage.
In this case, the user can not extend the task context by OS_ExtendTaskContext().
Extended tasks, created by OS_CREATETASK_EX() or OS_CreateTaskEx() can still be
used.

Parameter Description

pExtendContext
Pointer to the OS_EXTEND_TASK_CONTEXT structure which contains
the addresses of the specific save and restore functions which
save and restore the extended task context during task switches.

Table 4.10: OS_ExtendTaskContext() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

59

Example

The following example is delivered in the Samples folder of embOS.

/*--
File : ExtendTaskContext.c
Purpose : Sample program for embOS demonstrating how to dynamically
extend the task context.
This example adds a global variable to the task context of
certain tasks.
-------- END-OF-HEADER ---
*/
#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */
int GlobalVar;

/***
*
* _Restore
* _Save
*
* Function description
* This function pair saves and restores an extended task context.
* In this case, the extended task context consists of just a single
* member, which is a global variable.
*/
typedef struct {
 int GlobalVar;
} CONTEXT_EXTENSION;

static void _Save(void * pStack) {
 CONTEXT_EXTENSION * p;
 p = ((CONTEXT_EXTENSION*)pStack) - (1 - OS_STACK_AT_BOTTOM); // Create pointer
 //
 // Save all members of the structure
 //
 p->GlobalVar = GlobalVar;
}

static void _Restore(const void * pStack) {
 CONTEXT_EXTENSION * p;
 p = ((CONTEXT_EXTENSION*)pStack) - (1 - OS_STACK_AT_BOTTOM); // Create pointer
 //
 // Restore all members of the structure
 //
 GlobalVar = p->GlobalVar;
}

/***
*
* Global variable which holds the function pointers
* to save and restore the task context.
*/
const OS_EXTEND_TASK_CONTEXT _SaveRestore = {
 _Save,
 _Restore
};

/**/

/***
*
* HPTask
*
* Function description
* During the execution of this function, the thread-specific
* global variable has always the same value of 1.
*/
static void HPTask(void) {
 OS_ExtendTaskContext(&_SaveRestore);
 GlobalVar = 1;
 while (1) {
 OS_Delay (10);
 }
}

60 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

/***
*
* LPTask
*
* Function description
* During the execution of this function, the thread-specific
* global variable has always the same value of 2.
*/
static void LPTask(void) {
 OS_ExtendTaskContext(&_SaveRestore);
 GlobalVar = 2;
 while (1) {
 OS_Delay (50);
 }
}

/***
*
* main
*/
int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

61

4.4.10 OS_GetpCurrentTask()
Description

Returns a pointer to the task control block structure of the currently running task.

Prototype
OS_TASK* OS_GetpCurrentTask (void);

Return value

OS_TASK*: A pointer to the task control block structure.

Additional Information

This function may be used for determining which task is executing. This may be help-
ful if the reaction of any function depends on the currently running task.

62 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.4.11 OS_GetPriority()
Description

Returns the priority of a specified task.

Prototype
unsigned char OS_GetPriority (const OS_TASK* pTask);

Return value

Priority of the specified task as an �unsigned character� (range 1 to 255).

Additional Information

If pTask is the NULL pointer, the function returns the priority of the currently running
task. If pTask does not specify a valid task, the debug version of embOS calls
OS_Error(). The release version of embOS cannot check the validity of pTask and
may therefore return invalid values if pTask does not specify a valid task.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pTask Pointer to a data structure of type OS_TASK.
Table 4.11: OS_GetPriority() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

63

4.4.12 OS_GetSuspendCnt()
Description

The function returns the suspension count and thus suspension state of the specified
task. This function may be used for examining whether a task is suspended by previ-
ous calls of OS_Suspend().

Prototype
unsigned char OS_GetSuspendCnt (const OS_TASK* pTask);

Return value

Suspension count of the specified task as unsigned character value.
0: Task is not suspended.
>0: Task is suspended by at least one call of OS_Suspend().

Additional Information

If pTask does not specify a valid task, the debug version of embOS calls OS_Error().
The release version of embOS can not check the validity of pTask and may therefore
return invalid values if pTask does not specify a valid task. When tasks are created
and terminated dynamically, OS_IsTask() may be called prior calling
OS_GetSuspendCnt() to examine whether the task is valid. The returned value can
be used for resuming a suspended task by calling OS_Resume() as often as indicated
by the returned value.

Example

/* Demo-function to illustrate the use of OS_GetSuspendCnt() */

void ResumeTask(OS_TASK* pTask) {
 unsigned char SuspendCnt;
 SuspendCnt = OS_GetSuspendCnt(pTask);
 while(SuspendCnt > 0) {
 OS_Resume(pTask); /* May cause a task switch */
 SuspendCnt--;
 }
}

Parameter Description

pTask Pointer to a data structure of type OS_TASK.
Table 4.12: OS_GetSuspendCnt() parameter list

64 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.4.13 OS_GetTaskID()
Description

Returns a pointer to the task control block structure of the currently running task.
This pointer is unique for the task and is used as task Id.

Prototype
OS_TASK * OS_GetTaskID (void);

Return value

A pointer to the task control block. A value of 0 (NULL) indicates that no task is exe-
cuting.

Additional Information

This function may be used for determining which task is executing. This may be help-
ful if the reaction of any function depends on the currently running task.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

65

4.4.14 OS_GetTaskName()
Description

Returns a pointer to the name of a task.

Prototype
const char* OS_GetTaskName(const OS_TASK* pTask);

Return value

A pointer to the name of the task. A value of 0 (NULL) indicates that the task has no
name.

Additional Information

If pTask is the NULL pointer, the function returns the name of the currently running
task. If not called from a task with a NULL pointer as parameter, the return value is
�OS_Idle()�. If pTask does not specify a valid task, the debug version of embOS calls
OS_Error(). The release version of embOS cannot check the validity of pTask and
may therefore return invalid values if pTask does not specify a valid task.

Parameter Description

pTask Pointer to a data structure of type OS_TASK.
Table 4.13: OS_GetTaskName() parameter list

66 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.4.15 OS_GetTimeSliceRem()
Description

Returns the remaining timeslice value of a task.

Prototype
unsigned char OS_GetTimeSliceRem(const OS_TASK* pTask);

Return value

The remaining timslice value of the task.

Additional Information

If pTask is the NULL pointer, the function returns the remaining timeslice of the run-
ning task. If not called from a task with a NULL pointer as parameter, or if pTask does
not specify a valid task, the debug version of embOS calls OS_Error(). The release
version of embOS cannot check the validity of pTask and may therefore return invalid
values if pTask does not specify a valid task.
The function is not available when round-robin is not supported.
The embOS eXtreme release libraries don�t support round robin.
When embOS is recompiled with OS_RR_SUPPORTED set to 0, the function will not be
available.

Parameter Description

pTask Pointer to a data structure of type OS_TASK.
Table 4.14: OS_GetTimeSliceRem() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

67

4.4.16 OS_IsRunning()
Description

Determines whether the embOS scheduler was started by a call of OS_Start().

Prototype
unsigned char OS_IsRunning (void);

Return value

Character value:
0: Scheduler was not started.
!=0: Scheduler is running, OS_Start() has been called.

Additional Information

This function may be helpful for some functions which might be called from main() or
from running tasks.
As long as the scheduler was not started and a function is called from main(), block-
ing task switches are not allowed.
A function which may be called from a task or main(), may use OS_IsRunning() to
determine whether a blocking task switch is allowed.

68 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.4.17 OS_IsTask()
Description

Determines whether a task control block actually belongs to a valid task.

Prototype
char OS_IsTask (const OS_TASK* pTask);

Return value

Character value:
0: TCB is not used by any task
1: TCB is used by a task

Additional Information

This function checks if the specified task is still in the internal task list. If the task
was terminated, it is removed from the internal task list. This function may be useful
to determine whether the task control block and stack for the task may be reused for
another task in applications that create and terminate tasks dynamically.

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which is used as task
control block (and reference) for this task.

Table 4.15: OS_IsTask() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

69

4.4.18 OS_Resume()
Description

Decrements the suspend count of the specified task and resumes it, if the suspend
count reaches zero.

Prototype
void OS_Resume (OS_TASK* pTask);

Additional Information

The specified task's suspend count is decremented. If the resulting value is 0, the
execution of the specified task is resumed.
If the task is not blocked by other task blocking mechanisms, the task will be set
back in ready state and continues operation according to the rules of the scheduler.
In debug versions of embOS, the OS_Resume() function checks the suspend count of
the specified task. If the suspend count is 0 when OS_Resume() is called, the
specified task is not currently suspended and OS_Error() is called with error
OS_ERR_RESUME_BEFORE_SUSPEND.

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which is used as task
control block (and reference) for the task that should be sus-
pended.

Table 4.16: OS_Resume() parameter list

70 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.4.19 OS_ResumeAllSuspendedTasks()
Description

Decrements the suspend count of all tasks when it is set and and resumes the task if
the suspend count reaches zero.

Prototype
void OS_ResumeAllSuspendedTasks (void);

Additional Information

This function may be helpful to synchronize or start multiple tasks at the same time.
The function resumes all tasks, no specific task has to be addressed.
The function may be used together with the functions OS_SuspendAllTasks() and
OS_SetInitialSuspendCnt().
The function may cause a task switch, when a task with higher priority than the call-
ing task is resumed.
The task switch will be executed after all suspended tasks are resumed.
As this is a non blocking function, the function may be called from all contexts, main,
ISR or timer.
The function may be called regardless any tasks are suspended. No error will be gen-
erated when tasks are not suspended.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

71

4.4.20 OS_SetInitialSuspendCnt()
Description

Sets the initial suspend count for newly created tasks. May be used to create tasks
which are initially suspended.

Prototype
void OS_SetInitialSuspendCnt (unsigned char SuspendCnt);

Additional Information

Can be called at any time from main(), any task, ISR or software timer.
After calling this function with SuspendCnt unequal to zero, all newly created tasks
will be automatically suspended.
Therefore, this function may be used to inhibit further task switches. This may be
useful during system initailization.

Important

When this function is called from main() to initialize all tasks in suspended state, at
least one task has to be resumed before the system is started by a call of
OS_Start().
The initial suspend count should be reset to allow normal creation of tasks before the
system is started.

Example

/* Sample to demonstrate the use of OS_SetInitialSuspendCnt */

void InitTask(void) {
 //
 // High priority task started first after OS_Start()
 //
 OS_SuspendAllTasks(); // Ensure, no other existing task can run.
 OS_SetInitialSuspendCnt(1); // Ensure, no newly created task will run.
 //
 // Perform application initialization
 //
 ... // New tasks may be created, but can not start.
 ... // Even when InitTask() blocks itself by a delay, no other task will run.
 OS_SetInitialSuspendCnt(0); // Reset the initial suspend count for tasks.
 //
 // Resume all tasks taht were blocked before or were created in suspended state.
 //
 OS_ResumeAllSuspendedTasks();
 while (1) {
 ... // Do the normal work
 }
}

Parameter Description

SuspendCnt
!= 0: Tasks will be created in suspended state.
= 0: Tasks will be created normally without suspension.

Table 4.17: OS_SetInitialSuspendCnt() parameter list

72 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.4.21 OS_SetPriority()
Description

Assigns a specified priority to a specified task.

Prototype
void OS_SetPriority (OS_TASK* pTask,
 unsigned char Priority);

Additional Information

Can be called at any time from any task or software timer. Calling this function might
lead to an immediate task switch.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pTask Pointer to a data structure of type OS_TASK.

Priority
Priority of the task. Must be within the following range:
1 <= Priority <= 255 Higher values indicate higher priorities.

Table 4.18: OS_SetPriority() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

73

4.4.22 OS_SetTaskName()
Description

Allows modification of a task name at runtime.

Prototype
void OS_SetTaskName (OS_TASK* pTask,
 const char* s);

Additional Information

Can be called at any time from any task or software timer.
When pTask is the NULL pointer, the name of the currently running task is modified.

Parameter Description

pTask Pointer to a data structure of type OS_TASK.
s Pointer to a zero terminated string which is used as task name.

Table 4.19: OS_SetTaskName() parameter list

74 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.4.23 OS_SetTimeSlice()
Description

Assigns a specified timeslice value to a specified task.

Prototype
unsigned char OS_SetTimeSlice (OS_TASK* pTask,
 unsigned char TimeSlice);

Return value

Previous timeslice value of the task as unsigned char.

Additional Information

Can be called at any time from any task or software timer. Setting the timeslice value
only affects the tasks running in round-robin mode. This means another task with the
same priority must exist.
The new timeslice value is interpreted as reload value. It is used after the next acti-
vation of the task. It does not affect the remaining timeslice of a running task.
When using a debug build of embOS, setting of an illegal TimeSlice value will call the
error handler OS_Error() with error code OE_ERR_TIMSLICE.

Parameter Description

pTask Pointer to a data structure of type OS_TASK.

TimeSlice
New timeslice value for the task. Must be within the following
range:
1 <= TimeSlice <= 255.

Table 4.20: OS_SetTimeSlice() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

75

4.4.24 OS_Start()
Description

Starts the embOS scheduler.

Prototype
void OS_Start (void);

Additional Information

This function starts the embOS scheduler and schould be the last function called from
main().
OS_Start() marks embOS as running. The running state can be examined by a call
of the function OS_IsRunning().
OS_Start() will activate and start the task with the highest priority.
OS_Start() automatically enables interrupts.
OS_Start() does not return.
OS_Start() must not be called from a task, from an interrupt or an embOS timer, it
may be called from main() only once.

76 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.4.25 OS_Suspend()
Description

Suspends the specified task.

Prototype
void OS_Suspend (OS_TASK* pTask);

Additional Information

If pTask is the NULL pointer, the current task suspends.
If the function succeeds, execution of the specified task is suspended and the task's
suspend count is incremented. The specified task will be suspended immediately. It
can only be restarted by a call of OS_Resume().
Every task has a suspend count with a maximum value of OS_MAX_SUSPEND_CNT. If
the suspend count is greater than zero, the task is suspended.
In debug versions of embOS, calling OS_Suspend() more often than
OS_MAX_SUSPEND_CNT times without calling OS_Resume(), the task's internal suspend
count is not incremented and OS_Error() is called with error
OS_ERR_SUSPEND_TOO_OFTEN.

Can not be called from an interrupt handler or timer as this function may cause a
task switch immediately.
The debug version of embOS will call the OS_Error() function when OS_Suspend() is
called from an interrupt handler.

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which is used as task
control block (and reference) for the task that should be sus-
pended.

Table 4.21: OS_Suspend() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

77

4.4.26 OS_SuspendAllTasks()
Description

Suspends all except the running task.

Prototype
void OS_SuspendAllTasks (void);

Additional Information

This function may be used to inhibit task switches. It may be useful during applica-
tion initialization or supervising.
The calling task will not be suspended.
After calling OS_SuspendAllTasks, the calling task may block or suspend itself. No
other task will be activated until all tasks are resumed again.
All suspended tasks can be resumed by a call of OS_ResumeAllSuspendedtasks().

Example

/* Sample to demonstrate the use of OS_SuspendAllTasks */

void InitTask(void) {
 //
 // High priority task started first after OS_Start()
 //
 OS_SuspendAllTasks(); // Ensure, no other existing task can run.
 OS_SetInitialSuspendCnt(1); // Ensure, no newly created task will run.
 //
 // Perform application initialization
 //
 ... // New tasks may be created, but can not start.
 ... // Even when InitTask() blocks itself by a delay, no other task will run.
 OS_SetInitialSuspendCnt(0); // Reset the initial suspend count for tasks.
 //
 // Resume all tasks taht were blocked before or were created in suspended state.
 //
 OS_ResumeAllSuspendedTasks();
 while (1) {
 ... // Do the normal work
 }
}

78 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.4.27 OS_TerminateTask()
Description

Ends (terminates) a task.

Prototype
void OS_TerminateTask (OS_TASK* pTask);

Additional Information

If pTask is the NULL pointer, the current task terminates. The specified task will ter-
minate immediately. The memory used for stack and task control block can be reas-
signed.

Since version 3.26 of embOS, all resources which are held by the terminated task are
released. Any task may be terminated regardless of its state. This functionality is
default for any 16-bit or 32-bit CPU and may be changed by recompiling embOS
sources. On 8-bit CPUs, terminating tasks that hold any resources, like semaphores,
which may block other tasks, is prohibited.
Since embOS version 3.82u, OS_TerminateTask() replaces the former function
OS_Terminate() which may still be used.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which is used as task
control block (and reference) for this task.

Table 4.22: OS_Terminate() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

79

4.4.28 OS_WakeTask()
Description

Ends delay of a task immediately.

Prototype
void OS_WakeTask (OS_TASK* pTask);

Additional Information

Puts the specified task, which is already suspended for a certain amount of time with
OS_Delay() or OS_DelayUntil() back to the state TS_READY (ready for execution).
The specified task will be activated immediately if it has a higher priority than the
priority of the task that had the highest priority before. If the specified task is not in
the state TS_DELAY (because it has already been activated, or the delay has already
expired, or for some other reason), this command is ignored.

Parameter Description

pTask
Pointer to a data structure of type OS_TASK which is used as task
control block (and reference) for this task.

Table 4.23: OS_WakeTask() parameter list

80 CHAPTER 4 Tasks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

4.4.29 OS_Yield()
Description

 Calls the scheduler to force a task switch.

Prototype
void OS_Yield (void);

Additional Information

If the task is running on round-robin, it will be suspended if there is an other task
with the same priority ready for execution.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

81

Chapter 5

Software timers

82 CHAPTER 5 Software timers

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

5.1 Introduction
A software timer is an object that calls a user-specified routine after a specified
delay. A basically unlimited number of software timers can be defined with the macro
OS_CREATETIMER().

Timers can be stopped, started and retriggered much like hardware timers. When
defining a timer, you specify any routine that is to be called after the expiration of
the delay. Timer routines are similar to interrupt routines; they have a priority higher
than the priority of all tasks. For that reason they should be kept short just like inter-
rupt routines.

Software timers are called by embOS with interrupts enabled, so they can be inter-
rupted by any hardware interrupt. Generally, timers run in single-shot mode, which
means they expire only once and call their callback routine only once. By calling
OS_RetriggerTimer() from within the callback routine, the timer is restarted with its
initial delay time and therefore works just as a free-running timer.

The state of timers can be checked by the functions OS_GetTimerStatus(),
OS_GetTimerValue(), and OS_GetTimerPeriod().

Maximum timeout / period

The timeout value is stored as an integer, thus a 16-bit value on 8/16-bit CPUs, a 32-
bit value on 32-bit CPUs. The comparisons are done as signed comparisons, (because
expired time-outs are permitted). This means that only 15-bits can be used on 8/16
bit CPUs, 31-bits on 32-bit CPUs. Another factor to take into account is the maximum
time spent in critical regions. During critical regions timers may expire, but because
the timer routine can not be called from a critical region (timers are �put on hold�),
the maximum time that the system spends at once in a critical region needs to be
deducted. In most systems, this is no more than a single tick. However, to be safe,
we have assumed that your system spends no more than up to 255 ticks in a row in
a critical region and defined a macro which defines the maximum timeout value. It is
normally 0x7F00 for 8/16-bit systems or 0x7FFFFF00 for 32-bit Systems and defined
in RTOS.h as OS_TIMER_MAX_TIME. If your system spends more than 255 ticks without
break in a critical section (effectively disabling the scheduler during this time. Not
recommended!), you have to make sure your application uses shorter timeouts.

Extended software timers

Sometimes it may be useful to pass a parameter to the timer callback function. This
allows usage of one callback function for different software timers.
Since version 3.32m of embOS, the extended timer structure and related extended
timer functions were implemented to allow parameter passing to the callback func-
tion.
Except the different callback function with parameter passing, extended timers
behave exactly the same as normal embOS software timers and may be used in par-
allel with normal software timers.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

83

5.2 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_CREATETIMER()
Macro that creates and starts a software-
timer. X X X X

OS_CreateTimer() Creates a software timer without starting it. X X X X
OS_StartTimer() Starts a software timer. X X X X
OS_StopTimer() Stops a software timer. X X X X

OS_RetriggerTimer()
Restarts a software timer with its initial
time value. X X X X

OS_SetTimerPeriod()
Sets a new timer reload value for a software
timer. X X X X

OS_DeleteTimer() Stops and deletes a software timer. X X X X

OS_GetTimerPeriod()
Returns the current reload value of a soft-
ware timer. X X X X

OS_GetTimerValue()
Returns the remaining timer value of a soft-
ware timer. X X X X

OS_GetTimerStatus()
Returns the current timer status of a soft-
ware timer. X X X X

OS_GetpCurrentTimer()
Returns a pointer to the data structure of
the timer that just expired. X X X X

OS_CREATETIMER_EX()
Macro that creates and starts an extended
software-timer. X X X X

OS_CreateTimerEx()
Creates an extended software timer without
starting it. X X X X

OS_StartTimerEx() Starts an extended timer. X X X X
OS_StopTimerEx() Stops an extended timer. X X X X

OS_RetriggerTimerEx()
Restarts an extended timer with its initial
time value. X X X X

OS_SetTimerPeriodEx()
Sets a new timer reload value for an
extended timer. X X X X

OS_DeleteTimerEx() Stops and deletes an extended timer. X X X X

OS_GetTimerPeriodEx()
Returns the current reload value of an
extended timer. X X X X

OS_GetTimerValueEx()
Returns the remaining timer value of an
extended timer. X X X X

OS_GetTimerStatusEx()
Returns the current timer status of an
extended timer. X X X X

OS_GetpCurrentTimerEx()
Returns a pointer to the data structure of
the extended timer that just expired. X X X X

Table 5.1: Software timers API

84 CHAPTER 5 Software timers

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

5.2.1 OS_CREATETIMER()
Description

Macro that creates and starts a software timer.

Prototype
void OS_CREATETIMER (OS_TIMER* pTimer,
 OS_TIMERROUTINE* Callback,
 OS_TIME Timeout);)

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout is expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled).
This macro uses the functions OS_CreateTimer() and OS_StartTimer(). It is sup-
plied for backward compatibility; in newer applications these routines should be
called directly instead.
OS_TIMERROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMERROUTINE(void);

Source of the macro (in RTOS.h):

#define OS_CREATETIMER(pTimer,c,d) \
 OS_CreateTimer(pTimer,c,d); \
 OS_StartTimer(pTimer);

Example

OS_TIMER TIMER100;

void Timer100(void) {
 LED = LED ? 0 : 1; /* Toggle LED */
 OS_RetriggerTimer(&TIMER100); /* Make timer periodical */
}

void InitTask(void) {
 /* Create and start Timer100 */
 OS_CREATETIMER(&TIMER100, Timer100, 100);
}

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Callback

Pointer to the callback routine to be called from the RTOS after
expiration of the delay. The callback function has to be a void
function which does not take any parameter and does not return
any value.

Timeout

Initial timeout in basic embOS time units (nominal ms):
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 5.2: OS_CREATETIMER() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

85

5.2.2 OS_CreateTimer()
Description

Creates a software timer (but does not start it).

Prototype
void OS_CreateTimer (OS_TIMER* pTimer,
 OS_TIMERROUTINE* Callback,
 OS_TIME Timeout);)

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout is expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled). The timer is not automatically started. This has to
be done explicitly by a call of OS_StartTimer() or OS_RetriggerTimer().
OS_TIMERROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMERROUTINE(void);

Example

OS_TIMER TIMER100;

void Timer100(void) {
 LED = LED ? 0 : 1; /* Toggle LED */
 OS_RetriggerTimer(&TIMER100); /* Make timer periodical */
}

void InitTask(void) {
 /* Create Timer100, start it elsewhere */
 OS_CreateTimer(&TIMER100, Timer100, 100);
 OS_StartTimer(&TIMER100);
}

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Callback
Pointer to the callback routine to be called from the RTOS after
expiration of the delay.

Timeout

Initial timeout in basic embOS time units (nominal ms):
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 5.3: OS_CreateTimer() parameter list

86 CHAPTER 5 Software timers

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

5.2.3 OS_StartTimer()
Description

Starts a software timer.

Prototype
void OS_StartTimer (OS_TIMER* pTimer);

Additional Information

OS_StartTimer() is used for the following reasons:

� Start a timer which was created by OS_CreateTimer(). The timer will start with
its initial timer value.

� Restart a timer which was stopped by calling OS_StopTimer(). In this case, the
timer will continue with the remaining time value which was preserved by stop-
ping the timer.

Important

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired. Use OS_RetriggerTimer() to restart those timers.

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Table 5.4: OS_StartTimer() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

87

5.2.4 OS_StopTimer()
Description

Stops a software timer.

Prototype
void OS_StopTimer (OS_TIMER* pTimer);

Additional Information

The actual value of the timer (the time until expiration) is kept until
OS_StartTimer() lets the timer continue.

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Table 5.5: OS_StopTimer() parameter list

88 CHAPTER 5 Software timers

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

5.2.5 OS_RetriggerTimer()
Description

Restarts a software timer with its initial time value.

Prototype
void OS_RetriggerTimer (OS_TIMER* pTimer);

Additional Information

OS_RetriggerTimer() restarts the timer using the initial time value programmed at
creation of the timer or with the function OS_SetTimerPeriod().
OS_RetriggerTimer() can be called regardless the state of the timer. A running
timer will continue using the full initial time. A timer that was stopped before or had
expired will be restarted.

Example

OS_TIMER TIMERCursor;
BOOL CursorOn;

void TimerCursor(void) {
 if (CursorOn) ToggleCursor(); /* Invert character at cursor-position */
 OS_RetriggerTimer(&TIMERCursor); /* Make timer periodical */
}

void InitTask(void) {
 /* Create and start TimerCursor */
 OS_CREATETIMER(&TIMERCursor, TimerCursor, 500);
}

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Table 5.6: OS_RetriggerTimer() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

89

5.2.6 OS_SetTimerPeriod()
Description

Sets a new timer reload value for a software timer.

Prototype
void OS_SetTimerPeriod (OS_TIMER* pTimer,
 OS_TIME Period);

Additional Information

OS_SetTimerPeriod() sets the initial time value of the specified timer. Period is the
reload value of the timer to be used as initial value when the timer is retriggered by
OS_RetriggerTimer().

Example

OS_TIMER TIMERPulse;
BOOL CursorOn;

void TimerPulse(void) {
 if TogglePulseOutput(); /* Toggle output */
 OS_RetriggerTimer(&TIMERCursor); /* Make timer periodical */
}

void InitTask(void) {
 /* Create and start Pulse Timer with first pulse = 500ms */
 OS_CREATETIMER(&TIMERPulse, TimerPulse, 500);
 /* Set timer period to 200 ms for further pulses */
 OS_SetTimerPeriod(&TIMERPulse, 200);
}

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Period

Timer period in basic embOS time units (nominal ms):
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 5.7: OS_SetTimerPeriod() parameter list

90 CHAPTER 5 Software timers

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

5.2.7 OS_DeleteTimer()
Description

Stops and deletes a software timer.

Prototype
void OS_DeleteTimer (OS_TIMER* pTimer);

Additional Information

The timer is stopped and therefore removed out of the linked list of running timers.
In debug builds of embOS, the timer is also marked as invalid.

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Table 5.8: OS_DeleteTimer() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

91

5.2.8 OS_GetTimerPeriod()
Description

 Returns the current reload value of a software timer.

Prototype
OS_TIME OS_GetTimerPeriod (const OS_TIMER* pTimer);

Return value

Type OS_TIME, which is defined as an integer between
1 and 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs and as an integer between
1 and <= 231-1 = 0x7FFFFFFF for 32-bit CPUs, which is the permitted range of timer
values.

Additional Information

The period returned is the reload value of the timer set as initial value when the
timer is retriggered by OS_RetriggerTimer().

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Table 5.9: OS_GetTimerPeriod() parameter list

92 CHAPTER 5 Software timers

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

5.2.9 OS_GetTimerValue()
Description

Returns the remaining timer value of a software timer.

Prototype
OS_TIME OS_GetTimerValue (const OS_TIMER* pTimer);

Return value

Type OS_TIME, which is defined as an integer between
1 and 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs and as an integer between
1 and <= 231-1 = 0x7FFFFFFF for 32-bit CPUs, which is the permitted range of timer
values.
The returned time value is the remaining timer time in embOS tick units until expira-
tion of the timer.

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Table 5.10: OS_GetTimerValue() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

93

5.2.10 OS_GetTimerStatus()
Description

Returns the current timer status of a software timer.

Prototype
unsigned char OS_GetTimerStatus (const OS_TIMER* pTimer);

Return value

Unsigned character, denoting whether the specified timer is running or not:
0: timer has stopped
! = 0: timer is running.

Parameter Description

pTimer
Pointer to the OS_TIMER data structure which contains the data of
the timer.

Table 5.11: OS_GetTimerStatus parameter list

94 CHAPTER 5 Software timers

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

5.2.11 OS_GetpCurrentTimer()
Description

Returns a pointer to the data structure of the timer that just expired.

Prototype
OS_TIMER* OS_GetpCurrentTimer (void);

Return value

OS_TIMER*: A pointer to the control structure of a timer.

Additional Information

The return value of OS_GetpCurrentTimer() is valid during execution of a timer call-
back function; otherwise it is undetermined. If only one callback function should be
used for multiple timers, this function can be used for examining the timer that
expired.
The example below shows one usage of OS_GetpCurrentTimer(). Since version
3.32m of embOS, the extended timer structure and functions which come with
embOS may be used to generate and use software timer with individual parameter
for the callback function. Please be aware that OS_TIMER have to be the first ele-
ment in the structure.

Example

#include "RTOS.H"

/**
*
* Types
*/
typedef struct { /* Timer object with its own user data */
 OS_TIMER Timer; /* OS_TIMER have to be first element */
 void* pUser;
} TIMER_EX;

/**
*
* Variables
*/

TIMER_EX Timer_User;
int a;

/**
*
* Local Functions
*/

void CreateTimer(TIMER_EX* timer, OS_TIMERROUTINE* Callback, OS_UINT Timeout,
 void* pUser) {
 timer->pUser = pUser;
 OS_CreateTimer((OS_TIMER*) timer, Callback, Timeout);
}

void cb(void) { /* Timer callback function for multiple timers */
 TIMER_EX* p = (TIMER_EX*)OS_GetpCurrentTimer();
 void* pUser = p->pUser; /* Examine user data */
 OS_RetriggerTimer(&p->Timer); /* Retrigger timer */
}

/**
*
* main
*/
int main(void) {
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 CreateTimer(&Timer_User, cb, 100, &a);
 OS_Start(); /* Start multitasking */
 return 0;
}

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

95

5.2.12 OS_CREATETIMER_EX()
Description

Macro that creates and starts an extended software timer.

Prototype
void OS_CREATETIMER_EX (OS_TIMER_EX* pTimerEx,
 OS_TIMER_EX_ROUTINE* Callback,
 OS_TIME Timeout
 void* pData)

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout is expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled).
This macro uses the functions OS_CreateTimerEx() and OS_StartTimerEx().
OS_TIMER_EX_ROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMER_EX_ROUTINE(void* pVoid);

Source of the macro (in RTOS.h):

#define OS_CREATETIMER_EX(pTimerEx,cb,Timeout,pData) \
 OS_CreateTimerEx(pTimerEx,cb,Timeout,pData); \
 OS_StartTimerEx(pTimerEx)

Example

OS_TIMER_EX TIMER100;
OS_TASK TCB_HP;

void Timer100(void* pVoid) {
 LED = LED ? 0 : 1; /* Toggle LED */
 if (pTask != NULL) {
 OS_SignalEvent(0x01, (OS_TASK*)pVoid);
 }
 OS_RetriggerTimerEx(&TIMER100); /* Make timer periodical */
}

void InitTask(void) {
 /* Create and start Timer100 */
 OS_CREATETIMER_EX(&TIMER100, Timer100, 100, (void*) &TCB_HP);
}

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended software timer.

Callback

Pointer to the callback routine to be called from the RTOS after
expiration of the delay. The callback function has to be of type
OS_TIMER_EX_ROUTINE which takes a void pointer as parameter
and does not return any value.

Timeout

Initial timeout in basic embOS time units (nominal ms):
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

pData
A void pointer which is used as parameter for the extended timer
callback function.

Table 5.12: OS_CREATETIMER_EX() parameter list

96 CHAPTER 5 Software timers

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

5.2.13 OS_CreateTimerEx()
Description

Creates an extended software timer (but does not start it).

Prototype
void OS_CreateTimerEx (OS_TIMER_EX* pTimerEx,
 OS_TIMER_EX_ROUTINE* Callback,
 OS_TIME Timeout,
 void* pData)

Additional Information

embOS keeps track of the timers by using a linked list. Once the timeout has expired,
the callback routine will be called immediately (unless the current task is in a critical
region or has interrupts disabled).
The extended software timer is not automatically started. This has to be done explic-
itly by a call of OS_StartTimerEx() or OS_RetriggerTimerEx().

OS_TIMER_EX_ROUTINE is defined in RTOS.h as follows:

typedef void OS_TIMER_EX_ROUTINE(void* pVoid);

Example

OS_TIMER_EX TIMER100;
OS_TASK TCB_HP;

void Timer100(void* pVoid) {
 LED = LED ? 0 : 1; /* Toggle LED */
 if (pTask != NULL) {
 OS_SignalEvent(0x01, (OS_TASK*) pVoid);
 }
 OS_RetriggerTimerEx(&TIMER100); /* Make timer periodical */
}

void InitTask(void) {
 /* Create Timer100, start it elsewhere later on*/
 OS_CreateTimerEx(&TIMER100, Timer100, 100, (void*) & TCB_HP);
}

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended software timer.

Callback
Pointer to the callback routine of type OS_TIMER_EX_ROUTINE to
be called from the RTOS after expiration of the timer.

Timeout

Initial timeout in basic embOS time units (nominal ms):
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

pData
A void pointer which is used as parameter for the extended timer
callback function.

Table 5.13: OS_CreateTimerEx() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

97

5.2.14 OS_StartTimerEx()
Description

Starts an extended software timer.

Prototype
void OS_StartTimerEx (OS_TIMER_EX* pTimerEx);

Additional Information

OS_StartTimerEx() is used for the following reasons:

� Start an extended software timer which was created by OS_CreateTimerEx().
The timer will start with its initial timer value.

� Restart a timer which was stopped by calling OS_StopTimerEx(). In this case,
the timer will continue with the remaining time value which was preserved by
stopping the timer.

Important

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired. Use OS_RetriggerTimerEx() to restart those timers.

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended software timer.

Table 5.14: OS_StartTimereEx() parameter list

98 CHAPTER 5 Software timers

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

5.2.15 OS_StopTimerEx()
Description

Stops an extended software timer.

Prototype
void OS_StopTimerEx (OS_TIMER_EX* pTimerEx);

Additional Information

The actual time value of the extended software timer (the time until expiration) is
kept until OS_StartTimerEx() lets the timer continue.

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended software timer.

Table 5.15: OS_StopTimerEx() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

99

5.2.16 OS_RetriggerTimerEx()
Description

Restarts an extended software timer with its initial time value.

Prototype
void OS_RetriggerTimerEx (OS_TIMER_EX* pTimerEx);

Additional Information

OS_RetriggerTimerEx() restarts the extended software timer using the initial time
value which was programmed at creation of the timer or which was set using the
function OS_SetTimerPeriodEx().
OS_RetriggerTimerEx() can be called regardless the state of the timer. A running
timer will continue using the full initial time. A timer that was stopped before or had
expired will be restarted.

Example

OS_TIMER_EX TIMERCursor;
OS_TASK TCB_HP;
BOOL CursorOn;

void TimerCursor(void* pTask) {
 if (CursorOn != 0) ToggleCursor(); /* Invert character at cursor-position */
 OS_SignalEvent(0x01, (OS_TASK*) pTask);
 OS_RetriggerTimerEx(&TIMERCursor); /* Make timer periodical */
}

void InitTask(void) {
 /* Create and start TimerCursor */
 OS_CREATETIMER_EX(&TIMERCursor, TimerCursor, 500, (void*)&TCB_HP);
}

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended software timer.

Table 5.16: OS_RetriggerTimerEx() parameter list

100 CHAPTER 5 Software timers

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

5.2.17 OS_SetTimerPeriodEx()
Description

Sets a new timer reload value for an extended software timer.

Prototype
void OS_SetTimerPeriodEx (OS_TIMER_EX* pTimerEx,
 OS_TIME Period);

Additional Information

OS_SetTimerPeriodEx() sets the initial time value of the specified extended soft-
ware timer. Period is the reload value of the timer to be used as initial value when
the timer is retriggered the next time by OS_RetriggerTimerEx().
A call of OS_SetTimerPeriodEx() does not affect the remaining time period of an
extended software timer.

Example

OS_TIMER_EX TIMERPulse;
OS_TASK TCB_HP;

void TimerPulse(void* pTask) {
 OS_SignalEvent(0x01, (OS_TASK*) pTask);
 OS_RetriggerTimerEx(&TIMERPulse); /* Make timer periodical */
}

void InitTask(void) {
 /* Create and start Pulse Timer with first pulse == 500ms */
 OS_CREATETIMER_EX(&TIMERPulse, TimerPulse, 500, (void*)&TCB_HP);
 /* Set timer period to 200 ms for further pulses */
 OS_SetTimerPeriodEx(&TIMERPulse, 200);
}

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended software timer.

Period

Timer period in basic embOS time units (nominal ms):
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 5.17: OS_SetTimerPeriodEx() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

101

5.2.18 OS_DeleteTimerEx()
Description

Stops and deletes an extended software timer.

Prototype
void OS_DeleteTimerEx(OS_TIMER_EX* pTimerEx);

Additional Information

The extended software timer is stopped and therefore removed out of the linked list
of running timers. In debug builds of embOS, the timer is also marked as invalid.

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the timer.

Table 5.18: OS_DeleteTimerEx() parameter list

102 CHAPTER 5 Software timers

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

5.2.19 OS_GetTimerPeriodEx()
Description

Returns the current reload value of an extended software timer.

Prototype
OS_TIME OS_GetTimerPeriodEx (OS_TIMER_EX* pTimerEx);

Return value

Type OS_TIME, which is defined as an integer between
1 and 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs and as an integer between
1 and <= 231-1 = 0x7FFFFFFF for 32-bit CPUs, which is the permitted range of timer
values.

Additional Information

The period returned is the reload value of the timer which was set as initial value
when the timer was created or which was modified by a call of
OS_SetTimerPeriodEx(). This reload value will be used as time period when the
timer is retriggered by OS_RetriggerTimerEx().

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended timer.

Table 5.19: OS_GetTimerPeriodEx() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

103

5.2.20 OS_GetTimerValueEx()
Description

Returns the remaining timer value of an extended software timer.

Prototype
OS_TIME OS_GetTimerValueEx(OS_TIMER_EX* pTimerEx);

Return value

Type OS_TIME, which is defined as an integer between
1 and 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs and as an integer between
1 and <= 231-1 = 0x7FFFFFFF for 32-bit CPUs, which is the permitted range of timer
values.
The returned time value is the remaining timer time in embOS tick units until expira-
tion of the extended software timer.

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the timer.

Table 5.20: OS_GetTimerValueEx() parameter list

104 CHAPTER 5 Software timers

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

5.2.21 OS_GetTimerStatusEx()
Description

Returns the current timer status of an extended software timer.

Prototype
unsigned char OS_GetTimerStatusEx (OS_TIMER_EX* pTimerEx);

Return value

Unsigned character, denoting whether the specified timer is running or not:
0: timer has stopped
! = 0: timer is running.

Parameter Description

pTimerEx
Pointer to the OS_TIMER_EX data structure which contains the
data of the extended timer.

Table 5.21: OS_GetTimerStatusEx parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

105

5.2.22 OS_GetpCurrentTimerEx()
Description

Returns a pointer to the data structure of the extended timer that just expired.

Prototype
OS_TIMER_EX* OS_GetpCurrentTimerEx (void);

Return value

OS_TIMER_EX*: A pointer to the control structure of an extended software timer.

Additional Information

The return value of OS_GetpCurrentTimerEx() is valid during execution of a timer
callback function; otherwise it is undetermined. If one callback function should be
used for multiple extended timers, this function can be used for examining the timer
that expired.
Example

#include "RTOS.H"

OS_TIMER_EX MyTimerEx;

/**
*
* Local Functions
*/

void cbTimerEx(void* pData) { /* Timer callback function for multiple timers */
 OS_TIMER_EX* pTimerEx;
 pTimerEx = OS_GetpCurrentTimerEx();
 OS_SignalEvent(0x01, (OS_TASK*) pData);
 OS_RetriggerTimer(pTimerEx); /* Retrigger timer */
}

106 CHAPTER 5 Software timers

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

107

Chapter 6

Resource semaphores

108 CHAPTER 6 Resource semaphores

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

6.1 Introduction
Resource semaphores are used for managing resources by avoiding conflicts caused
by simultaneous use of a resource. The resource managed can be of any kind: a part
of the program that is not reentrant, a piece of hardware like the display, a flash
prom that can only be written to by a single task at a time, a motor in a CNC control
that can only be controlled by one task at a time, and a lot more.

The basic procedure is as follows:

Any task that uses a resource first claims it calling the OS_Use() or OS_Request()
routines of embOS. If the resource is available, the program execution of the task
continues, but the resource is blocked for other tasks. If a second task now tries to
use the same resource while it is in use by the first task, this second task is sus-
pended until the first task releases the resource. However, if the first task that uses
the resource calls OS_Use() again for that resource, it is not suspended because the
resource is blocked only for other tasks.

The following diagram illustrates the process of using a resource:

A resource semaphore contains a counter that keeps track of how many times the
resource has been claimed by calling OS_Request() or OS_Use() by a particular task.
It is released when that counter reaches 0, which means the OS_Unuse() routine has
to be called exactly the same number of times as OS_Use() or OS_Request(). If it is
not, the resource remains blocked for other tasks.

On the other hand, a task cannot release a resource that it does not own by calling
OS_Unuse(). In the debug version of embOS, a call of OS_Unuse() for a semaphore
that is not owned by this task will result in a call to the error handler OS_Error().

Example of using resource semaphores

Here, two tasks access an LC display completely independently from each other. The
LCD is a resource that needs to be protected with a resource semaphore. One task
may not interrupt another task which is writing to the LCD, because otherwise the
following might occur:

� Task A positions the cursor
� Task B interrupts Task A and repositions the cursor
� Task A writes to the wrong place in the LCD' s memory.

To avoid this type of situation, every time the LCD must be accessed by a task, it is
first claimed by a call to OS_Use() (and is automatically waited for if the resource is
blocked). After the LCD has been written to, it is released by a call to OS_Unuse().

OS_Use()

Access resource

OS_Unuse()

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

109

/*
* demo program to illustrate the use of resource semaphores
*/
OS_STACKPTR int StackMain[100], StackClock[50];
OS_TASK TaskMain,TaskClock;
OS_RSEMA SemaLCD;

void TaskClock(void) {
 char t=-1;
 char s[] = "00:00";
 while(1) {
 while (TimeSec==t) Delay(10);
 t= TimeSec;
 s[4] = TimeSec%10+'0';
 s[3] = TimeSec/10+'0';
 s[1] = TimeMin%10+'0';
 s[0] = TimeMin/10+'0';
 OS_Use(&SemaLCD); /* Make sure nobody else uses LCD */
 LCD_Write(10,0,s);
 OS_Unuse(&SemaLCD); /* Release LCD */
 }
}

void TaskMain(void) {
 signed char pos ;
 LCD_Write(0,0,"Software tools by Segger ! ") ;
 OS_Delay(2000);
 while (1) {
 for (pos=14 ; pos >=0 ; pos--) {
 OS_Use(&SemaLCD); /* Make sure nobody else uses LCD */
 LCD_Write(pos,1,"train "); /* Draw train */
 OS_Unuse(&SemaLCD); /* Release LCD */
 OS_Delay(500);
 }
 OS_Use(&SemaLCD); /* Make sure nobody else uses LCD */
 LCD_Write(0,1," ") ;
 OS_Unuse(&SemaLCD); /* Release LCD */
 }
}

void InitTask(void) {
 OS_CREATERSEMA(&SemaLCD); /* Creates resource semaphore */
 OS_CREATETASK(&TaskMain, 0, Main, 50, StackMain);
 OS_CREATETASK(&TaskClock, 0, Clock, 100, StackClock);
}

In most applications, the routines that access a resource should automatically call
OS_Use() and OS_Unuse() so that when using the resource you do not have to worry
about it and can use it just as you would in a single-task system. The following is an
example of how to implement a resource into the routines that actually access the
display:

/*
* Simple example when accessing single line dot matrix LCD
*/
OS_RSEMA RDisp; /* Define resource semaphore */

void UseDisp() { /* Simple routine to be called before using display */
 OS_Use(&RDisp);
}

void UnuseDisp() { /* Simple routine to be called after using display */
 OS_Unuse(&RDisp);
}

void DispCharAt(char c, char x, char y) {
 UseDisp();
 LCDGoto(x, y);
 LCDWrite1(ASCII2LCD(c));
 UnuseDisp();
}

void DISPInit(void) {
 OS_CREATERSEMA(&RDisp);
}

110 CHAPTER 6 Resource semaphores

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

6.2 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_CREATERSEMA() Macro that creates a resource semaphore. X X
OS_Use() Claims a resource and blocks it for other tasks. X X
OS_UseTimed() Tries to claim a resource within a given time. X X

OS_Unuse()
Releases a semaphore currently in use by a
task. X X

OS_Request()
Requests a specified semaphore, blocks it for
other tasks if it is available. Continues execu-
tion in any case.

X X

OS_GetSemaValue()
Returns the value of the usage counter of a
specified resource semaphore. X X

OS_GetResourceOwner()
Returns a pointer to the task that is currently
using (blocking) a resource. X X

OS_DeleteRSema() Deletes a specified resource semaphore. X X
Table 6.1: Resource semaphore API functions

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

111

6.2.1 OS_CREATERSEMA()
Description

Macro that creates a resource semaphore.

Prototype
void OS_CREATERSEMA (OS_RSEMA* pRSema);

Additional Information

After creation, the resource is not blocked; the value of the counter is 0.

Parameter Description

pRSema Pointer to the data structure for a resource semaphore.
Table 6.2: OS_CREATESEMA() parameter list

112 CHAPTER 6 Resource semaphores

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

6.2.2 OS_Use()
Description

Claims a resource and blocks it for other tasks.

Prototype
int OS_Use (OS_RSEMA* pRSema);

Return value

The counter value of the semaphore.

A value larger than 1 means the resource was already locked by the calling task.

Additional Information

The following situations are possible:

� Case A: The resource is not in use.
If the resource is not used by a task, which means the counter of the semaphore
is 0, the resource will be blocked for other tasks by incrementing the counter and
writing a unique code for the task that uses it into the semaphore.

� Case B: The resource is used by this task.
The counter of the semaphore is simply incremented. The program continues
without a break.

� Case C: The resource is being used by another task.
The execution of this task is suspended until the resource semaphore is released.
In the meantime if the task blocked by the resource semaphore has a higher pri-
ority than the task blocking the semaphore, the blocking task is assigned the pri-
ority of the task requesting the resource semaphore. This is called priority
inheritance. Priority inheritance can only temporarily increase the priority of a
task, never reduce it.

An unlimited number of tasks can wait for a resource semaphore. According to the
rules of the scheduler, of all the tasks waiting for the resource, the task with the
highest priority will get access to the resource and can continue program execution.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pRSema Pointer to the data structure for a resource semaphore.
Table 6.3: OS_Use() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

113

The following diagram illustrates how the OS_Use() routine works:

Resource
 in use?

Wait for resource
to be released

Mark current task
as owner

Usage counter = 1

return

Increase Usage
counter

Yes, by
other task

Yes, by this task
No

OS_Use(...)

return

114 CHAPTER 6 Resource semaphores

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

6.2.3 OS_UseTimed()
Description

Tries to claim a resource and blocks it for other tasks if it is available within a speci-
fied time.

Prototype
int OS_UseTimed(OS_RSEMA* pRSema, OS_TIME TimeOut)

Return value

Integer value:
0: Failed, semaphore not available before timeout.
>0: Success, resource semaphore was available. The counter value of the sema-
phore.
A value larger than 1 means the resource was already locked by the calling task.

Additional Information

The following situations are possible:

� Case A: The resource is not in use.
If the resource is not used by a task, which means the counter of the semaphore
is 0, the resource will be blocked for other tasks by incrementing the counter and
writing a unique code for the task that uses it into the semaphore.

� Case B: The resource is used by this task.
The counter of the semaphore is simply incremented. The program continues
without a break.

� Case C: The resource is being used by another task.
The execution of this task is suspended until the resource semaphore is released
or the timeout time expired. In the meantime if the task blocked by the resource
semaphore has a higher priority than the task blocking the semaphore, the
blocking task is assigned the priority of the task requesting the resource sema-
phore. This is called priority inheritance. Priority inheritance can only temporarily
increase the priority of a task, never reduce it.
If the resource semaphore becomes available during the timeout time, the calling
task claims the resource and the function returns with a value larger than 0, oth-
erwise, if the resource does not become available, the function returns with 0.

When the calling task is blocked by higher priority tasks for a longer period than the
timeout value, it may happen, that the resource semaphore becomes available after
the timeout time before the calling task continues. In this case, the function does not
claim the resource and returns with timeout, because the resource was not availbale
within the requested time.

An unlimited number of tasks can wait for a resource semaphore. According to the
rules of the scheduler, of all the tasks waiting for the resource, the task with the
highest priority will get access to the resource and can continue program execution.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pRSema Pointer to the data structure of a resource semaphore.

TimeOut

Maximum time until the resource semaphore should be available.
Timer period in basic embOS time units (nominal ms):
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs.

Table 6.4: OS_UseTimed() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

115

6.2.4 OS_Unuse()
Description

Releases a semaphore currently in use by a task.

Prototype
void OS_Unuse (OS_RSEMA* pRSema)

Additional Information

OS_Unuse() may be used on a resource semaphore only after that semaphore has
been used by calling OS_Use() or OS_Request(). OS_Unuse() decrements the usage
counter of the semaphore which must never become negative. If this counter
becomes negative, the debug version will call the embOS error handler OS_Error()
with error code OS_ERR_UNUSE_BEFORE_USE. In the debug version OS_Error() will
also be called, if OS_Unuse() is called from a task which does not own the resource.
The error code in this case is OS_ERR_RESOURCE_OWNER.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pRSema Pointer to the data structure for a resource semaphore.
Table 6.5: OS_Unuse() parameter list

116 CHAPTER 6 Resource semaphores

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

6.2.5 OS_Request()
Description

Requests a specified semaphore and blocks it for other tasks if it is available. Contin-
ues execution in any case.

Prototype
char OS_Request (OS_RSEMA* pRSema);

Return value

1: Resource was available, now in use by calling task
0: Resource was not available.

Additional Information

The following diagram illustrates how OS_Request() works:

Example

if (!OS_Request(&RSEMA_LCD)) {
 LED_LCDBUSY = 1; /* Indicate that task is waiting for */
 /* resource */
 OS_Use(&RSEMA_LCD); /* Wait for resource */
 LED_LCDBUSY = 0; /* Indicate task is no longer waiting */
}
 DispTime(); /* Access the resource LCD */
 OS_Unuse(&RSEMA_LCD); /* Resource LCD is no longer needed */

Parameter Description

pRSema Pointer to the data structure for a resource semaphore.
Table 6.6: OS-Request() parameter list

OS_Request (RSEMA*ps)

return 0Resource in use by other task ?

In use by this task ?

Inc Usage counter

Mark current task
as owner

Usage counter = 1

return 1return 1

Yes

No

No

Yes

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

117

6.2.6 OS_GetSemaValue()
Description

Returns the value of the usage counter of a specified resource semaphore.

Prototype
int OS_GetSemaValue (const OS_SEMA* pSema);

Return value

The counter of the semaphore.
A value of 0 means the resource is available.

Parameter Description

pRSema Pointer to the data structure for a resource semaphore.
Table 6.7: OS_GetSemaValue() parameter list

118 CHAPTER 6 Resource semaphores

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

6.2.7 OS_GetResourceOwner()
Description

Returns a pointer to the task that is currently using (blocking) a resource.

Prototype
OS_TASK* OS_GetResourceOwner (const OS_RSEMA* pSema);

Return value

Pointer to the task that is blocking the resource.
A value of 0 means the resource is available.

Parameter Description

pRSema Pointer to the data structure for a resource semaphore.
Table 6.8: OS_GetResourceOwner() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

119

6.2.8 OS_DeleteRSema()
Description

Deletes a specified resource semaphore. The memory of that semaphore may be
reused for other purposes or may be used for creating another resources semaphore
using the same memory.

Prototype
void OS_DeleteRSema (OS_RSEMA* pRSema);

Additional Information

Before deleting a resource semaphore, make sure that no task is claiming the
resources semaphore. The debug version of embOS will call OS_Error(), if a
resources semaphore is deleted when it is already used. In systems with dynamic
creation of resource semaphores, it is required to delete a resource semaphore,
before re-creating it. Otherwise the semaphore handling will not work correctly.

Parameter Description

pRSema Pointer to a data structure of type OS_RSEMA.
Table 6.9: OS_DeleteRSema parameter list

120 CHAPTER 6 Resource semaphores

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

121

Chapter 7

Counting Semaphores

122 CHAPTER 7 Counting Semaphores

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

7.1 Introduction
Counting semaphores are counters that are managed by embOS. They are not as
widely used as resource semaphores, events or mailboxes, but they can be very
useful sometimes. They are used in situations where a task needs to wait for
something that can be signaled one or more times. The semaphores can be accessed
from any point, any task, or any interrupt in any way.

Example of using counting semaphores

OS_STACKPTR int Stack0[96], Stack1[64]; /* Task stacks */
OS_TASK TCB0, TCB1; /* Data-area for tasks (task-control-blocks) */
OS_CSEMA SEMALCD;

void Task0(void) {
 while(1) {
 Disp("Task0 will wait for task 1 to signal");
 OS_WaitCSema(&SEMALCD);
 Disp("Task1 has signaled !!");
 OS_Delay(100);
 }
}

void Task1(void) {
 while(1) {
 OS_Delay(5000);
 OS_SignalCSema(&SEMALCD);
 }
}

void InitTask(void) {
 OS_CREATECSEMA(&SEMALCD); /* Create Semaphore */
 OS_CREATETASK(&TCB0, NULL, Task0, 100, Stack0); /* Create Task0 */
 OS_CREATETASK(&TCB1, NULL, Task1, 50, Stack1); /* Create Task1 */
}

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

123

7.2 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_CREATECSEMA()
Macro that creates a counting semaphore with
an initial count value of zero. X X

OS_CreateCSema()
Creates a counting semaphore with a specified
initial count value. X X

OS_SignalCSema() Increments the counter of a semaphore. X X X

OS_SignalCSemaMax
Increments the counter of a semaphore up to
a specified maximum value. X X X

OS_WaitCSema() Decrements the counter of a semaphore. X X

OS_CSemaRequest()
Decrements the counter of a semaphore, if
available. X X X

OS_WaitCSemaTimed()
Decrements a semaphore counter if the sema-
phore is available within a specified time. X X

OS_GetCSemaValue()
Returns the counter value of a specified sema-
phore. X X X

OS_SetCSemaValue()
Sets the counter value of a specified sema-
phore. X X

OS_DeleteCSema() Deletes a specified semaphore. X X
Table 7.1: Counting semaphores API functions

124 CHAPTER 7 Counting Semaphores

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

7.2.1 OS_CREATECSEMA()
Description

Macro that creates a counting semaphore with an initial count value of zero.

Prototype
void OS_CREATECSEMA (OS_CSEMA* pCSema);

Additional Information

To create a counting semaphore, a data structure of the type OS_CSEMA needs to be
defined in memory and initialized using OS_CREATECSEMA(). The value of a sema-
phore created using this macro is zero. If, for any reason, you have to create a sema-
phore with an initial counting value above zero, use the function OS_CreateCSema().

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.
Table 7.2: OS_CREATECSEMA() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

125

7.2.2 OS_CreateCSema()
Description

Creates a counting semaphore with a specified initial count value.

Prototype
void OS_CreateCSema (OS_CSEMA* pCSema,
 OS_UINT InitValue);

Additional Information

To create a counting semaphore, a data structure of the type OS_CSEMA needs to be
defined in memory and initialized using OS_CreateCSema(). If the value of the cre-
ated semaphore should be zero, the macro OS_CREATECSEMA() should be used.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.

InitValue

Initial count value of the semaphore:
0 <= InitValue <= 216 = 0xFFFF for 8/16-bit CPUs
0 <= InitValue <= 232 = 0xFFFFFFFF for 32-bit CPUs

Table 7.3: OS_CreateCSema() parameter list

126 CHAPTER 7 Counting Semaphores

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

7.2.3 OS_SignalCSema()
Description

Increments the counter of a semaphore.

Prototype
void OS_SignalCSema (OS_CSEMA * pCSema);

Additional Information

OS_SignalCSema() signals an event to a semaphore by incrementing its counter. If
one or more tasks are waiting for an event to be signaled to this semaphore, the task
that has the highest priority will become the running task. The counter can have a
maximum value of 0xFFFF for 8/16-bit CPUs / 0xFFFFFFFF for 32-bit CPUs. It is the
responsibility of the application to make sure that this limit will not be exceeded. The
debug version of embOS detects an counter overflow and calls OS_Error() with error
code OS_ERR_CSEMA_OVERFLOW, if an overflow occurs.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.
Table 7.4: OS_SignalCSema() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

127

7.2.4 OS_SignalCSemaMax()
Description

Increments the counter of a semaphore up to a specified maximum value.

Prototype
void OS_SignalCSemaMax (OS_CSEMA* pCSema,
 OS_UINT MaxValue);

Additional Information

As long as current value of the semaphore counter is below the specified maximum
value, OS_SignalCSemaMax() signals an event to a semaphore by incrementing its
counter. If one or more tasks are waiting for an event to be signaled to this sema-
phore, the tasks are put into ready state and the task that has the highest priority
will become the running task. Calling OS_SignalCSemaMax() with a MaxValue of 1
handles a counting semaphore as a binary semaphore.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.

MaxValue

Limit of semaphore count value.
1 <= MaxValue <= 216 = 0xFFFF for 8/16-bit CPUs
1 <= MaxValue <= 232 = 0xFFFFFFFF for 32-bit CPUs

Table 7.5: OS_SignalCSemaMax() parameter list

128 CHAPTER 7 Counting Semaphores

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

7.2.5 OS_WaitCSema()
Description

Decrements the counter of a semaphore.

Prototype
void OS_WaitCSema (OS_CSEMA* pCSema);

Additional Information

If the counter of the semaphore is not 0, the counter is decremented and program
execution continues.
If the counter is 0, WaitCSema() waits until the counter is incremented by another
task, a timer or an interrupt handler via a call to OS_SignalCSema(). The counter is
then decremented and program execution continues.
An unlimited number of tasks can wait for a semaphore. According to the rules of the
scheduler, of all the tasks waiting for the semaphore, the task with the highest prior-
ity will continue program execution.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.
Table 7.6: OS_WaitCSema() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

129

7.2.6 OS_WaitCSemaTimed()
Description

Decrements a semaphore counter if the semaphore is available within a specified
time.

Prototype
int OS_WaitCSemaTimed (OS_CSEMA* pCSema,

 OS_TIME TimeOut);

Return value

Integer value:
0: Failed, semaphore not available before timeout.
1: OK, semaphore was available and counter decremented.

Additional Information

If the counter of the semaphore is not 0, the counter is decremented and program
execution continues. If the counter is 0, WaitCSemaTimed() waits until the sema-
phore is signaled by another task, a timer, or an interrupt handler via a call to
OS_SignalCSema(). The counter is then decremented and program execution contin-
ues. If the semaphore was not signaled within the specified time, the program execu-
tion continues but returns a value of 0. An unlimited number of tasks can wait for a
semaphore. According to the rules of the scheduler, of all the tasks waiting for the
semaphore, the task with the highest priority will continue program execution.

When the calling task is blocked by higher priority tasks for a longer period than the
timeout value, it may happen, that the semaphore becomes signaled after the time-
out time before the calling task continues. In this case, the function returns with tim-
eout, because the semaphore was not availbale within the requested time. In this
case, the state of the semaphore is not modified by OS_WaitCSemaTimed().

Important

This function may not be called from within an interrupt handler.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.

TimeOut

Maximum time until semaphore should be available
Timer period in basic embOS time units (nominal ms):
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs.

Table 7.7: OS_WaitCSemaTimed parameter list

130 CHAPTER 7 Counting Semaphores

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

7.2.7 OS_CSemaRequest()
Description

Decrements the counter of a semaphore, if it is signaled.

Prototype
char OS_CSemaRequest (OS_CSEMA* pCSema);

Return value

Integer value:
0: Failed, semaphore was not signaled.
1: OK, semaphore was available and counter was decremented once.

Additional Information

If the counter of the semaphore is not 0, the counter is decremented and program
execution continues.
If the counter is 0, OS_CSemaRequest() does not wait and does not modify the sema-
phore counter. The function returns with error state.
Because this function never blocks a calling task, this function may be called from an
interrupt handler.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.
Table 7.8: OS_CSemaRequest() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

131

7.2.8 OS_GetCSemaValue()
Description

Returns the counter value of a specified semaphore.

Prototype
int OS_GetCSemaValue (const OS_SEMA* pCSema);

Return value

The counter value of the semaphore.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.
Table 7.9: OS_GetCSemaValue() parameter list

132 CHAPTER 7 Counting Semaphores

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

7.2.9 OS_SetCSemaValue()
Description

Sets the counter value of a specified semaphore.

Prototype
OS_U8 OS_SetCSemaValue (OS_SEMA* pCSema,

 OS_UINT Value);

Return value

0: If the value could be set.
!= 0: In case of error.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.

Value

Count value of the semaphore:
0 <= InitValue <= 216 = 0xFFFF for 8/16-bit CPUs
0 <= InitValue <= 232 = 0xFFFFFFFF for 32-bit CPUs

Table 7.10: OS_SetCSemaValue() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

133

7.2.10 OS_DeleteCSema()
Description

Deletes a specified semaphore.

Prototype
void OS_DeleteCSema (OS_CSEMA* pCSema);

Additional Information

Before deleting a semaphore, make sure that no task is waiting for it and that no
task will signal that semaphore at a later point.
The debug version of embOS will reflect an error if a deleted semaphore is signaled.

Parameter Description

pCSema Pointer to a data structure of type OS_CSEMA.
Table 7.11: OS_DeleteCSema() parameter list

134 CHAPTER 7 Counting Semaphores

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

135

Chapter 8

Mailboxes

136 CHAPTER 8 Mailboxes

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

8.1 Introduction
In the preceding chapters, task synchronization by the use of semaphores was
described. Unfortunately, semaphores cannot transfer data from one task to another.
If we need to transfer data between tasks via a buffer for example, we could use a
resource semaphore every time we accessed the buffer. But doing so would make the
program less efficient. Another major disadvantage would be that we could not
access the buffer from an interrupt handler, because the interrupt handler is not
allowed to wait for the resource semaphore.

One way out would be the usage of global variables. In this case we would have to
disable interrupts every time and in every place that we accessed these variables.
This is possible, but it is a path full of pitfalls. It is also not easy for a task to wait for
a character to be placed in a buffer without polling the global variable that contains
the number of characters in the buffer. Again, there is a way out - the task could be
notified by an event signaled to the task every time a character is placed in the
buffer. That is why there is an easier way to do this with a real-time OS:
The use of mailboxes.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

137

8.2 Basics
A mailbox is a buffer that is managed by the real-time operating system. The buffer
behaves like a normal buffer; you can put something (called a message) in and
retrieve it later. Mailboxes usually work as FIFO: first in, first out. So a message that
is put in first will usually be retrieved first. �Message� might sound abstract, but very
simply just means �item of data�. It will become clearer in the typical applications
explained in the following section.

A mailbox can have more than one producer but should have only one consumer. This
means that more than one task or interrupt handler is allowed to store new data into
the mailbox and it does not make sense to retrieve messages by multiple tasks.

Limitations:

The number of mailboxes and buffers is limited only by the amount of available mem-
ory.
The message size, number of messages and bauffer size per mailbox are limited by
software design.
Message size: 1 <= x <= 32767 bytes.
Number of messages: 1 <= x <= 32767 on 8 or 16bit CPUs.
Number of messages: 1 <= x <= 2^31-1 on 32bit CPUs.
Maximum buffer size for one mailbox: 65536 bytes (64KB) on 16bit CPUs
Maximum buffer size for one mailbox: 2^32 bytes on 32bit CPUs

These limitations have been placed on mailboxes to guarantee efficient coding and
also to ensure efficient management. These limitations are normally not a problem.

138 CHAPTER 8 Mailboxes

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

8.3 Typical applications
A keyboard buffer

In most programs, you use either a task, a software timer or an interrupt handler to
check the keyboard. When detected that a key has been pressed, that key is put into
a mailbox that is used as a keyboard buffer. The message is then retrieved by the
task that handles the keyboard input. The message in this case is typically a single
byte that holds the key code; the message size is therefore 1 byte.

The advantage of a keyboard buffer is that management is very efficient; you do not
have to worry about it, because it is reliable, proven code and you have a type-ahead
buffer at no extra cost. On top of that, a task can easily wait for a key to be pressed
without having to poll the buffer. It simply calls the OS_GetMail() routine for that
particular mailbox. The number of keys that can be stored in the type-ahead buffer
depends only on the size of the mailbox buffer, which you define when creating the
mailbox.

A buffer for serial I/O

In most cases, serial I/O is done with the help of interrupt handlers. The communica-
tion to these interrupt handlers is very easy with mailboxes. Both your task programs
and your interrupt handlers store or retrieve data to/from the same mailboxes. As
with a keyboard buffer, the message size is 1 character.

For interrupt-driven sending, the task places the character(s) in the mailbox using
OS_PutMail() or OS_PutMailCond(); the interrupt handler that is activated when a
new character can be sent retrieves this character with OS_GetMailCond().

For interrupt-driven receiving, the interrupt handler that is activated when a new
character is received puts it in the mailbox using OS_PutMailCond(); the task
receives it using OS_GetMail() or OS_GetMailCond().

A buffer for commands sent to a task

Assume you have one task controlling a motor, as you might have in applications that
control a machine. A simple way to give commands to this task would be to define a
structure for commands. The message size would then be the size of this structure.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

139

8.4 Single-byte mailbox functions
In many (if not the most) situations, mailboxes are used simply to hold and transfer
single-byte messages. This is the case, for example, with a mailbox that takes the
character received or sent via serial interface, or normally with a mailbox used as
keyboard buffer. In some of these cases, time is very critical, especially if a lot of
data is transferred in short periods of time.

To minimize the overhead caused by the mailbox management of embOS, variations
on some mailbox functions are available for single-byte mailboxes. The general func-
tions OS_PutMail(), OS_PutMailCond(), OS_GetMail(), and OS_GetMailCond() can
transfer messages of sizes between 1 and 32767 bytes each.
Their single-byte equivalents OS_PutMail1(), OS_PutMailCond1(), OS_GetMail1(),
and OS_GetMailCond1() work the same way with the exception that they execute
much faster because management is simpler. It is recommended to use the single-
byte versions if you transfer a lot of single byte-data via mailboxes.

The routines OS_PutMail1(), OS_PutMailCond1(), OS_GetMail1(), and
OS_GetMailCond1() work exactly the same way as their more universal equivalents
and are therefore not described separately. The only difference is that they can only
be used for single-byte mailboxes.

140 CHAPTER 8 Mailboxes

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

8.5 API functions

Routine Explanation

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_CreateMB() Creates a new mailbox. X X

OS_PutMail()
Stores a new message of a predefined size in a
mailbox. X X

OS_PutMail1() Stores a new one byte message in a mailbox. X X

OS_PutMailCond()
Stores a new message of a predefined size in a
mailbox, if the mailbox is able to accept one
more message.

X X X X

OS_PutMailCond1()
Stores a new one byte message in a mailbox,
if the mailbox is able to accept one more mes-
sage.

X X X X

OS_PutMailFront()
Stores a new message of a predefined size into
a mailbox in front of all other messages. This
new message will be retrieved first.

X X

OS_PutMailFront1()
Stores a new one byte message into a mailbox
in front of all other messages. This new mes-
sage will be retrieved first.

X X

OS_PutMailFrontCond()
Stores a new message of a predefined size into
a mailbox in front of all other messages, if the
mailbox is able to accept one more message.

X X X X

OS_PutMailFrontCond1()
Stores a new one byte message into a mailbox
in front of all other messages, if the mailbox is
able to accept one more message.

X X X X

OS_GetMail()
Retrieves a message of a predefined size from
a mailbox. X X

OS_GetMail1() Retrieves a one byte message from a mailbox. X X

OS_GetMailCond()
Retrieves a message of a predefined size from
a mailbox, if a message is available. X X X X

OS_GetMailCond1()
Retrieves a one byte message from a mailbox,
if a message is available. X X X X

OS_GetMailTimed()
Retrieves a new message of a predefined size
from a mailbox, if a message is available
within a given time.

X X

OS_WaitMail()
Waits until a mail is available, but does not
retrieve the message from the mailbox. X X

OS_WaitMailTimed()
Suspends the calling task until a mail is avail-
able or until the timeout expires, but does not
retrieve the message from the mailbox.

X X

OS_PeekMail()
Reads a mail from a mailbox without removing
it X X X X

OS_ClearMB() Clears all messages in a specified mailbox. X X X X

OS_GetMessageCnt()
Returns number of messages currently in a
specified mailbox. X X X X

OS_DeleteMB() Deletes a specified mailbox. X X
Table 8.1: Mailboxes API functions

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

141

8.5.1 OS_CreateMB()
Description

Creates a new mailbox.

Prototype
void OS_CreateMB (OS_MAILBOX* pMB,
 unsigned short sizeofMsg,
 unsigned int maxnofMsg,
 void* pMsg);)

Example

Mailbox used as keyboard buffer:

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

void InitKeyMan(void) {
 /* Create mailbox, functioning as type ahead buffer */
 OS_CreateMB(&MBKey, 1, sizeof(MBKeyBuffer), &MBKeyBuffer);
}

Mailbox used for transferring complex commands from one task to another:

/*
* Example of mailbox used for transferring commands to a task
* that controls 2 motors
*/
typedef struct {
 char Cmd;
 int Speed[2];
 int Position[2];
} MOTORCMD ;

OS_MAILBOX MBMotor;

#define MOTORCMD_SIZE 4

char BufferMotor[sizeof(MOTORCMD)*MOTORCMD_SIZE];

void MOTOR_Init(void) {
 /* Create mailbox that holds commands messages */
 OS_CreateMB(&MBMotor, sizeof(MOTORCMD), MOTORCMD_SIZE, BufferMotor);
}

Parameter Description

pMB
Pointer to a data structure of type OS_MAILBOX reserved for man-
aging the mailbox.

sizeofMsg Size of a message in bytes. (1 <= sizeofMsg <= 32767)
maxnoMsg Maximum number of messages. (1 <= MaxnofMsg <= 32767)

pMsg
Pointer to a memory area used as buffer. The buffer has to be big
enough to hold the given number of messages of the specified
size: sizeofMsg * maxnoMsg bytes.

Table 8.2: OS_CreateMB() parameter list

142 CHAPTER 8 Mailboxes

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

8.5.2 OS_PutMail() / OS_PutMail1()
Description

Stores a new message of a predefined size in a mailbox.

Prototype
void OS_PutMail (OS_MAILBOX* pMB,
 const void* pMail);
void OS_PutMail1 (OS_MAILBOX* pMB,
 const char* pMail);

Additional Information

If the mailbox is full, the calling task is suspended.
Because this routine might require a suspension, it must not be called from an inter-
rupt routine. Use OS_PutMailCond()/OS_PutMailCond1() instead if you have to
store data in a mailbox from within an ISR.

Important

This function may not be called from within an interrupt handler.

Example

Single-byte mailbox as keyboard buffer:

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

void KEYMAN_StoreKey(char k) {
 OS_PutMail1(&MBKey, &k); /* Store key, wait if no space in buffer */
}

void KEYMAN_Init(void) {
 /* Create mailbox functioning as type ahead buffer */
 OS_CreateMB(&MBKey, 1, sizeof(MBKeyBuffer), &MBKeyBuffer);
}

Parameter Description

pMB Pointer to the mailbox.
pMail Pointer to the message to store.

Table 8.3: OS_PutMail() / OS_PutMail1() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

143

8.5.3 OS_PutMailCond() / OS_PutMailCond1()
Description

Stores a new message of a predefined size in a mailbox, if the mailbox is able to
accept one more message.

Prototype
char OS_PutMailCond (OS_MAILBOX* pMB,
 const void* pMail);
char OS_PutMailCond1 (OS_MAILBOX* pMB,
 const char* pMail);)

Return value

0: Success; message stored.
1: Message could not be stored (mailbox is full).

Additional Information

If the mailbox is full, the message is not stored.
This function never suspends the calling task. It may therefore be called from an
interrupt routine.

Example

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

char KEYMAN_StoreCond(char k) {
 return OS_PutMailCond1(&MBKey, &k); /* Store key if space in buffer */
}

This example can be used with the sample program shown earlier to handle a mail-
box as keyboard buffer.

Parameter Description

pMB Pointer to the mailbox.
pMail Pointer to the message to store.

Table 8.4: OS_PutMailCond() / OS_PutMailCond1() overview

144 CHAPTER 8 Mailboxes

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

8.5.4 OS_PutMailFront() / OS_PutMailFront1()
Description

Stores a new message of a predefined size at the beginning of a mailbox in front of
all other messages. This new message will be retrieved first.

Prototype
void OS_PutMailFront (OS_MAILBOX* pMB,
 const void* pMail);
void OS_PutMailFront1 (OS_MAILBOX* pMB,
 const char* pMail);

Additional Information

If the mailbox is full, the calling task is suspended. Because this routine might
require a suspension, it must not be called from an interrupt routine. Use
OS_PutMailFrontCond()/OS_PutMailFrontCond1() instead if you have to store data
in a mailbox from within an ISR.
This function is useful to store �emergency� messages into a mailbox which have to
be handled quick.
It may also be used in general instead of OS_PutMail() to change the FIFO structure
of a mailbox into a LIFO structure.

Important

This function may not be called from within an interrupt handler.

Example

Single-byte mailbox as keyboard buffer which will follow the LIFO pattern:

OS_MAILBOX MBCmd;
char MBCmdBuffer[6];

void KEYMAN_StoreCommand(char k) {
 OS_PutMailFront1(&MBCmd, &k); /* Store command, wait if no space in buffer*/
}

void KEYMAN_Init(void) {
 /* Create mailbox for command buffer */
 OS_CreateMB(&MBCmd, 1, sizeof(MBCmdBuffer), &MBCmdBuffer);
}

Parameter Description

pMB Pointer to the mailbox.
pMail Pointer to the message to store.

Table 8.5: OS_PutMailFront() / OS_PutMailFront1() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

145

8.5.5 OS_PutMailFrontCond() / OS_PutMailFrontCond1()
Description

Stores a new message of a predefined size into a mailbox in front of all other mes-
sages, if the mailbox is able to accept one more message. The new message will be
retrieved first.

Prototype
char OS_PutMailFrontCond (OS_MAILBOX* pMB,
 const void* pMail);
char OS_PutMailFrontCond1 (OS_MAILBOX* pMB,
 const char* pMail);)

Return value

0: Success; message stored.
1: Message could not be stored (mailbox is full).

Additional Information

If the mailbox is full, the message is not stored. This function never suspends the
calling task. It may therefore be called from an interrupt routine. This function is
useful to store �emergency� messages into a mailbox which have to be handled
quick. It may also be used in general instead of OS_PutMailCond() to change the
FIFO structure of a mailbox into a LIFO structure.

Parameter Description

pMB Pointer to the mailbox.
pMail Pointer to the message to store.

Table 8.6: OS_PutMailFrontCond() / OS_PutMailFrontCond1() parameter list

146 CHAPTER 8 Mailboxes

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

8.5.6 OS_GetMail() / OS_GetMail1()
Description

Retrieves a new message of a predefined size from a mailbox.

Prototype
void OS_GetMail (OS_MAILBOX* pMB,
 void* pDest);
void OS_GetMail1 (OS_MAILBOX* pMB,

 char* pDest);

Additional Information

If the mailbox is empty, the task is suspended until the mailbox receives a new mes-
sage. Because this routine might require a suspension, it may not be called from an
interrupt routine. Use OS_GetMailCond/OS_GetMailCond1 instead if you have to
retrieve data from a mailbox from within an ISR.

Important

This function may not be called from within an interrupt handler.

Example

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

char WaitKey(void) {
 char c;
 OS_GetMail1(&MBKey, &c);
 return c;
}

Parameter Description

pMB Pointer to the mailbox.

pDest

Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that there
is sufficient space for an entire message. The message size (in
bytes) was defined when the mailbox was created.

Table 8.7: OS_GetMail() / OS_GetMail1() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

147

8.5.7 OS_GetMailCond() / OS_GetMailCond1()
Description

Retrieves a new message of a predefined size from a mailbox, if a message is
available.

Prototype
char OS_GetMailCond (OS_MAILBOX * pMB,
 void* pDest);
char OS_GetMailCond1 (OS_MAILBOX * pMB,
 char* pDest);

Return value

0: Success; message retrieved.
1: Message could not be retrieved (mailbox is empty); destination remains
 unchanged.

Additional Information

If the mailbox is empty, no message is retrieved, but the program execution contin-
ues. This function never suspends the calling task. It may therefore also be called
from an interrupt routine.

Example

OS_MAILBOX MBKey;

/*
* If a key has been pressed, it is taken out of the mailbox and returned to caller.
* Otherwise, 0 is returned.
*/
char GetKey(void) {
 char c = 0;
 OS_GetMailCond1(&MBKey, &c)
 return c;
}

Parameter Description

pMB Pointer to the mailbox.

pDest

Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that there
is sufficient space for an entire message. The message size (in
bytes) was defined when the mailbox was created.

Table 8.8: OS_GetMailCond() / OS_GetMailCond1() parameter list

148 CHAPTER 8 Mailboxes

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

8.5.8 OS_GetMailTimed()
Description

Retrieves a new message of a predefined size from a mailbox, if a message is avail-
able within a given time.

Prototype
char OS_GetMailTimed (OS_MAILBOX* pMB,
 void* pDest,

 OS_TIME Timeout);

Return value

0: Success; message retrieved.
1: Message could not be retrieved (mailbox is empty); destination remains
 unchanged.

Additional Information

If the mailbox is empty, no message is retrieved, the task is suspended for the given
timeout. The task continues execution, according to the rules of the scheduler, as
soon as a mail is available within the given timeout, or after the timeout value has
expired.

When the calling task is blocked by higher priority tasks for a longer period than the
timeout value, it may happen, that mail becomes available after the timeout time
before the calling task continues. In this case, the function returns with timeout,
because the mail was not availbale within the requested time. In this case, the state
of the mailbox is not modified by OS_GetMailTimed(), no mail is retrieved from the
mailbox.

Important

This function may not be called from within an interrupt handler.

Example

OS_MAILBOX MBKey;

/*
* If a key has been pressed, it is taken out of the mailbox and returned to caller.
* Otherwise, 0 is returned.
*/
char GetKey(void) {
 char c =0;
 OS_GetMailTimed(&MBKey, &c, 10) /* Wait for 10 timer ticks */
 return c;
}

Parameter Description

pMB Pointer to the mailbox.

pDest

Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that there
is sufficient space for an entire message. The message size (in
bytes) has been defined upon creation of the mailbox.

Timeout

Maximum time in timer ticks until the requested mail has to be
available. The data type OS_TIME is defined as an integer, there-
fore valid values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 8.9: OS_GetMailTimed() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

149

8.5.9 OS_WaitMail()
Description

Waits until a mail is available, but does not retrieve the message from the mailbox.

Prototype
void OS_WaitMail (OS_MAILBOX* pMB);

Additional Information

If the mailbox is empty, the task is suspended until a mail is available, otherwise the
task continues. The task continues execution, according to the rules of the scheduler,
as soon as a mail is available, but the mail is not retrieved from the mailbox.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pMB Pointer to the mailbox.
Table 8.10: OS_WaitMail() parameter list

150 CHAPTER 8 Mailboxes

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

8.5.10 OS_WaitMailTimed()
Description

Waits until a mail is available or the timeout has expired, but does not retrieve the
message from the mailbox.

Prototype
char OS_WaitMailTimed (OS_MAILBOX* pMB, OS_TIME Timeout)

Return value

0: Success; message available.
1: Timeout; no message available within the given timeout time.

Additional Information

If the mailbox is empty, the task is suspended for the given timeout. The task contin-
ues execution, according to the rules of the scheduler, as soon as a mail is available
within the given timeout, or after the timeout value has expired.

When the calling task is blocked by higher priority tasks for a longer period than the
timeout value, it may happen, that mail becomes available after the timeout time
before the calling task continues. In this case, the function returns with timeout,
because the mail was not availbale within the requested time.

Important

This function may not be called from within an interrupt handler.

Parameter Description

pMB Pointer to the mailbox.

Timeout

Maximum time in timer ticks until the requested mail has to be
available. The data type OS_TIME is defined as an integer, there-
fore valid values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 8.11: OS_WaitMail() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

151

8.5.11 OS_PeekMail()
Description

Peeks a mail from a mailbox without removing the mail.

Prototype
char OS_PeekMail (OS_MAILBOX* pMB, void* pDest)

Return value

0: Success; message available.
1: Message could not be retrieved (mailbox is empty).

Additional Information

This function is non blocking and never suspends the calling task. It may therefore
also be called from an interrupt routine.

Parameter Description

pMB Pointer to the mailbox.
pDest Pointer to a buffer that should receive the mail

Table 8.12: OS_PeekMail() parameter list

152 CHAPTER 8 Mailboxes

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

8.5.12 OS_ClearMB()

Description

Clears all messages in a specified mailbox.

Prototype
void OS_ClearMB (OS_MAILBOX* pMB);

Example

OS_MAILBOX MBKey;

/*
* Clear keyboard type ahead buffer
*/
void ClearKeyBuffer(void) {
 OS_ClearMB(&MBKey);
}

Parameter Description

pMB Pointer to the mailbox.
Table 8.13: OS_ClearMB() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

153

8.5.13 OS_GetMessageCnt()
Description

Returns the number of messages currently available in a specified mailbox.

Prototype
unsigned int OS_GetMessageCnt (OS_MAILBOX* pMB);

Return value

The number of messages in the mailbox.

Parameter Description

pMB Pointer to the mailbox.
Table 8.14: OS_GetMessageCnt() parameter list

154 CHAPTER 8 Mailboxes

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

8.5.14 OS_DeleteMB()
Description

Deletes a specified mailbox.

Prototype
void OS_DeleteMB (OS_MAILBOX* pMB);

Additional Information

To keep the system fully dynamic, it is essential that mailboxes can be created
dynamically. This also means there has to be a way to delete a mailbox when it is no
longer needed. The memory that has been used by the mailbox for the control struc-
ture and the buffer can then be reused or reallocated.
It is the programmer's responsibility to:

� make sure that the program no longer uses the mailbox to be deleted
� make sure that the mailbox to be deleted actually exists (i.e. has been created

first).

Example

OS_MAILBOX MBSerIn;

void Cleanup(void) {
 OS_DeleteMB(MBSerIn);
 return 0;
}

Parameter Description

pMB Pointer to the mailbox.
Table 8.15: OS_DeleteMB() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

155

Chapter 9

Queues

156 CHAPTER 9 Queues

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

9.1 Introduction
In the preceding chapter, intertask communication using mailboxes was described.
Mailboxes can handle small messages with fixed data size only.
Queues enable intertask communication with larger messages or with messages of
various sizes.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

157

9.2 Basics
A queue consists of a data buffer and a control structure that is managed by the real-
time operating system. The queue behaves like a normal buffer; you can put
something (called a message) in and retrieve it later. Queues work as FIFO: first in,
first out. So a message that is put in first will be retrieved first.
There are three major differences between queues and mailboxes:

1. Queues accept messages of various size. When putting a message into a queue,
the message size is passed as a parameter.

2. Retrieving a message from the queue does not copy the message, but returns a
pointer to the message and its size. This enhances performance because the data
is copied only once, when the message is written into the queue.

3. The retrieving function has to delete every message after processing it.
4. A new message can only be retrieved from the queue when the previous message

was deleted from the queue.

Both the number and size of queues is limited only by the amount of available
memory. Any data structure can be written into a queue. The message size is not
fixed.

Queues can have more than one producer but only one consumer. This means that
more than one task or interrupt handler is allowed to store new data in the queue but
only one task is allowed to get data from the queue.

The queue data buffer contains the messages as also some additional management
information bytes. Each message has a message header containing the message size.
Additionally the queue buffer will be aligned for those CPUs which needs data align-
ment. Therefore the queue data buffer size has to be larger than the sum of all mes-
sages.

158 CHAPTER 9 Queues

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

9.3 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_Q_Create() Creates and initializes a message queue. X X X X

OS_Q_Put()
Stores a new message of given size in a
queue. X X X X

OS_Q_PutBlocked()
Stores a new message of given size in a
queue. Blocks the calling task when queue is
full.

X

OS_Q_PutTimed()
Stores a new message of given size in a queue
within a given timeout time. Suspends the
calling task when the queue is full.

X X

OS_Q_GetPtr() Retrieves a message from a queue. X X

OS_Q_GetPtrCond()
Retrieves a message from a queue, if one
message is available or returns without sus-
pension.

X X X X

OS_Q_GetPtrTimed()
Retrieves a message from a queue within a
specified time, if one message is available. X X

OS_Q_Purge() Deletes the last retrieved message in a queue. X X X X
OS_Q_Clear() Deletes all message in a queue. X X X X

OS_Q_GetMessageCnt()
Returns the number of messages currently in a
queue. X X X X

OS_Q_Delete() Deletes a specified queue. X X X X

OS_Q_IsInUse()
Delivers information about the usage state of
the queue. X X X X

OS_Q_GetMessageSize()
Returns the size of the first message in the
queue. X X X X

OS_Q_PeekPtr()
Retrieves a message from a queue without
removing it. X X X X

Table 9.1: Queues API

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

159

9.3.1 OS_Q_Create()
Description

Creates and initializes a message queue.

Prototype
void OS_Q_Create (OS_Q* pQ,
 void*pData,

 OS_UINT Size);

Example

#define MEMORY_QSIZE 10000;
static OS_Q _MemoryQ;
static char _acMemQBuffer[MEMORY_QSIZE];

void MEMORY_Init(void) {
 OS_Q_Create(&_MemoryQ, &_acMemQBuffer, sizeof(_acMemQBuffer));
}

Parameter Description

pQ
Pointer to a data structure of type OS_Q reserved for the manage-
ment of the message queue.

pData Pointer to a memory area used as data buffer for the queue.
Size Size in bytes of the data buffer.

Table 9.2: OS_Q_Create() parameter list

160 CHAPTER 9 Queues

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

9.3.2 OS_Q_Put()
Description

Stores a new message of given size in a queue.

Prototype
int OS_Q_Put (OS_Q* pQ,
 const void* pSrc,
 OS_UINT Size);

Return value

0: Success; message stored.
1: Message could not be stored (queue is full).

Additional Information

If the queue is full, the function returns a value unequal to 0.
This routine never suspends the calling task. It may therefore also be called from an
interrupt routine.

Example
 char MEMORY_Write(char* pData, int Len) {
 return OS_Q_Put(&_MemoryQ, pData, Len);

}

Parameter Description

pQ
Pointer to a data structure of type OS_Q reserved for the manage-
ment of the message queue.

pSrc Pointer to the message to store
Size Size of the message to store

Table 9.3: OS_Q_Put() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

161

9.3.3 OS_Q_PutBlocked()
Description

Stores a new message of given size in a queue.

Prototype
void OS_Q_PutBlocked (OS_Q* pQ,
 const void* pSrc,
 OS_UINT Size);

Additional Information
If the queue is full, the calling task is suspended. Because this routine might require
a suspension, it must not be called from an interrupt routine. Use OS_Q_Put()
instead if you have to store data in a queue from within an ISR.

Important

This function may not be called from within an interrupt handler.

Example

void StoreMessage(void)
 OS_Q_PutBlocked(&_MemoryQ, pData, Len);
}

Parameter Description

pQ
Pointer to a data structure of type OS_Q reserved for the manage-
ment of the message queue.

pSrc Pointer to the message to store
Size Size of the message to store

Table 9.4: OS_Q_Put() parameter list

162 CHAPTER 9 Queues

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

9.3.4 OS_Q_PutTimed()
Description

Stores a new message of given size in a queue if space is available within a given
time.

Prototype
int OS_Q_PutTimed (OS_Q* pQ,
 const void* pSrc,
 OS_UINT Size
 OS_TIME Timeout);

Return value

0: Success; message stored.
1: Message could not be stored within the specified time (queue is full).

Additional Information

If the queue is full, the calling task is suspended until spac for the message is avail-
able, or the specified timeout time has expired.
If the message could be put into the queue within the sepcified time, the function
returns 0.
As the calling function may be suspended, the function must not be called from an
interrupt routine or timer. The debug libraries of embOS will call the embOS error
function OS_Error() if this function is called from an interrupt handler or timer.

Example
char MEMORY_WriteTimed(char* pData, int Len, OS_TIME Timeout) {
 return OS_Q_PutTimed(&_MemoryQ, pData, Len, Timeout);
}

Parameter Description

pQ
Pointer to a data structure of type OS_Q reserved for the manage-
ment of the message queue.

pSrc Pointer to the message to store
Size Size of the message to store

Timeout

Maximum time in timer ticks until the requested message has to
be stored into the queue.
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Size of the message to store
Table 9.5: OS_Q_Put() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

163

9.3.5 OS_Q_GetPtr()
Description

Retrieves a message from a queue.

Prototype
int OS_Q_GetPtr (OS_Q* pQ,
 void** ppData);

Return value

The size of the retrieved message.
Sets the pointer ppData to the message that should be retrieved.

Additional Information

If the queue is empty, the calling task is suspended until the queue receives a new
message. Because this routine might require a suspension, it must not be called from
an interrupt routine. Use OS_GetPtrCond() instead. The retrieved message is not
removed from the queue. This has to be done by a call of OS_Q_Purge() after the
message was processed. Only one message can be processed at a time.
As long as the message is not removed from the queue, the queue is marked
�in use�.
A following call of OS_Q_GetPtr() or OS_Q_GetPtrCond() is not allowed before
OS_Q_Purge() is called as long as the queue is in use.
Consecutive calls of OS_Q_GetPtr() without calling OS_Q_Purge() will call
the embOS error handler OS_Error() in debug builds of embOS.

Example

static void MemoryTask(void) {
 int Len;
 char* pData;

 while (1) {
 Len = OS_Q_GetPtr(&_MemoryQ, &pData); /* Get message */
 Memory_WritePacket(*(U32*)pData, Len); /* Process message */
 OS_Q_Purge(&_MemoryQ); /* Delete message */
 }
}

Parameter Description

pQ Pointer to the queue.
ppData Address of pointer to the message to be retrieved from queue.

Table 9.6: OS_Q_GetPtr() parameter list

164 CHAPTER 9 Queues

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

9.3.6 OS_Q_GetPtrCond()
Description

Retrieves a message from a queue, if one message is available.

Prototype
int OS_Q_GetPtrCond (OS_Q* pQ,
 void** ppData);

Return value

0: No message available in queue.
>0: Size of message that was retrieved from queue.
Sets the pointer ppData to the message that should be retrieved.

Additional Information

If the queue is empty, the function returns 0. The value of ppData is undefined. This
function never suspends the calling task. It may therefore also be called from an
interrupt routine. If a message could be retrieved, it is not removed from the queue.
This has to be done by a call of OS_Q_Purge() after the message was processed.
As long as the message is not removed from the queue, the queue is marked
�in use�.
A following call of OS_Q_GetPtrCond() or OS_Q_GetPtr() is not allowed before
OS_Q_Purge() is called as long as the queue is in use.
Consecutive calls of OS_Q_GetPtrCond() without calling OS_Q_Purge() will call
the embOS error handler OS_Error() in debug builds of embOS.

Example

static void MemoryTask(void) {
 int Len;
 char* pData;
 while (1) {
 Len = OS_Q_GetPtrCond(&_MemoryQ, &pData); /* Check message */
 if (Len > 0) {
 Memory_WritePacket(*(U32*)pData, Len); /* Process message */
 OS_Q_Purge(&_MemoryQ); /* Delete message */
 } else {
 DoSomethingElse();
 }
 }
}

Parameter Description

pQ Pointer to the queue.
ppData Address of pointer to the message to be retrieved from queue.

Table 9.7: OS_Q_GetPtrCond() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

165

9.3.7 OS_Q_GetPtrTimed()
Description

Retrieves a message from a queue within a specified time if a message is available.

Prototype
int OS_Q_GetPtrTimed (OS_Q* pQ,
 void** ppData,
 OS_TIME Timeout);

Return value

0: No message available in queue.
>0: Size of message that was retrieved from queue.
Sets the pointer ppData to the message that should be retrieved.

Additional Information

If the queue is empty, no message is retrieved, the task is suspended for the given
timeout. The value of ppData is undefined. The task continues execution, according
to the rules of the scheduler, as soon as a message is available within the given tim-
eout, or after the timeout value has expired.

When the calling task is blocked by higher priority tasks for a longer period than the
timeout value, it may happen, that a message becomes available after the timeout
time before the calling task continues. In this case, the function returns with time-
out, because the message was not availbale within the requested time. In this case,
the state of the queue is not modified by OS_Q_GetPtrTimed(), a pointer to the mes-
sage is not delivered.

As long as a message was retrieved and the message is not removed from the queue,
the queue is marked �in use�.
A following call of OS_Q_GetPtrTimed() is not allowed before OS_Q_Purge() is
called as long as the queue is in use.
Consecutive calls of OS_Q_GetPtrTimed() without calling OS_Q_Purge() after
retrieving a message call the embOS error handler OS_Error() in debug
builds of embOS.

Example

static void MemoryTask(void) {
 int Len;
 char* pData;
 while (1) {
 Len = OS_Q_GetPtrTimed(&_MemoryQ, &pData, 10); /* Check message */
 if (Len > 0) {
 Memory_WritePacket(*(U32*)pData, Len); /* Process message */
 OS_Q_Purge(&_MemoryQ); /* Delete message */
 } else { /* Timeout */
 DoSomethingElse();
 }
 }
}

Parameter Description

pQ Pointer to the queue.
ppData Address of pointer to the message to be retrieved from queue.

Timeout

Maximum time in timer ticks until the requested message has to
be available. The data type OS_TIME is defined as an integer,
therefore valid values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 9.8: OS_Q_GetPtrTimed() parameter list

166 CHAPTER 9 Queues

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

9.3.8 OS_Q_Purge()
Description

Deletes the last retrieved message in a queue.

Prototype
void OS_Q_Purge (OS_Q* pQ);

Additional Information

This routine should be called by the task that retrieved the last message from the
queue, after the message is processed.
Once a message was retrieved by a call of OS_Q_GetPtr(), OS_Q_GetPtrCond()
or OS_Q_GetPtrTimed(), the message has to be removed from the queue by a
call of OS_Q_Purge() before a following message can be retrieved from the
queue. Consecutive calls of OS_Q_GetPtr(), OS_Q_GetPtrCond() or
OS_Q_GetPtrTimed() will call the embOS error handler OS_Error() in embOS
debug builds.
Consecutive calls of OS_Q_Purge() or calling OS_Q_Purge() without having
retrieved a message from the queue will also call the embOS error handler
OS_Error() in embOS debug builds.

Example

static void MemoryTask(void) {
 int Len;
 char* pData;

 while (1) {
 Len = OS_Q_GetPtr(&_MemoryQ, &pData); /* Get message */
 Memory_WritePacket(*(U32*)pData, Len); /* Process message */
 OS_Q_Purge(&_MemoryQ); /* Delete message */
 }
}

Parameter Description

pQ Pointer to the queue.
Table 9.9: OS_Q_Purge() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

167

9.3.9 OS_Q_Clear()
Description

Deletes all message in a queue.

Prototype
void OS_Q_Clear (OS_Q* pQ);

Parameter Description

pQ Pointer to the queue.
Table 9.10: OS_Q_Clear() parameter list

168 CHAPTER 9 Queues

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

9.3.10 OS_Q_GetMessageCnt()
Description

Returns the number of messages currently in a queue.

Prototype
int OS_Q_GetMessageCnt (const OS_Q* pQ);

Return value

The number of messages in the queue.

Parameter Description

pQ Pointer to the queue.
Table 9.11: OS_Q_GetMessageCnt() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

169

9.3.11 OS_Q_Delete()
Description

Deletes a specific queue.

Prototype
void OS_Q_Delete (OS_Q* pQ);

Additional Information

To keep the system fully dynamic, it is essential that queues can be created dynami-
cally. This also means there has to be a way to delete a queue when it is no longer
needed. The memory that has been used by the queue for the control structure and
the buffer can then be reused or reallocated.
It is the programmer's responsibility to:

� make sure that the program no longer uses the queue to be deleted
� make sure that the queue to be deleted actually exists (i.e. has been created

first).

Example

OS_Q QSerIn;

void Cleanup(void) {
 OS_Q_Delete(QSerIn);
}.

Parameter Description

pQ Pointer to the queue.
Table 9.12: OS_Q_GetMessageCnt() parameter list

170 CHAPTER 9 Queues

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

9.3.12 OS_Q_IsInUse()
Description

Delivers information whether the queue is actually in use.

Prototype
OS_BOOL OS_Q_IsInUse(const OS_Q* pQ)

Return value

0: Queue not in use
!=0: Queue is in use and may not be deleted or cleared.

Additional Information

A queue must not be cleared or deleted when it is in use by any task or function.
In use means, any task or function actually accesses the queue and holds a pointer
to data in the queue.
OS_Q_IsInUse() can be used to examine the state of the queue before it can be
cleared or deleted, as these functions must not be performed as long as the queue is
used.

Example
void DeleteQ(OS_Q* pQ) {
 OS_IncDI(); // Avoid state changes of the queue by task or interrupt
 //
 // Wait until queue is not used
 //
 while (OS_Q_IsInUse(pQ) != 0) {
 OS_Delay(1);
 }
 OS_Q_Delete(pQ);
 OS_DecRI();
}

Parameter Description

pQ Pointer to the queue.
Table 9.13: OS_Q_GetMessageCnt() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

171

9.3.13 OS_Q_GetMessageSize()
Description

Returns the message size.

Prototype
int OS_Q_GetMessageSize (OS_Q* pQ)

Return value

The size of the first message or 0 when no message is available.

Additional Information

If the queue is empty OS_Q_GetMessageSize returns 0. If a message is available
OS_Q_GetMessageSize returns the size of that message. The message is not
retrieved from the queue.

Example

static void MemoryTask(void) {
 int Len;

 while (1) {
 Len = OS_Q_GetMessageSize(&_MemoryQ); /* Get message length */
 if (Len > 0) {
 printf(“Message with size %d retrieved\n”, Len);
 }
 OS_Delay(100)
 }
}

Parameter Description

pQ Pointer to the queue.
Table 9.14: OS_Q_GetMessageSize() parameter list

172 CHAPTER 9 Queues

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

9.3.14 OS_Q_PeekPtr()
Description

Retrieves a message from a queue.

Prototype
int OS_Q_PeekPtr (OS_Q* pQ,
 void** ppData);

Return value

The size of the retrieved message or 0 when no new message is available.
Sets the pointer ppData to the message that should be retrieved.

Additional Information

If the queue is empty, 0 is returned.

The retrieved message is not removed from the queue. Use OS_GetPtr()/
OS_Q_Purge() to retrieve and remove a message from the queue.

Example

static void MemoryTask(void) {
 int Len;
 char* pData;

 while (1) {
 OS_IncDI(); // Avoid state changes of the queue by task or interrupt
 Len = OS_Q_PeekPtr(&_MemoryQ, &pData); /* Get message */
 if (Len > 0) {
 Memory_WritePacket(*(U32*)pData, Len); /* Process message */
 }
 OS_RESTORE_I();
}

Parameter Description

pQ Pointer to the queue.
ppData Address of pointer to the message to be retrieved from queue.

Table 9.15: OS_Q_GetPtr() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

173

Chapter 10

Task events

174 CHAPTER 10 Task events

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

10.1 Introduction
Task events are another way of communication between tasks. In contrast to sema-
phores and mailboxes, task events are messages to a single, specified recipient. In
other words, a task event is sent to a specified task.

The purpose of a task event is to enable a task to wait for a particular event (or for
one of several events) to occur. This task can be kept inactive until the event is sig-
naled by another task, a S/W timer or an interrupt handler. The event can consist of
anything that the software has been made aware of in any way. For example, the
change of an input signal, the expiration of a timer, a key press, the reception of a
character, or a complete command.

Every task has an individual bit-mask, which per default is 32bit wide on 32bit CPUs,
and 8bits wide on 16- and 8-bit CPUs. This means that 32 or 8 different events can
be signaled to and distinguished by every task. By calling OS_WaitEvent(), a task
waits for one of the events specified as a bitmask. As soon as one of the events
occurs, this task must be signaled by calling OS_SignalEvent(). The waiting task will
then be put in the READY state immediately. It will be activated according to the
rules of the scheduler as soon as it becomes the task with the highest priority of all
the tasks in the READY state.
By changing the definition of OS_TASK_EVENT which is defined as unsigned long on
32bit CPUs and unsigned char on 16- or 8-bit CPUs per default, the task events can
be expanded to 16 or 32 bits thus allowing more different events, or reduced to
smaller data types on 32bit CPUs.
Changing the definition of OS_TASK_EVENT can only be done when using the embOS
sources in a project, or when the libraries are rebuilt from sources with the modified
definition

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

175

10.2 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_WaitEvent()
Waits for one of the events specified in
the bitmask and clears the event memory
after an event occurs.

X

OS_WaitSingleEvent()
Waits for one of the events specified as
bitmask and clears only that event after
it occurs.

X

OS_WaitEvent_Timed()
Waits for the specified events for a given
time, and clears the event memory after
an event occurs.

X X

OS_WaitSingleEventTimed()
Waits for the specified events for a given
time; after an event occurs, only that
event is cleared.

X X

OS_SignalEvent() Signals event(s) to a specified task. X X X X

OS_GetEventsOccurred()
Returns a list of events that have
occurred for a specified task. X X

OS_ClearEvents()
Returns the actual state of events and
then clears the events of a specified task. X X X X

Table 10.1: Events API functions

176 CHAPTER 10 Task events

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

10.2.1 OS_WaitEvent()
Description

Waits for one of the events specified in the bitmask and clears the event memory
after an event occurs.

Prototype
OS_TASK_EVENT OS_WaitEvent (OS_TASK_EVENT EventMask);

Return value

All events that have actually occurred.

Additional Information

If none of the specified events are signaled, the task is suspended. The first of the
specified events will wake the task. These events are signaled by another task, a S/W
timer or an interrupt handler. Any bit in the event mask may enable the correspond-
ing event.
When a task shall wait on multiple events, all of the specified events shall be
requested by a single call of OS_WaitEvent() and all events have to be be handled
when the function returns.
Note that all events of the task are cleared when the function returns, even those
events that were not given as parameter in the eventmask. Consecutive calls of
OS_WaitEvent() with different event masks will not work, as all events are cleared
when the function returns. Events may got lost. OS_WaitSingleEvent() may be used
for this case.
OS_TASK_EVENT is defined as unsigned long for 32bit CPUs and unsigned char for
8- or 16-bit CPUs per default. It may be modified to any other type when embOS
sources are used in a project, or when the libraries are rebuilt with a modified defini-
tion.

Example

void Task(void) {
 OS_TASK_EVENT MyEvents;

 while(1) {
 MyEvents = OS_WaitEvent(3); /* Wait for event 1 or 2 to be signaled */
 /* Handle ALL events */

 if (MyEvents & (1 << 0)) {
 _HandleEvent1();
 }
 if (MyEvents & (1 << 1)) {
 _HandleEvent2();
 }
 }
}

For a further example, see OS_SignalEvent().

Parameter Description

EventMask
The events that the task will be waiting for. The type
OS_TASK_EVENT is defined as unsigned long for 32bit CPUs and
unsigned char for 8- or 16-bit CPUs per default.

Table 10.2: OS_WaitEvent() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

177

10.2.2 OS_WaitSingleEvent()
Description

Waits for one or more of the events specified by the Eventmask and clears only those
events that were specified in the eventmask.

Prototype
OS_TASK_EVENT OS_WaitSingleEvent (OS_TASK_EVENT EventMask);

Return value

All requested events that have actually occurred.

Additional Information

If none of the specified events are signaled, the task is suspended. The first of the
requested events will wake the task. These events are signaled by another task, a S/
W timer, or an interrupt handler. Any bit in the event mask may enable the corre-
sponding event. When the function returns, it delivers all of the requested events.
The requested events are cleared in the event state of the task. All other events
remain unchanged and will not be returned.
OS_WaitSingleEvent() may be used in consecutive calls with individual requests.
Only requested events will be handled, no other events can get lost.
When the function waits on multiple events, the returned value has to be evaluated,
because the function returns when at least one of the requested events was signaled.
When the function requests a single event, the returned value does not need to be
evaluated.
OS_TASK_EVENT is defined as unsigned long for 32bit CPUs and unsigned char for
8- or 16-bit CPUs per default. It may be modified to any other type when embOS
sources ar used in a project, or when the libraries are rebuilt with a modified defini-
tion.

Example

void Task(void) {
 OS_TASK_EVENT MyEvents;

 while(1) {
 MyEvents = OS_WaitSingleEvent(3); /* Wait for event 1 or 2 to be signaled */
 /* Handle ALL events */

 if (MyEvents & (1 << 0)) {
 _HandleEvent1();
 }
 if (MyEvents & (1 << 1)) {
 _HandleEvent2();
 }
 OS_WaitSingleEvent((1 << 2)); /* Wait for event 3 to be signaled */
 _HandleEvent3();
 OS_WaitSingleEvent((1 << 3)); /* Wait for event 4 to be signaled */
 _HandleEvent4();
 }
}

Parameter Description

EventMask The events that the task will be waiting for.
Table 10.3: OS_WaitSingleEvent() parameter list

178 CHAPTER 10 Task events

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

10.2.3 OS_WaitEvent_Timed()
Description

Waits for the specified events for a given time, and clears the event memory after
one of the requsted events occurs, or after the timeout expired.

Prototype
OS_TASK_EVENT OS_WaitEventTimed (OS_TASK_EVENT EventMask,

 OS_TIME TimeOut);

Return value

The events that have actually occurred within the specified time.
0 if no events were signaled in time.

Additional Information

If none of the specified events are available, the task is suspended for the given
time. The first of the requested events will wake the task if the event is signaled by
another task, a S/W timer, or an interrupt handler within the specified TimeOut time.

If none of the requested events is signaled, the task is activated after the specified
timeout and all actual events are returned and then cleared.
Note that the function returns all events that were signaled within the given timeout
time, even those which were not requested.
The calling function has to evaluate the returned value.
OS_TASK_EVENT is defined as unsigned long for 32bit CPUs and unsigned char for
8- or 16-bit CPUs per default.
It may be modified to any other type when embOS sources ar used in a project, or
when the libraries are rebuilt with a modified definition.

Example

void Task(void) {
 OS_TASK_EVENT MyEvents;

 while(1) {
 MyEvents = OS_WaitEvent_Timed(3, 10); /* Wait for events 1+2 for 10 ms */
 if ((MyEvents & 0x3) == 0) {
 _HandleTimeout();
 } else {
 if (MyEvents & (1 << 0)) {
 _HandleEvent1();
 }
 if (MyEvents & (1 << 1)) {
 _HandleEvent2();
 }
 }
 }
}

Parameter Description

EventMask The events that the task will be waiting for.

Timeout

Maximum time in timer ticks until the events have to be signaled.
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 10.4: OS_WaitEventTimed() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

179

10.2.4 OS_WaitSingleEventTimed()
Description

Waits for the specified events for a given time; after an event occurs, only the
requested events are cleared.

Prototype
OS_TASK_EVENT OS_WaitSingleEventTimed (OS_TASK_EVENT EventMask,

 OS_TIME TimeOut);

Return value

The masked events that have actually occurred within the specified time.
0 if no masked events were signaled in time.

Additional Information

If none of the specified events are available, the task is suspended for the given
time. The first of the specified events will wake the task if the event is signaled by
another task, a S/W timer or an interrupt handler within the specified TimeOut time.
If no event is signaled, the task is activated after the specified timeout and the
function returns zero. Any bit in the event mask may enable the corresponding event.
All unmasked events remain unchanged.

OS_TASK_EVENT is defined as unsigned long for 32bit CPUs and unsigned char for
8- or 16-bit CPUs per default. It may be modified to any other type when embOS
sources ar used in a project, or when the libraries are rebuilt with a modified defini-
tion.

Example

void Task(void) {
 OS_TASK_EVENT MyEvents;

 while(1) {
 MyEvents = OS_WaitSingleEventTimed(3, 10); /* Wait for event 1 or 2 to be
 signaled within 10ms */
 /* Handle requested events */

 if (MyEvents == 0) {
 _HandleTimeout;
 } else {
 if (MyEvents & (1 << 0)) {
 _HandleEvent1();
 }
 if (MyEvents & (1 << 1)) {
 _HandleEvent2();
 }
 }
 if (OS_WaitSingleEvent((1 << 2), 10) == 0) {
 _HandleTimeout();
 } else {
 _HandleEvent3();
 }
 }
}

Parameter Description

EventMask The events that the task will be waiting for.

Timeout

Maximum time in timer ticks until the events have to be signaled.
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 10.5: OS_WaitSingleEventTimed() parameter list

180 CHAPTER 10 Task events

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

10.2.5 OS_SignalEvent()
Description

Signals event(s) to a specified task.

Prototype
void OS_SignalEvent (OS_TASK_EVENT Event,

 OS_TASK* pTask);

Additional Information

If the specified task is waiting for one of these events, it will be put in the READY
state and activated according to the rules of the scheduler.
OS_TASK_EVENT is defined as unsigned long for 32bit CPUs and unsigned char for
8- or 16-bit CPUs per default. It may be modified to any other type when embOS
sources ar used in a project, or when the libraries are rebuilt with a modified defini-
tion.

Example

The task that handles the serial input and the keyboard waits for a character to be
received either via the keyboard (EVENT_KEYPRESSED) or serial interface
(EVENT_SERIN):

/*
* Just a small demo for events
*/
#define EVENT_KEYPRESSED (1)
#define EVENT_SERIN (2)

OS_STACKPTR int Stack0[96]; // Task stacks
OS_TASK TCB0; // Data area for tasks (task control blocks)

void Task0(void) {
 OS_TASK_EVENT MyEvent;
 while(1)
 MyEvent = OS_WaitEvent(EVENT_KEYPRESSED | EVENT_SERIN)
 if (MyEvent & EVENT_KEYPRESSED) {
 /* handle key press */
 }
 if (MyEvent & EVENT_SERIN) {
 /* Handle serial reception */
 }
 }
}

void TimerKey(void) {
 /* More code to find out if key has been pressed */
 OS_SignalEvent(EVENT_SERIN, &TCB0); /* Notify Task that key was pressed */
}

void InitTask(void) {
 OS_CREATETASK(&TCB0, 0, Task0, 100, Stack0); /* Create Task0 */
}

Parameter Description

Event

The event(s) to signal:
1 means event 1
2 means event 2
4 means event 3
...
128 means event 8.
Multiple events can be signaled as the sum of the single events
(for example, 6 will signal events 2 & 3).

pTask Task that the events are sent to.
Table 10.6: OS_SignalEvent() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

181

If the task was only waiting for a key to be pressed, OS_GetMail() could simply be
called. The task would then be deactivated until a key is pressed. If the task has to
handle multiple mailboxes, as in this case, events are a good option.

182 CHAPTER 10 Task events

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

10.2.6 OS_GetEventsOccurred()
Description

Returns a list of events that have occurred for a specified task.

Prototype
OS_TASK_EVENT OS_GetEventsOccurred (const OS_TASK* pTask);

Return value

The event mask of the events that have actually occurred.

Additional Information

By calling this function, the actual events remain signaled. The event memory is not
cleared. This is one way for a task to find out which events have been signaled. The
task is not suspended if no events are signaled.
OS_TASK_EVENT is defined as unsigned long for 32bit CPUs and unsigned char for
8- or 16-bit CPUs per default. It may be modified to any other type when embOS
sources ar used in a project, or when the libraries are rebuilt with a modified defini-
tion.

Parameter Description

pTask
The task who's event mask is to be returned,
NULL means current task.

Table 10.7: OS_GetEventsOccurred() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

183

10.2.7 OS_ClearEvents()
Description

Returns the actual state of events and then clears the events of a specified task.

Prototype
OS_TASK_EVENT OS_ClearEvents (OS_TASK* pTask);

Return value

The events that were actually signaled before clearing.
OS_TASK_EVENT is defined as unsigned long for 32bit CPUs and unsigned char for
8- or 16-bit CPUs per default. It may be modified to any other type when embOS
sources ar used in a project, or when the libraries are rebuilt with a modified defini-
tion.

Parameter Description

pTask
The task who's event mask is to be returned,
NULL means current task.

Table 10.8: OS_ClearEvents() parameter list

184 CHAPTER 10 Task events

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

185

Chapter 11

Event objects

186 CHAPTER 11 Event objects

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

11.1 Introduction
Event objects are another type of communication and synchronization objects. In
contrast to task-events, event objects are standalone objects which are not owned by
any task.

The purpose of an event object is to enable one or multiple tasks to wait for a partic-
ular event to occur. The tasks can be kept suspended until the event is set by another
task, a S/W timer, or an interrupt handler. The event can be anything that the soft-
ware is made aware of in any way. Examples include the change of an input signal,
the expiration of a timer, a key press, the reception of a character, or a complete
command.

Compared to a task event, the signaling function does not need to know which task is
waiting for the event to occur.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

187

11.2 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_EVENT_Create()
Creates an event object. Has to be called
before the event object can be used. X X X X

OS_EVENT_CreateEx()
Creates an event object and allows selection of
the reset behavior of the event. X X X X

OS_EVENT_Wait() Waits for an event. X

OS_EVENT_WaitTimed()
Waits for an event with timeout and optionally
resets the event according the reset mode. X X

OS_EVENT_Set() Sets the events, or resumes waiting tasks. X X X X
OS_EVENT_Reset() Resets the event to none-signaled state. X X X X

OS_EVENT_Pulse()
Sets the event, resumes waiting tasks, if any,
and then resets the event. X X X X

OS_EVENT_Get() Returns the state of an event object. X X
OS_EVENT_Delete() Deletes the specified event object. X X
OS_EVENT_SetResetMode(
)

Sets the reset behaviour of events to auto-
matic, manual or semiauto. X X X X

OS_EVENT_GetResetMode(
)

Retrieves the current the reset behaviour
mode of an event object. X X X X

Table 11.1: Event object API functions

188 CHAPTER 11 Event objects

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

11.2.1 OS_EVENT_Create()
Description

Creates an event object and resets the event.

Prototype
void OS_EVENT_Create (OS_EVENT* pEvent)

Additional Information

Before the event object can be used, it has to be created once by a call of
OS_EVENT_Create(). On creation, the event is set in non-signaled state, and the list
of waiting tasks is deleted. Therefore, OS_EVENT_Create() must not be called for an
event object which was already created before.
The debug version of embOS can not check whether the specified event object was
already created.
The event is created with the default reset behavior which is semiauto.
Since version 3.88a of embOS, the reset behavior of the event can be modified by a
call of the function OS_EVENT_SetResetMode().

Example

OS_EVENT _HW_Event;
OS_EVENT_Create(&HW_Event); /* Create and initialize event object */

Parameter Description

pEvent Pointer to an event object data structure.
Table 11.2: OS_EVENT_Create() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

189

11.2.2 OS_EVENT_CreateEx()
Description

Creates an event object with specified rest behavior and resets the event.

Prototype
void OS_EVENT_Create (OS_EVENT* pEvent, OS_EVENT_RESET_MODE ResetMode)

Additional Information

Before the event object can be used, it has to be created once by a call of
OS_EVENT_Create() or OS_EVENT_CreateEx(). On creation, the event is set in non-
signaled state, and the list of waiting tasks is deleted.
Therefore, OS_EVENT_CreateEx() must not be called for an event object which was
already created before.
The debug version of embOS can not check whether the specified event object was
already created.
Since version 3.88a of embOS, the reset behavior of the event can be controlled by
different reset modes which may be passed as parameter to the new function
OS_EVENT_CreateEx() or may be modified by a call of OS_EVENT_SetResetMode().

� OS_EVENT_RESET_MODE_SEMIAUTO:
This reset mode is the default mode used with all previous versions of embOS.
The reset behavior unfortunately is not consistent and depends on the function
called to set or wait for an event. This reset mode is defined for compatibility
with older embOS versions (prior version 3.88a). Calling OS_EVENT_Create()
sets the reset mode to OS_EVENT_RESET_MODE_SEMIAUTO to be compatible with
older embOS versions.

� OS_EVENT_RESET_MODE_AUTO:
This mode sets the reset behavior of an event object to automatic clear. When an
event is set, all waiting tasks are resumed and the event is cleared automatically,
except waiting tasks called OS_EVENT_WaitTimed() and the timeout of the task
expiered before the event was set.

� OS_EVENT_RESET_MODE_MANUAL:
This mode sets the event to manual reset mode. When an event is set, all waiting
tasks are resumed and the event object remains signaled. The event has to be
reset by one task which was waiting for the event.

Example

OS_EVENT _HW_Event;

/* Create and initialize an event object with automatic reset */
OS_EVENT_CreateEx(&HW_Event, OS_EVENT_RESET_MODE_AUTO);

Parameter Description

pEvent Pointer to an event object data structure.

ResetMode

Specifies the reset behavior of the event object. One of the pre-
defined reset modes can be used:
OS_EVENT_RESET_MODE_SEMIAUTO
OS_EVENT_RESET_MODE_AUTO
OS_EVENT_RESET_MODE_MANUAL
which are dscribed under Additional information

Table 11.3: OS_EVENT_CreateEx() parameter list

190 CHAPTER 11 Event objects

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

11.2.3 OS_EVENT_Wait()
Description

Waits for an event and suspends the calling task as long as the event is not signaled.

Prototype
void OS_EVENT_Wait (OS_EVENT* pEvent)

Additional Information

pEvent has to address an existing event object, which has to be created before the
call of OS_EVENT_Wait(). The debug version of embOS will check whether pEvent
addresses a valid event object and will call OS_Error() with error code
OS_ERR_EVENT_INVALID in case of an error.

The state of the event object after calling OS_EVENT_Wait() depends on the reset
mode of the event object waich was set by creating the event object by a call of
OS_EVENT_CreateEx() or OS_EVENT_SetResetMode().

� With reset mode OS_EVENT_RESET_MODE_SEMIAUTO:
This is the default mode when the event object was created with
OS_EVENT_Create(). This was the only mode available in embOS versions prior
version 3.88a.
If the specified event object is already set, the calling task resets the event and
continues operation.
If the specified event object is not set, the calling task is suspended until the
event object becomes signaled. The event is not reset when the task resumes.

� With reset mode OS_EVENT_RESET_MODE_AUTO:
If the specified event object is already set, the calling task resets the event and
continues operation.
If the specified event object is not set, the calling task is suspended until the
event object becomes signaled and then the event object is reset when the wait-
ing task resumes.

� With reset mode OS_EVENT_RESET_MODE_MANUAL:
If the specified event object is already set, the calling task continues operation.
The event object remains signaled.
If the specified event object is not set, the calling task is suspended until the
event object becomes signaled. Then the waiting task is resumed and the event
object remains signaled. The eventobjct has to be reset by the calling task.

Important

This function may not be called from within an interrupt handler or software timer.
The debug version of embOS will call OS_Error() when OS_EVENT_Wait() is called
from an ISR or timer.

Example

OS_EVENT_Wait(&_HW_Event); // Wait for event object
OS_EVENT_Reset(&_HW_Event); // Reset the event

Parameter Description

pEvent Pointer to the event object that the task will be waiting for.
Table 11.4: OS_EVENT_Wait() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

191

11.2.4 OS_EVENT_WaitTimed()
Description

Waits for an event and suspends the calling task for a specified time as long as the
event is not signaled.

Prototype
char OS_EVENT_WaitTimed (OS_EVENT* pEvent,

 OS_TIME Timeout)

Return value

0 success, the event was signaled within the specified time.
1 if the event was not signaled within the specified timeout time.

Additional Information

pEvent has to address an existing event object, which has to be created before the
call of OS_EVENT_WaitTimed(). The debug version of embOS will check whether
pEvent addresses a valid event object and will call OS_Error() with error code
OS_ERR_EVENT_INVALID in case of an error.

If the specified event object is not set, the calling task is suspended until the event
object becomes signaled or the timeout time has expired.
When the timeout expired and the event was not signaled during the specified time-
out time, OS_EVENT_WaitTimed() returns 1.
If the specified event object is already set, or becomes signaled within the specified
timeout time, the state of the event depends on the reset mode of the event.

� With reset mode OS_EVENT_RESET_MODE_SEMIAUTO:
This is the default mode when the event object was created with
OS_EVENT_Create(). This was the only mode available in embOS versions prior
version 3.88a.
If the specified event object is already set, the calling task resets the event and
continues operation.
If the event object becomes signaled within the specified timeout time, the event
is reset and the function returns without timeout result.

� With reset mode OS_EVENT_RESET_MODE_AUTO:
If the specified event object is already set, the calling task resets the event and
continues operation.
If the event object becomes signaled within the specified timeout time, the event
is reset and the function returns without timeout result.

� With reset mode OS_EVENT_RESET_MODE_MANUAL:
If the specified event object is already set, the calling task continues operation.
The event object remains signaled.
If the specified event object is not set, the calling task is suspended until the
event object becomes signaled. When the event object is signaled within the
specified timeout time, the waiting task is resumed and the event object remains
signaled. The eventobjct has to be reset by the calling task.
The function returns without timeout result.

Parameter Description

pEvent Pointer to the event object that the task will be waiting for.

Timeout

Maximum time in timer ticks until the event have to be signaled.
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Table 11.5: OS_EVENT_WaitTimed() parameter list

192 CHAPTER 11 Event objects

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

When the calling task is blocked by higher priority tasks for a longer period than the
timeout value, it may happen, that the event becomes signaled after the timeout
time before the calling task continues. In this case, the function returns with time-
out, because the event was not availbale within the requested time. In this case, the
state of the event is not modified by OS_EVENT_WaitTimed() regardless the reset
mode.

Important

This function may not be called from within an interrupt handler or software timer.
The debug version of embOS will call OS_Error() when OS_EVENT_Wait() is called
from an ISR or timer.

Example

if (OS_EVENT_WaitTimed(&_HW_Event, 10) == 0) {
 /* event was signaled within timeout time, handle event */
 ...
} else {
 /* event was not signaled within timeout time, handle timeout */
 ...
}

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

193

11.2.5 OS_EVENT_Set()
Description

Sets an event object to signaled state, or resumes tasks which are waiting at the
event object.

Prototype
void OS_EVENT_Set (OS_EVENT* pEvent)

Additional Information

pEvent has to address an existing event object, which has to be created before by a
call of OS_EVENT_Create(). The debug version of embOS will check whether pEvent
addresses a valid event object and will call OS_Error() with error code
OS_ERR_EVENT_INVALID in case of an error.

If no tasks are waiting at the event object, the event object is set to signaled state.

If at least one task is already waiting at the event object, all waiting tasks are
resumed. The state of the event object after calling OS_EVENT_Set() then depends
on the reset mode of the event object.

� With reset mode OS_EVENT_RESET_MODE_SEMIAUTO:
This is the default mode when the event object was created with
OS_EVENT_Create(). This was the only mode available in embOS versions prior
version 3.88a.
If the specified event object is already set, the calling task resets the event and
continues operation.
If the event object becomes signaled with waiting tasks, the event object is not
set when the tasks resume.

� With reset mode OS_EVENT_RESET_MODE_AUTO:
The event object is automatically reset when waiting tasks are resumed and con-
tinue operation.

� With reset mode OS_EVENT_RESET_MODE_MANUAL:
The event object remains signaled when waiting tasks are resumed and continue
operation. The eventobjct has to be reset by the calling task.

Example

Examples on how to use the OS_EVENT_Set() function are shown in the section
�Examples�.

Parameter Description

pEvent Pointer to the event object which should be set to signaled state.
Table 11.6: OS_EVENT_Set() parameter list

194 CHAPTER 11 Event objects

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

11.2.6 OS_EVENT_Reset()
Description

Resets the specified event object to non-signaled state.

Prototype
void OS_EVENT_Reset (OS_EVENT* pEvent)

Additional Information

pEvent has to address an existing event object, which has been created before by a
call of OS_EVENT_Create(). The debug version of embOS will check whether pEvent
addresses a valid event object and will call OS_Error() with the error code
OS_ERR_EVENT_INVALID in case of an error.

Example

OS_EVENT_Reset(&_HW_Event); /* Reset event object to non-signaled state */

Parameter Description

pEvent
Pointer to the event object which should be reset to non-signaled
state.

Table 11.7: OS_EVENT_Reset() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

195

11.2.7 OS_EVENT_Pulse()
Description

Signals an event object and resumes waiting tasks, then resets the event object to
non-signaled state.

Prototype
void OS_EVENT_Pulse (OS_EVENT* pEvent);

Additional Information

If any tasks are waiting at the event object, the tasks are resumed. The event object
remains in non-signaled state, regardless the reset mode.
The debug version of embOS will check whether pEvent addresses a valid event
object and will call OS_Error() with the error code OS_ERR_EVENT_INVALID in case of
an error.

Parameter Description

pEvent Pointer to the event object which should be pulsed.
Table 11.8: OS_EVENT_Pulse() parameter list

196 CHAPTER 11 Event objects

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

11.2.8 OS_EVENT_Get()
Description

Returns the state of an event object.

Prototype
unsigned char OS_EVENT_Get (const OS_EVENT* pEvent);

Return value

0: Event object is not set to signaled state
1: Event object is set to signaled state.

Additional Information

By calling this function, the actual state of the event object remains unchanged.
pEvent has to address an existing event object, which has been created before by a
call of OS_EVENT_Create().
The debug version of embOS will check whether pEvent addresses a valid event
object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in case of an
error.

Parameter Description

pEvent Pointer to an event object who�s state should be examined.
Table 11.9: OS_EVENT_Get() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

197

11.2.9 OS_EVENT_Delete()
Description

Deletes an event object.

Prototype
void OS_EVENT_Delete (OS_EVENT* pEvent);

Additional Information

To keep the system fully dynamic, it is essential that event objects can be created
dynamically. This also means there has to be a way to delete an event object when it
is no longer needed. The memory that has been used by the event object�s control
structure can then be reused or reallocated.
It is your responsibility to make sure that:

� the program no longer uses the event object to be deleted
� the event object to be deleted actually exists (has been created first)
� no tasks are waiting at the event object when it is deleted.

pEvent has to address an existing event object, which has been created before by a
call of OS_EVENT_Create()or OS_EVENT_CreateEx().
The debug version of embOS will check whether pEvent addresses a valid event
object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in case of an
error.
If any task is waiting at the event object which is deleted, the debug version of
embOS calls OS_Error() with error code OS_ERR_EVENT_DELETE.
To avoid any problems, an event object should not be deleted in a normal application.

Parameter Description

pEvent Pointer to an event object which should be deleted.
Table 11.10: OS_EVENT_Delete() parameter list

198 CHAPTER 11 Event objects

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

11.2.10 OS_EVENT_SetResetMode()
Description

Used to ste the reset behavior mode of an event object.

Prototype
void OS_EVENT_SetResetMode (OS_EVENT* pEvent, OS_EVENT_RESET_MODE ResetMode)

Additional Information

pEvent has to address an existing event object, which has been created before by a
call of OS_EVENT_Create()or OS_EVENT_CreateEx().
The debug version of embOS will check whether pEvent addresses a valid event
object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in case of an
error.

Implementation of event objects in embOS versions before 3.88a unfortuanately was
not consistent with respect to the state of the event after calling OS_EVENT_Set()
oor OS_EVENT_Wait() wait functions.
The state of the event was different when tasks were waiting or not.
Since embOS version 3.88a, the state of the event (reset behavior) can be controlled
after creation by the new function OS_EVENT_SetResetMode(), or during creation by
the new OS_EVENT_CreateEx() function.
The foolowing reset modes are defined an can be used as parameter:

� OS_EVENT_RESET_MODE_SEMIAUTO:
This reset mode is the default mode used with all previous versions of embOS.
The reset behavior unfortunately is not consistent and depends on the function
called to set or wait for an event. This reset mode is defined for compatibility
with older embOS versions (prior version 3.88a). Calling OS_EVENT_Create()
sets the reset mode to OS_EVENT_RESET_MODE_SEMIAUTO to be compatible with
older embOS versions.

� OS_EVENT_RESET_MODE_AUTO:
This mode sets the reset behavior of an event object to automatic clear. When an
event is set, all waiting tasks are resumed and the event is cleared automatically,
except waiting tasks called OS_EVENT_WaitTimed() and the timeout of the task
expiered before the event was set.

� OS_EVENT_RESET_MODE_MANUAL:
This mode sets the event to manual reset mode. When an event is set, all waiting
tasks are resumed and the event object remains signaled. The event has to be
reset by one task which was waiting for the event.

Parameter Description

pEvent Pointer to an event object which should be deleted.

ResetMode

Specifies the reset behavior of the event object. One of the pre-
defined reset modes can be used:
OS_EVENT_RESET_MODE_SEMIAUTO
OS_EVENT_RESET_MODE_AUTO
OS_EVENT_RESET_MODE_MANUAL
which are dscribed under Additional information

Table 11.11: OS_EVENT_Delete() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

199

11.2.11 OS_EVENT_GetResetMode()
Description

Retrieves the current reset mode of an event object.

Prototype
OS_EVENT_RESET_MODE OS_EVENT_GetResetMode (OS_EVENT* pEvent);

Additional Information

pEvent has to address an existing event object, which has been created before by a
call of OS_EVENT_Create()or OS_EVENT_CreateEx().
The debug version of embOS will check whether pEvent addresses a valid event
object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in case of an
error.
Since version 3.88a of embOS, the reset mode of an event object can be controlled
by the new OS_EVENT_CreateEx() function or set after creation using the new func-
tion OS_EVENT_SetResetMode(). If needed, the current setting of the reset mode can
be retrieved with OS_EVENT_GetResetMode().

Example
OS_EVENT_Wait(&_HW_Event); // Wait for event object
if (OS_EVENT_GetResetMode(&_HW_Event) == OS_EVENT_RESET_MODE_MANUAL) {
 OS_EVENT_Reset(&_HW_Event); // Reset the event
}

Parameter Description

pEvent Pointer to an event object which should be deleted.
Table 11.12: OS_EVENT_Delete() parameter list

200 CHAPTER 11 Event objects

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

11.3 Examples of using event objects
This chapter shows some examples on how to use event objects in an application.

11.3.1 Activate a task from interrupt by an event object
The following code example shows usage of an event object which is signaled from an
ISR handler to activate a task.
The waiting task should reset the event after waiting for it.

static OS_EVENT _HW_Event;

/**
*
* _ISRhandler
*/
static void _ISRhandler(void) {
 //
 // Perform some simple & fast processing in ISR //
 //
 ...
 //
 // Wake up task to do the rest of the work
 //
 OS_EVENT_Set(&_Event);
}

/**
*
* _Task
*/
static void _Task(void) {
 while (1) {
 OS_EVENT_Wait(&_Event);
 OS_EVENT_Reset(&_Event);
 //
 // Do the rest of the work (which has not been done in the ISR)
 //

 }
}

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

201

11.3.2 Activating multiple tasks using a single event object
The following sample program shows how to synchronize multiple tasks with one
event object. The sample program is delivered with embOS in the �Application� or
�Samples� folder.

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications

File : Main_EVENT.c
Purpose : Sample program for embOS using EVENT object
--------- END-OF-HEADER --*/

#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

/**/

/****** Interface to HW module **************************************/

void HW_Wait(void);
void HW_Free(void);
void HW_Init(void);

/**/

/****** HW module ***/

OS_STACKPTR int _StackHW[128]; /* Task stack */
OS_TASK _TCBHW; /* Task-control-block */

/****** local data **/

static OS_EVENT _HW_Event;

/****** local functions ***/
static void _HWTask(void) {
 /* Initialize HW functionality */
 OS_Delay(100);
 /* Init done, send broadcast to waiting tasks */
 HW_Free();
 while (1) {
 OS_Delay (40);
 }
}

/****** global functions **/
void HW_Wait(void) {
 OS_EVENT_Wait(&_HW_Event);
}

void HW_Free(void) {
 OS_EVENT_Set(&_HW_Event);
}

void HW_Init(void) {
 OS_CREATETASK(&_TCBHW, "HWTask", _HWTask, 25, _StackHW);
 OS_EVENT_Create(&_HW_Event);
}

202 CHAPTER 11 Event objects

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

/**/

/****** Main application **/

static void HPTask(void) {
 HW_Wait(); /* Wait until HW module is set up */
 while (1) {
 OS_Delay (50);
 }
}

static void LPTask(void) {
 HW_Wait(); /* Wait until HW module is set up */
 while (1) {
 OS_Delay (200);
 }
}

/***
*
* main
*
**/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 HW_Init(); /* Initialize HW module */
 /* You need to create at least one task before calling OS_Start() */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_SendString("Start project will start multitasking !\n");
 OS_Start(); /* Start multitasking */
 return 0;
}

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

203

Chapter 12

Heap type memory management

204 CHAPTER 12 Heap type memory management

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

12.1 Introduction
ANSI C offers some basic dynamic memory management functions. These are mal-
loc, free, and realloc.
Unfortunately, these routines are not thread-safe, unless a special thread-safe imple-
mentation exists in the compiler specific runtime libraries; they can only be used
from one task or by multiple tasks if they are called sequentially. Therefore, embOS
offer task-safe variants of these routines. These variants have the same names as
their ANSI counterparts, but are prefixed OS_; they are called OS_malloc(),
OS_free(), OS_realloc(). The thread-safe variants that embOS offers use the stan-
dard ANSI routines, but they guarantee that the calls are serialized using a resource
semaphore.
If heap memory management is not supported by the standard C-libraries for a spe-
cific CPU, embOS heap memory management is not implemented.

Heap type memory management is part of the embOS libraries. It does not use any
resources if it is not referenced by the application (that is, if the application does not
use any memory management API function).

Note that another aspect of these routines may still be a problem: the memory used
for the functions (known as heap) may fragment. This can lead to a situation where
the total amount of memory is sufficient, but there is not enough memory available
in a single block to satisfy an allocation request.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

205

12.2 API functions

API routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_malloc() Allocates a block of memory on the heap. X X
OS_free() Frees a block of memory previously allocated. X X
OS_realloc() Changes allocation size. X X

Table 12.1: Heap type memory manager API functions

206 CHAPTER 12 Heap type memory management

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

207

Chapter 13

Fixed block size memory pools

208 CHAPTER 13 Fixed block size memory pools

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

13.1 Introduction
Fixed block size memory pools contain a specific number of fixed-size blocks of mem-
ory. The location in memory of the pool, the size of each block, and the number of
blocks are set at runtime by the application via a call to the OS_MEMF_CREATE() func-
tion. The advantage of fixed memory pools is that a block of memory can be allo-
cated from within any task in a very short, determined period of time.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

209

13.2 API functions
All API functions for fixed block size memory pools are prefixed OS_MEMF_.

API routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

Create / Delete
OS_MEMF_Create Creates fixed block memory pool. X X
OS_MEMF_Delete Deletes fixed block memory pool. X X

Allocation

OS_MEMF_Alloc
Allocates memory block from a given mem-
ory pool. Wait indefinitely if no block is
available.

X X

OS_MEMF_AllocTimed
Allocates memory block from a given mem-
ory pool. Wait no longer than given time
limit if no block is available.

X X

OS_MEMF_Request
Allocates block from a given memory pool,
if available. Non-blocking. X X X X

Release

OS_MEMF_Release
Releases memory block from a given mem-
ory pool. X X X X

OS_MEMF_FreeBlock Releases memory block from any pool. X X X X
Info

OS_MEMF_GetNumFreeBlocks
Returns the number of available blocks in a
pool. X X X X

OS_MEMF_IsInPool Returns !=0 if block is in memory pool. X X X X

OS_MEMF_GetMaxUsed
Returns the maximum number of blocks in a
pool which have been used at a time. X X X X

OS_MEMF_GetNumBlocks Returns the number of blocks in a pool. X X X X

OS_MEMF_GetBlockSize
Returns the size of one block of a given
pool. X X X X

Table 13.1: Memory pools API functions

210 CHAPTER 13 Fixed block size memory pools

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

13.2.1 OS_MEMF_Create()
Description

Creates and initializes a fixed block size memory pool.

Prototype
void OS_MEMF_Create (OS_MEMF* pMEMF,
 void* pPool,
 OS_UINT NumBlocks,

 OS_UINT BlockSize);

Additional Information

OS_MEMF_SIZEOF_BLOCKCONTROL gives the number of bytes used for control and
debug purposes. It is guaranteed to be 0 in release or stack check builds. Before
using any memory pool, it has to be created. The debug version of libraries keeps
track of created and deleted memory pools. The release and stack check versions do
not.
The maximum number of blocks and the maximum block size is for 16Bit CPUs 32768
and for 32Bit CPUs 2147483648.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.

pPool
Pointer to memory to be used for the memory pool. Required size
is: NumBlocks * (BlockSize + OS_MEMF_SIZEOF_BLOCKCONTROL).

NumBlocks Number of blocks in the pool.
BlockSize Size in bytes of one block.

Table 13.2: OS_MEMF_Create() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

211

13.2.2 OS_MEMF_Delete()
Description

Deletes a fixed block size memory pool. After deletion, the memory pool and memory
blocks inside this pool can no longer be used.

Prototype
void OS_MEMF_Delete (OS_MEMF* pMEMF);

Additional Information

This routine is provided for completeness. It is not used in the majority of
applications because there is no need to dynamically create/delete memory pools.
For most applications it is preferred to have a static memory pool design; memory
pools are created at startup (before calling OS_Start()) and will never be deleted.
The debug version of libraries mark the memory pool as deleted.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.
Table 13.3: OS_MEMF_Delete() parameter list

212 CHAPTER 13 Fixed block size memory pools

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

13.2.3 OS_MEMF_Alloc()
Description

Requests allocation of a memory block. Waits until a block of memory is available.

Prototype
void* OS_MEMF_Alloc (OS_MEMF* pMEMF,

 int Purpose);

Return value

Pointer to the allocated block.

Additional Information

If there is no free memory block in the pool, the calling task is suspended until a
memory block becomes available. The retrieved pointer must be delivered to
OS_MEMF_Release() as a parameter to free the memory block. The pointer must not
be modified.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.

Purpose

This is a parameter which is used for debugging purpose only. Its
value has no effect on program execution, but may be remem-
bered in debug builds to allow runtime analysis of memory allo-
cation problems.

Table 13.4: OS_MEMF_Alloc() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

213

13.2.4 OS_MEMF_AllocTimed()
Description

Requests allocation of a memory block. Waits until a block of memory is available or
the timeout has expired.

Prototype
void* OS_MEMF_AllocTimed (OS_MEMF* pMEMF,
 OS_TIME Timeout,

 int Purpose);

Return value

!=NULL pointer to the allocated block
NULL if no block could be allocated allocated within the specified time.

Additional Information

If there is no free memory block in the pool, the calling task is suspended until a
memory block becomes available or the timeout has expired. The retrieved pointer
must be delivered to OS_MEMF_Release() as parameter to free the memory block.
The pointer must not be modified.

When the calling task is blocked by higher priority tasks for a longer period than the
timeout value, it may happen, that the memory block becomes available after the
timeout time before the calling task continues. In this case, the function returns with
timeout, because the memory block was not availbale within the requested time.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.

Timeout

Time limit before timeout, given in ticks. 0 or negative values are
permitted.
Timeout in basic embOS time units (nominal ms):
The data type OS_TIME is defined as an integer, therefore valid
values are
1 <= Timeout <= 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
1 <= Timeout <= 231-1 = 0x7FFFFFFF for 32-bit CPUs

Purpose

This is a parameter which is used for debugging purpose only. Its
value has no effect on program execution, but may be remem-
bered in debug builds to allow runtime analysis of memory allo-
cation problems.

Table 13.5: OS_MEMF_AllocTimed()

214 CHAPTER 13 Fixed block size memory pools

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

13.2.5 OS_MEMF_Request()
Description

Requests allocation of a memory block. Continues execution in any case.

Prototype
void* OS_MEMF_Request (OS_MEMF* pMEMF,

 int Purpose);

Return value

!=NULL pointer to the allocated block
NULL if no block has been allocated.

Additional Information

The calling task is never suspended by calling OS_MEMF_Request(). The retrieved
pointer must be delivered to OS_MEMF_Release() as parameter to free the memory
block. The pointer must not be modified.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.

Purpose

This is a parameter which is used for debugging purpose only. Its
value has no effect on program execution, but may be remem-
bered in debug builds to allow runtime analysis of memory allo-
cation problems.

Table 13.6: OS_MEMF_Request() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

215

13.2.6 OS_MEMF_Release()
Description

Releases a memory block that was previously allocated.

Prototype
void OS_MEMF_Release (OS_MEMF* pMEMF,

 void* pMemBlock);

Additional Information

The pMemBlock pointer has to be the one that was delivered from any retrieval func-
tion described above. The pointer must not be modified between allocation and
release. The memory block becomes available for other tasks waiting for a memory
block from the pool. If any task is waiting for a fixed memory block, it is activated
according to the rules of the scheduler.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.
pMemBlock Pointer to the memory block to free.

Table 13.7: OS_MEMF_Release() parameter list

216 CHAPTER 13 Fixed block size memory pools

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

13.2.7 OS_MEMF_FreeBlock()
Description

Releases a memory block that was previously allocated. The memory pool does not
need to be denoted.

Prototype
void OS_MEMF_FreeBlock (void* pMemBlock);

Additional Information

The pMemBlock pointer has to be the one that was delivered form any retrieval func-
tion described above. The pointer must not be modified between allocation and
release. This function may be used instead of OS_MEMF_Release(). It has the advan-
tage that only one parameter is needed. embOS itself will find the associated mem-
ory pool. The memory block becomes available for other tasks waiting for a memory
block from the pool. If any task is waiting for a fixed memory block, it is activated
according to the rules of the scheduler.

Parameter Description

pMemBlock Pointer to the memory block to free.
Table 13.8: OS_MEMF_FreeBlock() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

217

13.2.8 OS_MEMF_GetNumBlocks()
Description

Information routine to examine the total number of available memory blocks in the
pool.

Prototype
int OS_MEMF_GetNumBlocks (const OS_MEMF* pMEMF);

Return value

Returns the number of blocks in the specified memory pool. This is the value that
was given as parameter during creation of the memory pool.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.
Table 13.9: OS_MEMF_GetNumBlocks() parameter list

218 CHAPTER 13 Fixed block size memory pools

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

13.2.9 OS_MEMF_GetBlockSize()
Description

Information routine to examine the size of one memory block in the pool.

Prototype
int OS_MEMF_GetBlockSize (const OS_MEMF* pMEMF);

Return value

Size in bytes of one memory block in the specified memory pool. This is the value of
the parameter when the memory pool was created.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.
Table 13.10: OS_MEMF_GetBlockSize() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

219

13.2.10 OS_MEMF_GetNumFreeBlocks()
Description

Information routine to examine the number of free memory blocks in the pool.

Prototype
int OS_MEMF_GetNumFreeBlocks (OS_MEMF* pMEMF);

Return value

The number of free blocks actually available in the specified memory pool.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.
Table 13.11: OS_MEMF_GetNumFreeBlocks() parameter list

220 CHAPTER 13 Fixed block size memory pools

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

13.2.11 OS_MEMF_GetMaxUsed()
Description

Information routine to examine the amount of memory blocks in the pool that were
used concurrently since creation of the pool.

Prototype
int OS_MEMF_GetMaxUsed (const OS_MEMF* pMEMF);

Return value

Maximum number of blocks in the specified memory pool that were used concurrently
since the pool was created.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.
Table 13.12: OS_MEMF_GetMaxUsed() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

221

13.2.12 OS_MEMF_IsInPool()
Description

Information routine to examine whether a memory block reference pointer belongs to
the specified memory pool.

Prototype
char OS_MEMF_IsInPool (const OS_MEMF* pMEMF,

 const void* pMemBlock);

Return value

0: Pointer does not belong to memory pool.
1: Pointer belongs to the pool.

Parameter Description

pMEMF Pointer to the control data structure of memory pool.
pMemBlock Pointer to a memory block that should be checked

Table 13.13: OS_MEMF_IsInPool() parameter list

222 CHAPTER 13 Fixed block size memory pools

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

223

Chapter 14

Stacks

224 CHAPTER 14 Stacks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

14.1 Introduction
The stack is the memory area used for storing the return address of function calls,
parameters, and local variables, as well as for temporary storage. Interrupt routines
also use the stack to save the return address and flag registers, except in cases
where the CPU has a separate stack for interrupt functions. Refer to the CPU &
Compiler Specifics manual of embOS documentation for details on your processor's
stack. A �normal� single-task program needs exactly one stack. In a multitasking
system, every task has to have its own stack.

The stack needs to have a minimum size which is determined by the sum of the stack
usage of the routines in the worst-case nesting. If the stack is too small, a section of
the memory that is not reserved for the stack will be overwritten, and a serious pro-
gram failure is most likely to occur. embOS monitors the stack size (and, if available,
also interrupt stack size in the debug version), and calls the failure routine
OS_Error() if it detects a stack overflow. However, embOS cannot reliably detect a
stack overflow.

A stack that has been defined larger than necessary does not hurt; it is only a waste
of memory. To detect a stack overflow, the debug and stack check builds of embOS
fill the stack with control characters when it is created and check these characters
every time the task is deactivated. If an overflow is detected, OS_Error() is called.

14.1.1 System stack
Before embOS takes over control (before the call to OS_Start()), a program uses
the so-called system stack. This is the same stack that a non-embOS program for
this CPU would use. After transferring control to the embOS scheduler by calling
OS_Start(), the system stack is used when no task is executed for the following:

� embOS scheduler
� embOS software timers (and the callback).

For details regarding required size of your system stack, refer to the CPU & Compiler
Specifics manual of embOS documentation.

14.1.2 Task stack
Each embOS task has a separate stack. The location and size of this stack is defined
when creating the task. The minimum size of a task stack pretty much depends on
the CPU and the compiler. For details, see the CPU & Compiler Specifics manual of
embOS documentation.

14.1.3 Interrupt stack
To reduce stack size in a multitasking environment, some processors use a specific
stack area for interrupt service routines (called a hardware interrupt stack). If there
is no interrupt stack, you will have to add stack requirements of your interrupt ser-
vice routines to each task stack.
Even if the CPU does not support a hardware interrupt stack, embOS may support a
separate stack for interrupts by calling the function OS_EnterIntStack() at begin-
ning of an interrupt service routine and OS_LeaveIntStack() at its very end. In case
the CPU already supports hardware interrupt stacks or if a separate interrupt stack is
not supported at all, these function calls are implemented as empty macros.
We recommend using OS_EnterIntStack() and OS_LeaveIntStack() even if there is
currently no additional benefit for your specific CPU, because code that uses them
might reduce stack size on another CPU or a new version of embOS with support for
an interrupt stack for your CPU. For details about interrupt stacks, see the CPU &
Compiler Specifics manual of embOS documentation.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

225

14.1.4 Stack size calculation
embOS includes stack size calculation routines. embOS fills the task stacks as also
the system stack and the interrupt stack with a pattern byte.
embOS checks at runtime how many bytes at the end of the stack still include the
pattern byte. With it the amount of used and unused stack can be calculated.

14.1.5 Stack check
embOS includes stack check routines. embOS fills the task stacks as also the system
stack and the interrupt stack with a pattern byte.
embOS checks periodically if the last pattern byte at the end of the stack is overwrit-
ten. embOS calls OS_Error() when this bytes is overwritten.

226 CHAPTER 14 Stacks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

14.2 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_GetStackBase() Returns the base address of a task stack. X X X X
OS_GetStackSize() Returns the size of a task stack. X X X X
OS_GetStackSpace() Returns the unused portion of a task stack. X X X X
OS_GetStackUsed() Returns the used portion of a task stack. X X X X
OS_GetSysStackBase() Returns the base address of the system stack. X X X X
OS_GetSysStackSize() Returns the size of the system stack. X X X X

OS_GetSysStackSpace()
Returns the unused portion of the system
stack. X X X X

OS_GetSysStackUsed() Returns the used portion of the system stack. X X X X

OS_GetIntStackBase()
Returns the base address of the interrupt
stack. X X X X

OS_GetIntStackSize() Returns the size of the interrupt stack. X X X X

OS_GetIntStackSpace()
Returns the unused portion of the interrupt
stack. X X X X

OS_GetIntStackUsed()
Returns the used portion of the interrupt
stack. X X X X

Table 14.1: Stacks API functions

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

227

14.2.1 OS_GetStackBase()
Description

Returns a pointer to the base of a task stack.

Prototype
void* OS_GetStackBase (OS_TASK* pTask);

Return value

The pointer to the base address of the task stack.

Additional Information

This function is only available in the debug and stack check builds of embOS, because
only these builds initialize the stack space used for the tasks.

Example

void CheckStackBase(void) {
 printf("Addr Stack[0] %x", OS_GetStackBase(&TCB[0]);
 OS_Delay(1000);
 printf("Addr Stack[1] %x", OS_GetStackBase(&TCB[1]);
 OS_Delay(1000);
}

Parameter Description

pTask
The task who's stack base has to be returned.
NULL means current task.

Table 14.2: OS_GetStackBase() parameter list

228 CHAPTER 14 Stacks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

14.2.2 OS_GetStackSize()
Description

Returns the size of a task stack.

Prototype
unsigned int OS_GetStackSize (OS_TASK* pTask);

Return value

The size of the task stack in bytes.

Additional Information

This function is only available in the debug and stack check builds of embOS, because
only these builds initialize the stack space used for the tasks.

Example

void CheckStackSize(void) {
 printf("Size Stack[0] %d", OS_GetStackSize(&TCB[0]);
 OS_Delay(1000);
 printf("Size Stack[1] %d", OS_GetStackSize(&TCB[1]);
 OS_Delay(1000);
}

Parameter Description

pTask
The task who's stack size should be checked.
NULL means current task.

Table 14.3: OS_GetStackSize() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

229

14.2.3 OS_GetStackSpace()
Description

Returns the unused portion of a task stack.

Prototype
unsigned int OS_GetStackSpace (OS_TASK* pTask);

Return value

The unused portion of the task stack in bytes.

Additional Information

In most cases, the stack size required by a task cannot be easily calculated, because
it takes quite some time to calculate the worst-case nesting and the calculation itself
is difficult.
However, the required stack size can be calculated using the function
OS_GetStackSpace(), which returns the number of unused bytes on the stack. If
there is a lot of space left, you can reduce the size of this stack and vice versa.
This function is only available in the debug and stack check builds of embOS, because
only these builds initialize the stack space used for the tasks.

Important

This routine does not reliably detect the amount of stack space left, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckStackSpace(void) {
 printf("Unused Stack[0] %d", OS_GetStackSpace(&TCB[0]);
 OS_Delay(1000);
 printf("Unused Stack[1] %d", OS_GetStackSpace(&TCB[1]);
 OS_Delay(1000);
}

Parameter Description

pTask
The task who's stack space has to be checked.
NULL means current task.

Table 14.4: OS_GetStackSpace() parameter list

230 CHAPTER 14 Stacks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

14.2.4 OS_GetStackUsed()
Description

Returns the used portion of a task stack.

Prototype
unsigned int OS_GetStackUsed (OS_TASK* pTask);

Return value

The used portion of the task stack in bytes.

Additional Information

In most cases, the stack size required by a task cannot be easily calculated, because
it takes quite some time to calculate the worst-case nesting and the calculation itself
is difficult.
However, the required stack size can be calculated using the function
OS_GetStackUsed(), which returns the number of used bytes on the stack. If there is
a lot of space left, you can reduce the size of this stack and vice versa.
This function is only available in the debug and stack check builds of embOS, because
only these builds initialize the stack space used for the tasks.

Important

This routine does not reliably detect the amount of stack space used, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckStackUsed(void) {
 printf("Used Stack[0] %d", OS_GetStackUsed(&TCB[0]);
 OS_Delay(1000);
 printf("Used Stack[1] %d", OS_GetStackUsed(&TCB[1]);
 OS_Delay(1000);
}

Parameter Description

pTask
The task who's stack usage has to be checked.
NULL means current task.

Table 14.5: OS_GetStackUsed() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

231

14.2.5 OS_GetSysStackBase()
Description

Returns a pointer to the base of the system stack.

Prototype
void* OS_GetSysStackBase (void);

Return value

The pointer to the base address of the system stack.

Example

void CheckSysStackBase(void) {
 printf("Addr System Stack %x", OS_GetSysStackBase());
}

232 CHAPTER 14 Stacks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

14.2.6 OS_GetSysStackSize()
Description

Returns the size of the system stack.

Prototype
unsigned int OS_GetSysStackSize (void);

Return value

The size of the system stack in bytes.

Example

void CheckSysStackSize(void) {
 printf("Size System Stack %d", OS_GetSysStackSize());
}

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

233

14.2.7 OS_GetSysStackSpace()
Description

Returns the unused portion of the system stack.

Prototype
unsigned int OS_GetSysStackSpace (void);

Return value

The unused portion of the system stack in bytes.

Additional Information

This function is only available in the debug and stack check builds of embOS.

Important

This routine does not reliably detect the amount of stack space left, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckSysStackSpace(void) {
 printf("Unused System Stack %d", OS_GetSysStackSpace());

234 CHAPTER 14 Stacks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

14.2.8 OS_GetSysStackUsed()
Description

Returns the used portion of the system stack.

Prototype
unsigned int OS_GetSysStackUsed (void);

Return value

The used portion of the system stack in bytes.

Additional Information

This function is only available in the debug and stack check builds of embOS.

Important

This routine does not reliably detect the amount of stack space used, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckSysStackUsed(void) {
 printf("Used System Stack %d", OS_GetSysStackUsed());

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

235

14.2.9 OS_GetIntStackBase()
Description

Returns a pointer to the base of the interrupt stack.

Prototype
void* OS_GetIntStackBase (void);

Return value

The pointer to the base address of the interrupt stack.

Additional Information

This function is only available when an interrupt stack exists.

Example

void CheckIntStackBase(void) {
 printf("Addr Interrupt Stack %x", OS_GetIntStackBase());
}

236 CHAPTER 14 Stacks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

14.2.10 OS_GetIntStackSize()
Description

Returns the size of the interrupt stack.

Prototype
unsigned int OS_GetIntStackSize (void);

Return value

The size of the interrupt stack in bytes.

Additional Information

This function is only available when an interrupt stack exists.

Example

void CheckIntStackSize(void) {
 printf("Size Interrupt Stack %d", OS_GetIntStackSize());
}

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

237

14.2.11 OS_GetIntStackSpace()
Description

Returns the unused portion of the interrupt stack.

Prototype
unsigned int OS_GetIntStackSpace (void);

Return value

The unused portion of the interrupt stack in bytes.

Additional Information

This function is only available in the debug and stack check builds and when an inter-
rupt stack exists.

Important

This routine does not reliably detect the amount of stack space left, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckIntStackSpace(void) {
 printf("Unused Interrupt Stack %d", OS_GetIntStackSpace());
}

238 CHAPTER 14 Stacks

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

14.2.12 OS_GetIntStackUsed()
Description

Returns the used portion of the interrupt stack.

Prototype
unsigned int OS_GetIntStackUsed (void);

Return value

The used portion of the interrupt stack in bytes.

Additional Information

This function is only available in the debug and stack check builds and when an inter-
rupt stack exists.

Important

This routine does not reliably detect the amount of stack space used, because it can
only detect modified bytes on the stack. Unfortunately, space used for register stor-
age or local variables is not always modified. In most cases, this routine will detect
the correct amount of stack bytes, but in case of doubt, be generous with your stack
space or use other means to verify that the allocated stack space is sufficient.

Example

void CheckIntStackUsed(void) {
 printf("Used Interrupt Stack %d", OS_GetIntStackUsed());
}

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

239

Chapter 15

Interrupts

This chapter explains how to use interrupt service routines (ISRs) in cooperation with
embOS. Specific details for your CPU and compiler can be found in the CPU & Com-
piler Specifics manual of the embOS documentation.

240 CHAPTER 15 Interrupts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

15.1 What are interrupts?
Interrupts are interruptions of a program caused by hardware. When an interrupt
occurs, the CPU saves its registers and executes a subroutine called an interrupt ser-
vice routine, or ISR. After the ISR is completed, the program returns to the high-
est-priority task in the READY state. Normal interrupts are maskable; they can occur
at any time unless they are disabled with the CPU's �disable interrupt� instruction.
ISRs are also nestable - they can be recognized and executed within other ISRs.

There are several good reasons for using interrupt routines. They can respond very
quickly to external events such as the status change on an input, the expiration of a
hardware timer, reception or completion of transmission of a character via serial
interface, or other types of events. Interrupts effectively allow events to be pro-
cessed as they occur.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

241

15.2 Interrupt latency
Interrupt latency is the time between an interrupt request and the execution of the
first instruction of the interrupt service routine.
Every computer system has an interrupt latency. The latency depends on various fac-
tors and differs even on the same computer system. The value that one is typically
interested in is the worst case interrupt latency.
The interrupt latency is the sum of a lot of different smaller delays explained below.

15.2.1 Causes of interrupt latencies
� The first delay is typically in the hardware: The interrupt request signal needs to

be synchronized to the CPU clock. Depending on the synchronization logic, typi-
cally up to 3 CPU cycles can be lost before the interrupt request has reached the
CPU core.

� The CPU will typically complete the current instruction. This instruction can take
a lot of cycles; on most systems, divide, push-multiple, or memory-copy instruc-
tions are the instructions which require most clock cycles. On top of the cycles
required by the CPU, there are in most cases additional cycles required for mem-
ory access. In an ARM7 system, the instruction STMDB SP!,{R0-R11,LR}; (Push
parameters and perm. register) is typically the worst case instruction. It stores
13 32-bit registers on the stack. The CPU requires 15 clock cycles.

� The memory system may require additional cycles for wait states.
� After the current instruction is completed, the CPU performs a mode switch or

pushes registers (typically, PC and flag registers) on the stack. In general, mod-
ern CPUs (such as ARM) perform a mode switch, which requires less CPU cycles
than saving registers.

� Pipeline fill
Most modern CPUs are pipelined. Execution of an instruction happens in various
stages of the pipeline. An instruction is executed when it has reached its final
stage of the pipeline. Because the mode switch has flushed the pipeline, a few
extra cycles are required to refill the pipeline.

15.2.2 Additional causes for interrupt latencies
There can be additional causes for interrupt latencies.
These depend on the type of system used, but we list a few of them.

� Latencies caused by cache line fill.
If the memory system has one or multiple caches, these may not contain the
required data. In this case, not only the required data is loaded from memory,
but in a lot of cases a complete line fill needs to be performed, reading multiple
words from memory.

� Latencies caused by cache write back.
A cache miss may cause a line to be replaced. If this line is marked as dirty, it
needs to be written back to main memory, causing an additional delay.

� Latencies caused by MMU translation table walks.
Translation table walks can take a considerable amount of time, especially as
they involve potentially slow main memory accesses. In real-time interrupt han-
dlers, translation table walks caused by the TLB not containing translations for
the handler and/or the data it accesses can increase interrupt latency signifi-
cantly.

� Application program.
Of course, the application program can cause additional latencies by disabling
interrupts. This can make sense in some situations, but of course causes add.
latencies.

� Interrupt routines.
On most systems, one interrupt disables further interrupts. Even if the interrupts
are re-enabled in the ISR, this takes a few instructions, causing add. latency.

� RTOS (Real-time Operating system).
An RTOS also needs to temporarily disable the interrupts which can call API-func-
tions of the RTOS. Some RTOSes disable all interrupts, effectively increasing

242 CHAPTER 15 Interrupts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

interrupt latencies for all interrupts, some (like embOS) disable only low-priority
interrupts and do thereby not affect the latency of high priority interrupts.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

243

15.3 Zero interrupt latency
Zero interrupt latency in the strict sense is not possible as explained above. What we
mean when we say �Zero interrupt latency� is that the latency of high-priority inter-
rupts is not affected by the RTOS; a system using embOS will have the same worst-
case interrupt latency for high priority interrupts as a system running without
embOS.

Why is Zero latency important?

In some systems, a maximum interrupt response time or latency can be clearly
defined. This max. latency can arise from requirements such as maximum reaction
time for a protocol or a software UART implementation that requires very precise tim-
ing.

One customer implemented a UART receiving at up to 800KHz in software using FIQ
(fast interrupt) on a 48 MHz ARM7. This would be impossible to do if fast interrupts
were disabled even for short periods of time.

In a lot of embedded systems, the quality of the product depends on the reaction
time and therefor latency. Typical examples would be systems which periodically read
a value from an A/D converter at high speed, where the accuracy depends on accu-
rate timing. Less jitter means a better product.

Why can high prio ISR not use the OS API ?

embOS disables low priority interrupts when embOS data structures are modified.
During this time high priority ISR are enabled. If they would call an embOS function,
which also modifies embOS data, the embOS data structures would be corrupted.

How can High Prio ISR communicate with a task ?

The most common way is to use global variables, e.g. a periodically read from an
ADC and the result is stored in a global variable

Another way is to set an interrupt request for a low priority interrupt in your
high priority ISR, which can then communicate or wake up one or more tasks. This
might be helpful if you want to receive several data in your high priority ISR. The low
priority ISR may then store the data bytes in a message queue or mailbox for exam-
ple.

244 CHAPTER 15 Interrupts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

15.4 High / low priority interrupts
Most CPUs support interrupts with different priorities. Different priorities have two
effects:

� If different interrupts occur simultaneously, the interrupt with higher priority
takes precedence and its ISR is executed first.

� Interrupts can never be interrupted by other interrupts of the same or lower level
of priority.

How many different levels of interrupts there are depend on the CPU and the inter-
rupt controller. Details are explained in the CPU/MCU/SOC manuals and the CPU &
Compiler Specifics manual of embOS. embOS distinguishes two different levels of
interrupts: High / Low priority interrupts. The embOS port specific documentation
explains where �the line is drawn�, which interrupts are considered high and which
interrupts are considered low priority. In general, the differences are:

Low priority interrupts
� May call embOS API functions
� Latencies caused by embOS

High priority interrupts
� May not call embOS API functions
� No Latencies caused by embOS (Zero latency)

Example of different interrupt priority levels

Let's assume we have a CPU which support 8 interrupt priority levels. With embOS, the 3
highest priority levels are treated as �High priority interrupts�. ARM CPUs support
normal interrupts (IRQ) and fast interrupt (FIQ). Using embOS, the FIQ is treated as
�High priority interrupt�. With most implementations, the high-priority threshold is
adjustable. For details, refer to the processor specific embOS manual.

15.4.1 Using OS functions from high priority interrupts
High priority interrupts may not use embOS functions at all. This is a limitation which
results from zero-latency: embOS does never disable high priority interrupts. This
means that high priority interrupts can interrupt the operating system at any time,
even in critical situations such as the modification of linked lists and double linked
list. This is a design decision that has been taken because zero interrupt latencies
for high priority interrupts are usually more important than the ability to call OS
functions.

There is a way to still use OS functions from high priority interrupts indirectly:
High priority interrupt triggers a low priority interrupt usually by setting an interrupt
requestflag. That low priority interrupt may now call OS functions.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

245

The task 1 is interrupted by a high priority interrupt. This high priority interrupt is
not allowed to call an embOS API function directly. Therefore the high priority inter-
rupt triggers a low priority interrupt, which is allowed to call embOS API functions.
The low priority interrupt calls an embOS API function to resume task 2.

Time

Task1 High priority
interrupt

Low priority
interrupt

Task2

Task1 is interrupted
by a high priority interrupt

High priority interrupt
triggers low priority interrupt

Low priority interrupt calls embOS
API function to resume Task2

246 CHAPTER 15 Interrupts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

15.5 Rules for interrupt handlers

15.5.1 General rules
There are some general rules for interrupt service routines (ISRs). These rules apply
to both single-task programming as well as to multitask programming using embOS.

� ISR preserve all registers.
Interrupt handlers must restore the environment of a task completely. This
environment normally consists of the registers only, so the ISR has to make sure
that all registers modified during interrupt execution are saved at the beginning
and restored at the end of the interrupt routine

� Interrupt handlers have to be finished quickly.
Intensive calculations should be kept out of interrupt handlers. An interrupt han-
dler should only be used for storing a received value or to trigger an operation in
the regular program (task). It should not wait in any form or perform a polling
operation.

15.5.2 Additional rules for preemptive multitasking
A preemptive multitasking system like embOS needs to know if the program that is
executing is part of the current task or an interrupt handler. This is because embOS
cannot perform a task switch during the execution of an ISR; it can only do so at the
end of an ISR.

If a task switch were to occur during the execution of an ISR, the ISR would continue
as soon as the interrupted task became the current task again. This is not a problem
for interrupt handlers that do not allow further interruptions (which do not enable
interrupts) and that do not call any embOS functions.

This leads us to the following rule:

� ISR that re-enable interrupts or use any embOS function need to call
OS_EnterInterrupt() at the beginning, before executing any other command,
and before they return, call OS_LeaveInterrupt() as last command.

If a higher priority task is made ready by the ISR, the task switch then occurs in the
routine OS_LeaveInterrupt(). The end of the ISR is executed at a later point, when
the interrupted task is made ready again. If you debug an interrupt routine, do not
be confused. This has proven to be the most efficient way of initiating a task switch
from within an interrupt service routine.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

247

15.6 API functions
Before calling any embOS function from within an ISR, embOS has to be informed
that an interrupt service routine is running.

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_DI() Disables interrupts. Does not change the
interrupt disable counter. X X X

OS_EI() Unconditionally enables Interrupt. X X X
OS_IncDI() Increments the interrupt disable counter

(OS_DICnt) and disables interrupts. X X X X

OS_RestoreI() Restores the status of the interrupt flag,
based on the interrupt disable counter. X X X X

OS_DecRI() Decrements the counter and enables
interrupts if the counter reaches 0. X X X X

OS_EnterInterrupt() Informs embOS that interrupt code is
executing. X

OS_LeaveInterrupt() Informs embOS that the end of the inter-
rupt routine has been reached; executes
task switching within ISR.

X

OS_EnterNestableInterrupt() Informs embOS that interrupt code is
executing and reenables interrupts. X

OS_LeaveNestableInterrupt() Informs embOS that the end of the inter-
rupt routine has been reached; executes
task switching within ISR.

X

OS_CallISR() Interrupt entry function. X
OS_CallNestableISR() Interrupt entry function supporting

nestable interrupts. X

Table 15.1: Interrupt API functions

248 CHAPTER 15 Interrupts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

15.6.1 OS_CallISR()
Description

Entry function for use in an embOS interrupt handler. Nestable interrupts disabled.

Prototype
void OS_CallISR (void (*pRoutine)(void));

Additional Information

OS_CallISR() can be used as entry function in an embOS interrupt handler, when
the corresponding interrupt should not be interrupted by another embOS interrupt.
OS_CallISR() sets the interrupt priority of the CPU to the user definable �fast� inter-
rupt priority level, thus locking any other embOS interrupt.
Fast interrupts are not disabled.

Note: For some specific CPUs OS_CallISR() has to be used to call an interrupt
handler because OS_EnterInterrupt() / OS_LeaveInterrupt() may not be avail-
able.
Refer to the CPU specific manual.

Example

#pragma interrupt void OS_ISR_Tick(void) {
 OS_CallISR(_IsrTickHandler);
}

Parameter Description

pRoutine Pointer to a routine that should run on interrupt.
Table 15.2: OS_CallISR() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

249

15.6.2 OS_CallNestableISR()
Description

Entry function for use in an embOS interrupt handler. Nestable interrupts enabled.

Prototype
void OS_CallNestableISR (void (*pRoutine)(void));

Additional Information

OS_CallNestableISR() can be used as entry function in an embOS interrupt handler,
when interruption by higher prioritized embOS interrupts should be allowed.
OS_CallNestableISR() does not alter the interrupt priority of the CPU, thus keeping
all interrupts with higher priority enabled.

Note: For some specific CPUs OS_CallNestableISR() has to be used to call an
interrupt handler because OS_EnterNestableInterrupt() /
OS_LeaveNestableInterrupt() may not be available.
Refer to the CPU specific manual.

Example

#pragma interrupt void OS_ISR_Tick(void) {
 OS_CallNestableISR(_IsrTickHandler);
}

Parameter Description

pRoutine Pointer to a routine that should run on interrupt.
Table 15.3: OS_CallNestableISR() parameter list

250 CHAPTER 15 Interrupts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

15.6.3 OS_EnterInterrupt()
Note: This function may not be available in all ports.

Description

Informs embOS that interrupt code is executing.

Prototype
void OS_EnterInterrupt (void);

Additional Information

If OS_EnterInterrupt() is used, it should be the first function to be called in the
interrupt handler. It must be used with OS_LeaveInterrupt() as the last function
called. The use of this function has the following effects, it:

� disables task switches
� keeps interrupts in internal routines disabled.

An example is shown in the the description of OS_LeaveInterrupt().

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

251

15.6.4 OS_LeaveInterrupt()
Note: This function may not be available in all ports.

Description

Informs embOS that the end of the interrupt routine has been reached; executes
task switching within ISR.

Prototype
void OS_LeaveInterrupt (void);

Additional Information

If OS_LeaveInterrupt() is used, it should be the last function to be called in the
interrupt handler. If the interrupt has caused a task switch, it will be executed
(unless the program which was interrupted was in a critical region).

Example using OS_EnterInterrupt()/OS_LeaveInterrupt()

_interrupt void ISR_Timer(void) {
 OS_EnterInterrupt();
 OS_SignalEvent(1,&Task);/* Any functionality could be here */
 OS_LeaveInterrupt();
}

252 CHAPTER 15 Interrupts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

15.7 Enabling / disabling interrupts from C
During the execution of a task, maskable interrupts are normally enabled. In certain
sections of the program, however, it can be necessary to disable interrupts for short
periods of time to make a section of the program an atomic operation that cannot be
interrupted. An example would be the access to a global volatile variable of type long
on an 8/16-bit CPU. To make sure that the value does not change between the two or
more accesses that are needed, the interrupts have to be temporarily disabled:

Bad example:

volatile long lvar;

void routine (void) {
 lvar ++;
}

The problem with disabling and re-enabling interrupts is that functions that disable/
enable the interrupt cannot be nested.

Your C compiler offers two intrinsic functions for enabling and disabling interrupts.
These functions can still be used, but it is recommended to use the functions that
embOS offers (to be precise, they only look like functions, but are macros in reality).
If you do not use these recommended embOS functions, you may run into a problem
if routines which require a portion of the code to run with disabled interrupts are
nested or call an OS routine.

We recommend disabling interrupts only for short periods of time, if possible. Also,
you should not call routines when interrupts are disabled, because this could lead to
long interrupt latency times (the longer interrupts are disabled, the higher the inter-
rupt latency). As long as you only call embOS functions with interrupts enabled, you
may also safely use the compiler-provided intrinsics to disable interrupts.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

253

15.7.1 OS_IncDI() / OS_DecRI()
The following functions are actually macros defined in RTOS.h, so they execute very
quickly and are very efficient. It is important that they are used as a pair: first
OS_IncDI(), then OS_DecRI().

OS_IncDI()

Short for Increment and Disable Interrupts. Increments the interrupt disable
counter (OS_DICnt) and disables interrupts.

OS_DecRI()

Short for Decrement and Restore Interrupts. Decrements the counter and
enables interrupts if the counter reaches 0.

Example

volatile long lvar;

void routine (void) {
 OS_IncDI();
 lvar ++;
 OS_DecRI();
}

OS_IncDI() increments the interrupt disable counter which is used for the entire OS
and is therefore consistent with the rest of the program in that any routine can be
called and the interrupts will not be switched on before the matching OS_DecRI() has
been executed.

If you need to disable interrupts for a short moment only where no routine is called,
as in the example above, you could also use the pair OS_DI() and OS_RestoreI().
These are a bit more efficient because the interrupt disable counter OS_DICnt is not
modified twice, but only checked once. They have the disadvantage that they do not
work with routines because the status of OS_DICnt is not actually changed, and they
should therefore be used with great care. In case of doubt, use OS_IncDI() and
OS_DecRI().

254 CHAPTER 15 Interrupts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

15.7.2 OS_DI() / OS_EI() / OS_RestoreI()
OS_DI()

Short for Disable Interrupts. Disables interrupts. Does not change the interrupt
disable counter.

OS_EI()

Short for Enable Interrupts. Refrain from using this function directly unless you are
sure that the interrupt enable count has the value zero, because it does not take the
interrupt disable counter into account.

OS_RestoreI()

Short for Restore Interrupts. Restores the status of the interrupt flag, based on the
interrupt disable counter.

Example

volatile long lvar;

void routine (void) {
 OS_DI();
 lvar++;
 OS_RestoreI();
}

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

255

15.8 Definitions of interrupt control macros (in RTOS.h)
#define OS_IncDI() { OS_ASSERT_DICnt(); OS_DI(); OS_DICnt++; }
#define OS_DecRI() { OS_ASSERT_DICnt(); if (--OS_DICnt==0) OS_EI(); }
#define OS_RestoreI() { OS_ASSERT_DICnt(); if (OS_DICnt==0) OS_EI(); }

256 CHAPTER 15 Interrupts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

15.9 Nesting interrupt routines
By default, interrupts are disabled in an ISR because the CPU disables interrupts with
the execution of the interrupt handler. Re-enabling interrupts in an interrupt handler
allows the execution of further interrupts with equal or higher priority than that of
the current interrupt. These are known as nested interrupts, illustrated in the dia-
gram below:

For applications requiring short interrupt latency, you may re-enable interrupts inside
an ISR by using OS_EnterNestableInterrupt() and OS_LeaveNestableInterrupt()
within the interrupt handler.

Nested interrupts can lead to problems that are difficult to track; therefore it is not
really recommended to enable interrupts within an interrupt handler. As it is impor-
tant that embOS keeps track of the status of the interrupt enable/disable flag, the
enabling and disabling of interrupts from within an ISR has to be done using the
functions that embOS offers for this purpose.

The routine OS_EnterNestableInterrupt() enables interrupts within an ISR and
prevents further task switches; OS_LeaveNestableInterrupt() disables interrupts
right before ending the interrupt routine again, thus restores the default condition.
Re-enabling interrupts will make it possible for an embOS scheduler interrupt to
shortly interrupt this ISR. In this case, embOS needs to know that another ISR is still
running and that it may not perform a task switch.

Time

Task ISR 1 ISR 3ISR 2

Interrupt 1

Interrupt 2

Interrupt 3

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

257

15.9.1 OS_EnterNestableInterrupt()
Note: This function may not be available in all ports.

Description

Re-enables interrupts and increments the embOS internal critical region counter,
thus disabling further task switches.

Prototype
void OS_EnterNestableInterrupt (void);

Additional Information

This function should be the first call inside an interrupt handler when nested inter-
rupts are required. The function OS_EnterNestableInterrupt() is implemented as a
macro and offers the same functionality as OS_EnterInterrupt() in combination
with OS_DecRI(), but is more efficient, resulting in smaller and faster code.

Example

Refer to the example for OS_LeaveNestableInterrupt().

258 CHAPTER 15 Interrupts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

15.9.2 OS_LeaveNestableInterrupt()
Note: This function may not be available in all ports.

Description

Disables further interrupts, then decrements the embOS internal critical region
count, thus re-enabling task switches if the counter has reached zero again.

Prototype
void OS_LeaveNestableInterrupt (void);

Additional Information

This function is the counterpart of OS_EnterNestableInterrupt(), and has to be the
last function call inside an interrupt handler when nested interrupts have earlier been
enabled by OS_EnterNestableInterrupt().
The function OS_LeaveNestableInterrupt() is implemented as a macro and offers
the same functionality as OS_LeaveInterrupt() in combination with OS_IncDI(),
but is more efficient, resulting in smaller and faster code.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

259

15.9.3 OS_InInterrupt()
Description

This function can be called to examine if the calling function is running in an interrupt
context.

Prototype
unsigned char OS_InInterrupt (void);

Return value

0: Code is not executed in interrupt handler.
!=0: Code is executed in an interrupt handler.

Additional Information

The function delivers the value of the embOS variable OS_InInt which is incremented
in OS_EnterInterrupt() and OS_EnterNestableInterrupt(). The variable OS_InInt is
decremented in OS_LeaveInterrupt() and OS_LeaveNestableInterrupt(). Previous
versions of embOS implemented this functionallity in debug libraries only. Since ver-
sion 3.88c, the internal variable is included in all libraries and can be examined by a
call of OS_InInterrupt().
For application code, it may be useful to know if it is called from interrupt or task,
because some functions must not be called from an interrupt-handler.

260 CHAPTER 15 Interrupts

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

15.10 Non-maskable interrupts (NMIs)
embOS performs atomic operations by disabling interrupts. However, a non-maskable
interrupt (NMI) cannot be disabled, meaning it can interrupt these atomic operations.
Therefore, NMIs should be used with great care and may under no circumstances call
any embOS routines.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

261

Chapter 16

Critical Regions

262 CHAPTER 16 Critical Regions

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

16.1 Introduction
Critical regions are program sections during which the scheduler is switched off,
meaning that no task switch and no execution of software timers are allowed except
in situations where the running task has to wait. Effectively, preemptions are
switched off.

A typical example for a critical region would be the execution of a program section
that handles a time-critical hardware access (for example writing multiple bytes into
an EEPROM where the bytes have to be written in a certain amount of time), or a
section that writes data into global variables used by a different task and therefore
needs to make sure the data is consistent.

A critical region can be defined anywhere during the execution of a task. Critical
regions can be nested; the scheduler will be switched on again after the outermost
loop is left. Interrupts are still legal in a critical region. Software timers and inter-
rupts are executed as critical regions anyhow, so it does not hurt but does not do any
good either to declare them as such. If a task switch becomes due during the execu-
tion of a critical region, it will be performed right after the region is left.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

263

16.2 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_EnterRegion()
Indicates to the OS the beginning of a critical
region. X X X X

OS_LeaveRegion() Indicates to the OS the end of a critical region. X X X X
Table 16.1: Critical regions API functions

264 CHAPTER 16 Critical Regions

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

16.2.1 OS_EnterRegion()
Description

Indicates to the OS the beginning of a critical region.

Prototype
void OS_EnterRegion (void);

Additional Information

OS_EnterRegion() is not actually a function but a macro. However, it behaves very
much like a function but is much more efficient. Using the macro indicates to embOS
the beginning of a critical region. A critical region counter (OS_RegionCnt), which is 0
by default, is incremented so that the routine can be nested. The counter will be dec-
remented by a call to the routine OS_LeaveRegion(). If this counter reaches 0 again,
the critical region ends.
Interrupts are not disabled using OS_EnterRegion(); however, preemptive task
switches are disabled in a critical region.
If any interrupt triggers a task switch, the task switch is delayed and kept pending
until the final call of OS_LeaveRegion(). When the OS_RegionCnt reaches 0 again, a
pending task switch is executed.
Cooperative task switches are not affected and will be executed in critical regions.
When the is running in a critical region and then calls any blocking embOS function,
the task will be suspended.
When the task is resumed again, the task specific OS_RegionCnt is restored, the task
continues to run in a critical region until OS_LeaveRegion() is called.

Example

void SubRoutine(void) {
 OS_EnterRegion();
 /* The following code will not be interrupted by the OS */
 /* Preemptive task switches are blocked until the call of OS_leaveRegion() */

 OS_LeaveRegion();
}

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

265

16.2.2 OS_LeaveRegion()
Description

Indicates to the OS the end of a critical region.

Prototype
void OS_LeaveRegion (void);

Additional Information

OS_LeaveRegion() is not actually a function but a macro. However, it behaves very
much like a function but is much more efficient. Usage of the macro indicates to
embOS the end of a critical region. A critical region counter (OS_RegionCnt), which is
0 by default, is decremented. If this counter reaches 0 again, the critical region ends.
A task switch which became pending during a critical region will be executed in
OS_Enterregion() when the OS_RegionCnt reaches 0 again.

Example

Refer to the example for OS_EnterRegion().

266 CHAPTER 16 Critical Regions

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

267

Chapter 17

Time measurement

embOS supports 2 types of time measurement:

� Low resolution (using a time variable)
� High resolution (using a hardware timer)

Both are explained in this chapter.

268 CHAPTER 17 Time measurement

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

17.1 Introduction
embOS supports two basic types of run-time measurement which may be used for
calculating the execution time of any section of user code. Low-resolution measure-
ments use a time base of ticks, while high-resolution measurements are based on a
time unit called a cycle. The length of a cycle depends on the timer clock frequency.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

269

17.2 Low-resolution measurement
The system time variable OS_Time is measured in ticks, or ms. The low-resolution
functions OS_GetTime() and OS_GetTime32() are used for returning the current con-
tents of this variable. The basic idea behind low-resolution measurement is quite
simple: The system time is returned once before the section of code to be timed and
once after, and the first value is subtracted from the second to obtain the time it took
for the code to execute.

The term low-resolution is used because the time values returned are measured in
completed ticks. Consider the following: with a normal tick of 1 ms, the variable
OS_Time is incremented with every tick-interrupt, or once every ms. This means that
the actual system time can potentially be more than what a low-resolution function
will return (for example, if an interrupt actually occurs at 1.4 ticks, the system will
still have measured only 1 tick as having elapsed). The problem becomes even
greater with runtime measurement, because the system time must be measured
twice. Each measurement can potentially be up to 1 tick less than the actual time, so
the difference between two measurements could theoretically be inaccurate by up to
two ticks.

The following diagram illustrates how low-resolution measurement works. We can see
that the section of code actually begins at 0.5 ms and ends at 5.2 ms, which means
that its actual execution time is (5.2 - 0.5) = 4.7 ms. However with a tick of 1 ms,
the first call to OS_GetTime() returns 0, and the second call returns 5. The measured
execution time of the code would therefore result in (5 - 0) = 5 ms.

For many applications, low-resolution measurement may be fully sufficient for your
needs. In some cases, it may be more desirable than high-resolution measurement
due to its ease of use and faster computation time.

OS_Time

6 ms0 ms 5 ms4 ms3 ms2 ms1 ms

Code to be timed

OS_GetTime() => 0 OS_GetTime() => 5

0.5 ms 5.2 ms

270 CHAPTER 17 Time measurement

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

17.2.1 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_GetTime() Returns the current system time in ticks. X X X X

OS_GetTime32()
Returns the current system time in ticks as a
32-bit value. X X X X

Table 17.1: Low-resolution measurement API functions

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

271

17.2.1.1 OS_GetTime()
Description

Returns the current system time in ticks.

Prototype
int OS_GetTime (void);

Return value

The system variable OS_Time as a 16- or 32-bit integer value.

Additional Information

This function returns the system time as a 16-bit value on 8/16-bit CPUs, and as a
32-bit value on 32-bit CPUs. The OS_Time variable is a 32-bit value. Therefore, if the
return value is 32-bit, it is simply the entire contents of the OS_Time variable. If the
return value is 16-bit, it is the lower 16 bits of the OS_Time variable.

272 CHAPTER 17 Time measurement

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

17.2.1.2 OS_GetTime32()
Description

Returns the current system time in ticks as a 32-bit value.

Prototype
int OS_GetTime32 (void);

Return value

The system variable OS_Time as a 32-bit integer value.

Additional Information

This function always returns the system time as a 32-bit value. Because the OS_Time
variable is also a 32-bit value, the return value is simply the entire contents of the
OS_Time variable.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

273

17.3 High-resolution measurement
High-resolution measurement uses the same routines as those used in profiling
builds of embOS, allowing for fine-tuning of time measurement. While system resolu-
tion depends on the CPU used, it is typically about 1 µs, making high-resolution mea-
surement about 1000 times more accurate than low-resolution calculations.

Instead of measuring the number of completed ticks at a given time, an internal
count is kept of the number of cycles that have been completed. Look at the illustra-
tion below, which measures the execution time of the same code used in the low-res-
olution calculation. For this example, we assume that the CPU has a timer running at
10 MHz and is counting up. The number of cycles per tick is therefore (10 MHz / 1
kHz) = 10,000. This means that with each tick-interrupt, the timer restarts at 0 and
counts up to 10,000.

The call to OS_Timing_Start() calculates the starting value at 5,000 cycles, while
the call to OS_Timing_End() calculates the ending value at 52,000 cycles (both val-
ues are kept track of internally). The measured execution time of the code in this
example would therefore be (52,000 - 5,000) = 47,000 cycles, which corresponds to
4.7 ms.

Although the function OS_Timing_GetCycles() may be used for returning the execu-
tion time in cycles as above, it is typically more common to use the function
OS_Timing_Getus(), which returns the value in microseconds (µs). In the above
example, the return value would be 4,700 µs.

Data structure

All high-resolution routines take as parameter a pointer to a data structure of type
OS_TIMING, defined as follows:

#define OS_TIMING OS_U32

OS_Time

6 ms0 ms 5 ms4 ms3 ms2 ms1 ms

Code to be timed

OS_GetTime() => 0 OS_GetTime() => 5

0.5 ms 5.2 ms

274 CHAPTER 17 Time measurement

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

17.3.1 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_Timing_Start()
Marks the beginning of a code section to be
timed. X X X X

OS_Timing_End() Marks the end of a code section to be timed. X X X X

OS_Timing_Getus()
Returns the execution time of the code
between OS_Timing_Start() and
OS_Timing_End() in microseconds.

X X X X

OS_Timing_GetCycles()
Returns the execution time of the code
between OS_Timing_Start() and
OS_Timing_End() in cycles.

X X X X

Table 17.2: High-resolution measurement API functions

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

275

17.3.1.1 OS_Timing_Start()
Description

Marks the beginning of a section of code to be timed.

Prototype
void OS_Timing_Start (OS_TIMING* pCycle);

Additional Information

This function must be used with OS_Timing_End().

Parameter Description

pCycle Pointer to a data structure of type OS_TIMING.
Table 17.3: OS_TimingStart() parameter list

276 CHAPTER 17 Time measurement

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

17.3.1.2 OS_Timing_End()
Description

Marks the end of a section of code to be timed.

Prototype
void OS_Timing_End (OS_TIMING* pCycle);

Additional Information

This function must be used with OS_Timing_Start().

Parameter Description

pCycle Pointer to a data structure of type OS_TIMING.
Table 17.4: OS_TimingEnd() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

277

17.3.1.3 OS_Timing_Getus()
Description

Returns the execution time of the code between OS_Timing_Start() and
OS_Timing_End() in microseconds.

Prototype
OS_U32 OS_Timing_Getus (const OS_TIMING* pCycle);

Additional Information

The execution time in microseconds (µs) as a 32-bit integer value.

Parameter Description

pCycle Pointer to a data structure of type OS_TIMING.
Table 17.5: OS_Timing_Getus() parameter list

278 CHAPTER 17 Time measurement

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

17.3.1.4 OS_Timing_GetCycles()
Description

Returns the execution time of the code between OS_Timing_Start() and
OS_Timing_End() in cycles.

Prototype
OS_U32 OS_Timing_GetCycles (OS_TIMING* pCycle);

Return value

The execution time in cycles as a 32-bit integer.

Additional Information

Cycle length depends on the timer clock frequency.

Parameter Description

pCycle Pointer to a data structure of type OS_TIMING.
Table 17.6: OS_Timing_GetCycles() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

279

17.4 Example
The following sample demonstrates the use of low-resolution and high-resolution
measurement to return the execution time of a section of code:

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications

File : SampleHiRes.c
Purpose : Demonstration of embOS Hires Timer
--------------END-OF-HEADER------------------------------*/

#include "RTOS.H"
#include <stdio.h>

OS_STACKPTR int Stack[1000]; /* Task stacks */
OS_TASK TCB; /* Task-control-blocks */

volatile int Dummy;
void UserCode(void) {
 for (Dummy=0; Dummy < 11000; Dummy++); /* Burn some time */
}

/*
* Measure the execution time with low resolution and return it in ms (ticks)
*/
int BenchmarkLoRes(void) {
 int t;
 t = OS_GetTime();
 UserCode(); /* Execute the user code to be benchmarked */
 t = OS_GetTime() - t;
 return t;
}

/*
* Measure the execution time with hi resolution and return it in us
*/
OS_U32 BenchmarkHiRes(void) {
 OS_U32 t;
 OS_Timing_Start(&t);
 UserCode(); /* Execute the user code to be benchmarked */
 OS_Timing_End(&t);
 return OS_Timing_Getus(&t);
}

void Task(void) {
 int tLo;
 OS_U32 tHi;
 char ac[80];
 while (1) {
 tLo = BenchmarkLoRes();
 tHi = BenchmarkHiRes();
 sprintf(ac, "LoRes: %d ms\n", tLo);
 OS_SendString(ac);
 sprintf(ac, "HiRes: %d us\n", tHi);
 OS_SendString(ac);
 }
}

/**
*
* main
*
**/

void main(void) {
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCB, "HP Task", Task, 100, Stack);
 OS_Start(); /* Start multitasking */
}

280 CHAPTER 17 Time measurement

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

The output of the sample is as follows:

LoRes: 7 ms
HiRes: 6641 us
LoRes: 7 ms
HiRes: 6641 us
LoRes: 6 ms

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

281

Chapter 18

System variables

The system variables are described here for a deeper understanding of how the OS
works and to make debugging easier.

282 CHAPTER 18 System variables

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

18.1 Introduction
Note: Do not change the value of any system variables.

These variables are accessible and are not declared constant, but they should only be
altered by functions of embOS. However, some of these variables can be very useful,
especially the time variables.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

283

18.2 Time variables

18.2.1 OS_Global
OS_Global is a structure which includes embOS internal variables. The following vari-
ables OS_Time and OS_Global.TimeDex are part of OS_Global. Any other part of
OS_Global is not explained here as they are not required to use embOS.

18.2.2 OS_Global.Time
Description

This is the time variable which contains the current system time in ticks (usually
equivalent to ms).

Additional Information

The time variable has a resolution of one time unit, which is normally 1/1000 sec
(1 ms) and is normally the time between two successive calls to the embOS timer
interrupt handler. Instead of accessing this variable directly, use OS_GetTime() or
OS_GetTime32() as explained in the Chapter Time measurement on page 267.

18.2.3 OS_Global.TimeDex
Basically, for internal use only. Contains the time at which the next task switch or
timer activation is due. If ((int)(OS_Global.Time - OS_Global.TimeDex)) >= 0,
the task list and timer list will be checked for a task or timer to activate. After activa-
tion, OS_Global.TimeDex will be assigned the time stamp of the next task or timer to
be activated.

284 CHAPTER 18 System variables

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

18.3 OS internal variables and data-structures
embOS internal variables are not explained here as they are in no way required to
use embOS. Your application should not rely on any of the internal variables, as only
the documented API functions are guaranteed to remain unchanged in future
versions of embOS.

Important

Do not alter any system variables.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

285

Chapter 19

System tick

This chapter explains the concept of the system tick, generated by a hardware timer
and all options available for it.

286 CHAPTER 19 System tick

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

19.1 Introduction
Typically a hardware timer generates periodic interrupts used as a time base for the
OS. The interrupt service routine then calls one of the tick handlers of the OS.
embOS offers tick handlers with different functionality as well as a way to call a hook
function from within the system tick handler.

Generating timer interrupts

The hardware timer is normally initialized in the OS_InitHW() function which is deliv-
ered with the BSP. The BSP also includes the interrupt handler which is called by the
hardware timer interrupt. This interrupt handler has to call one of the embOS system
tick handler functions which are explained in this chapter.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

287

19.2 Tick handler
The interrupt service routine used as time base needs to call a tick handler. There are
different tick handlers available; one of these need to be called. The reason why
there are different tick handlers is simple: They differ in capabilities, code size and
execution speed. Most application use the standard tick handler OS_TICK_Handle(),
which increments the tick count by one every time it is called. This tick handler is
small and efficient, but it can not handle situations where the interrupt rate is differ-
ent from the tick rate. OS_TICK_HandleEx() is capable of handling even fractional
interrupt rates, such as 1.6 interrupts per tick.

19.2.1 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_TICK_Handle() Standard embOS tick handler. X
OS_TICK_HandleEx() Extended embOS tick handler. X
OS_TICK_HandleNoHook() embOS tick handler without hook functionality. X
OS_TICK_Config() Configures the extended embOS tick handler. X X

Table 19.1: API functions

288 CHAPTER 19 System tick

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

19.2.1.1 OS_TICK_Handle()
Description

The default embOS timer tick handler which is typically called by the hardware timer
interrupt handler.

Prototype
void OS_TICK_Handle (void);

Additional Information

The embOS tick handler must not be called by the application, it has to be called
from an interrupt handler.
OS_EnterInterrupt(), or OS_EnterNestableInterrupt() has to be called, before
calling the embOS tick handler

Example

/* Example of a timer interrupt handler */

/***
*
* OS_ISR_Tick
*/
__interrupt void OS_ISR_Tick(void) {
 OS_EnterNestableInterrupt();
 OS_TICK_Handle();
 OS_LeaveNestableInterrupt();
}

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

289

19.2.1.2 OS_TICK_HandleEx()
Description

An alternate tick handler which may be used instead of the standard tick handler. It
can be used in situations where the basic timer-interrupt interval (tick) is a multiple
of 1 ms and the time values used as parameter for delays still should use 1 ms as the
time base.

Prototype
void OS_TICK_HandleEx (void);

Additional Information

The embOS tick handler must not be called by the application, it has to be called
from an interrupt handler. OS_EnterInterrupt(), or OS_EnterNestableInterrupt()
has to be called, before calling the embOS tick handler. Refer to OS_TICK_Config()
on page 291 about how to configure OS_TICK_HandleEx().

Example

/* Example of a timer interrupt handler using OS_HandleTickEx */

/***
*
* OS_ISR_Tick
*/
__interrupt void OS_ISR_Tick(void) {
 OS_EnterNestableInterrupt();
 OS_TICK_HandleEx();
 OS_LeaveNestableInterrupt();
}

Assuming the hardware timer runs at a frequency of 500Hz, thus interrupting the
system every 2ms, the embOS tick handler configuration function OS_TICK_Config()
should be called as demonstrated in the Example section of OS_TICK_Config(). This
should be done during OS_InitHW(), before the embOS timer is started.

290 CHAPTER 19 System tick

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

19.2.1.3 OS_TICK_HandleNoHook()
Description

The alternate speed optimized embOS timer tick handler without hook function which
is typically called by the hardware timer interrupt handler.

Prototype
void OS_TICK_HandleNoHook (void);

Additional Information

The embOS tick handler must not be called by the application, it has to be called
from an interrupt handler.
OS_EnterInterrupt(), or OS_EnterNestableInterrupt() has to be called, before
calling the embOS tick handler

Example

/* Example of a timer interrupt handler */

/***
*
* OS_ISR_Tick
*/
__interrupt void OS_ISR_Tick(void) {
 OS_EnterNestableInterrupt();
 OS_TICK_HandleNoHook();
 OS_LeaveNestableInterrupt();
}

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

291

19.2.1.4 OS_TICK_Config()
Description

Configures the tick to interrupt ratio. The �normal� tick handler OS_TICK_Handle()
assumes a 1:1 ratio, meaning one interrupt increments the tick count (OS_Time) by
one. For other ratios, OS_TICK_HandleEx() needs to be used; the ratio is defined by
calling the OS_TICK_Config().

Prototype
void OS_TICK_Config (unsigned FractPerInt, unsigned FractPerTick);

Additional Information

FractPerInt/FractPerTick = Time between 2 tick interrupts / Time for 1 tick

Note that fractional values are supported, such as tick is 1 ms, where an interrupt is
generated every 1.6ms. This means that FractPerInt and FractPerTick are:

 FractPerInt = 16;
 FractPerTick = 10;
 or
 FractPerInt = 8;
 FractPerTick = 5;

Examples:

 OS_TICK_Config(2, 1); // 500 Hz interrupts (2ms), 1ms tick
 OS_TICK_Config(8, 5); // Interrupts once per 1.6ms, 1ms tick
 OS_TICK_Config(1, 10); // 10 kHz interrupts (0.1ms), 1ms tick
 OS_TICK_Config(1, 1); // 10 kHz interrupts (0.1ms), 0.1 ms tick
 OS_TICK_Config(1, 100); // 10 kHz interrupts (0.1ms), 1 us tick

Parameter Description

FractPerInt Number of Fractions per interrupt
FractPerTick Number of Fractions per tick

Table 19.2: OS_TICK_Config() parameter list

292 CHAPTER 19 System tick

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

19.3 Hooking into the system tick
There are various situations in which it can be desirable to call a function from the
tick handler. Some examples are:

� Watchdog update
� Periodic status check
� Periodic I/O update

The same functionality can be achieved with a high-priority task or a software timer
with 1 tick period time.

Advantage of using a hook function

Using a hook function is much faster than performing a task switch or activating a
software timer, because the hook function is directly called from the embOS timer
interrupt handler and does not cause a context switch.

19.3.1 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_TICK_AddHook() Adds a tick hook handler. X X
OS_TICK_RemoveHook() Removes a tick hook handler. X X

Table 19.3: API functions

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

293

19.3.1.1 OS_TICK_AddHook()
Description

Adds a tick hook handler.

Prototype
void OS_TICK_AddHook (OS_TICK_HOOK * pHook,

 OS_TICK_HOOK_ROUTINE * pfUser);

Additional Information

The hook function is called directly from the interrupt handler.
The function therefore should execute as fast as possible.
The function called by the tick hook must not re-enable interrupts.

Parameter Description

pHook Pointer to a structure of OS_TICK_HOOK.
pfUser Pointer to an OS_TICK_HOOK_ROUTINE function.

Table 19.4: OS_TICK_AddHook() parameter list

294 CHAPTER 19 System tick

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

19.3.1.2 OS_TICK_RemoveHook()
Description

Removes a tick hook handler.

Prototype
void OS_TICK_RemoveHook (const OS_TICK_HOOK * pHook);

Additional Information

The function may be called to dynamically remove a tick hook function which was
installed by a call of OS_TICK_AddHook().

Parameter Description

pHook Pointer to a structure of OS_TICK_HOOK.
Table 19.5: OS_TICK_RemoveHook() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

295

Chapter 20

Configuration of target system
(BSP)

This chapter explains the target system specific parts of embOS, also called BSP
(board support package).
If the system is up and running on your target system, there is no need to read this
chapter.

296 CHAPTER 20 Configuration of target system (BSP)

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

20.1 Introduction
You do not have to configure anything to get started with embOS. The start project
supplied will execute on your system. Small changes in the configuration will be nec-
essary at a later point for system frequency or for the UART used for communication
with the optional embOSView.

The file RTOSInit.c is provided in source code and can be modified to match your
target hardware needs. It is compiled and linked with your application program.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

297

20.2 Hardware-specific routines

20.2.1 OS_Idle()
The embOS function OS_Idle() is called when no task is ready for execution.
The function OS_Idle() is part of the target CPU specific RTOSInit.c file delivered
with embOS.
Normally it is programmed as an endless loop without any functionality.
In most embOS ports, it activates a power saving sleep mode of the target CPU.

The embOS OS_Idle() function is not a task, it has no task context and does not
have its own stack.
The OS_Idle() function runs on the normal CSTACK which is also used for the kernel.
Exceptions and interrupts which occur during OS_Idle() are no problem as long as
they don't trigger a task switch.
They return into OS_Idle() and the code is continued where it was interrupted.

When a task switch occurs during the execution of OS_Idle(), the OS_Idle() func-
tion is interrupted and does not continue execution when it is activated again.
When OS_Idle() is activated, it always starts from the beginning. Interrupted code
is not continued.

You might create your own idle task running as endless loop with the lowest task pri-
ority in the system.
When you don't call any blocking or suspending function in this idle task, you will

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

Required for embOS

OS_InitHW()

Initializes the hardware timer used for gener-
ating interrupts. embOS needs a timer-inter-
rupt to determine when to activate tasks that
wait for the expiration of a delay, when to call
a software timer, and to keep the time variable
up-to-date.

X

OS_Idle()
The idle loop is always executed whenever no
other task (and no interrupt service routine) is
ready for execution.

OS_ISR_Tick()
The embOS timer-interrupt handler. When
using a different timer, always check the spec-
ified interrupt vector.

OS_ConvertCycles2us()
Converts cycles into µs (used with profiling
only). X X X X

OS_GetTime_Cycles()
Reads the timestamp in cycles. Cycle length
depends on the system. This function is used
for system information sent to embOSView.

X X X X

Optional for run-time OS-View

OS_COM_Init()
Initializes communication for embOSView
(used with embOSView only). X

OS_ISR_rx()
Rx Interrupt service handler for embOSView
(used with embOSView only).

OS_ISR_tx()
Tx Interrupt service handler for embOSView
(used with embOSView only).

OS_COM_Send1()
Send 1 byte via a UART (used with embOSView
only).
Do not call this function from your application.

Table 20.1: Hardware specific routines

298 CHAPTER 20 Configuration of target system (BSP)

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

never arrive in OS_Idle().
This is the preferred solution to keep short reaction times on interrupts and task
switches.

You might alternatively use OS_EnterRegion() and OS_LeaveRegion() to avoid task
switches during the execution of your ..doStuff() in OS_Idle().
Running in a critical region does not block interrupts, but disables task switches until
OS_LeaveRegion() is called.
Using a critical region during OS_Idle() will affect task activation time, but will not
affect interrupt latency.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

299

20.3 Configuration defines
For most embedded systems, configuration is done by simply modifying the following
defines, located at the top of the RTOSInit.c file:

Define Description

OS_FSYS
System frequency (in Hz).
Example: 20000000 for 20MHz.

OS_UART
Selection of UART to be used with embOSView
(-1 will disable communication),

OS_BAUDRATE Selection of baudrate for communication with embOSView.
Table 20.2: Configuration defines overview

300 CHAPTER 20 Configuration of target system (BSP)

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

20.4 How to change settings
The only file which you may need to change is RTOSInit.c. This file contains all
hardware-specific routines. The one exception is that some ports of embOS require
an additional interrupt vector table file (details can be found in the CPU & Compiler
Specifics manual of embOS documentation).

20.4.1 Setting the system frequency OS_FSYS
Relevant defines

OS_FSYS

Relevant routines

OS_ConvertCycles2us() (used with profiling only)

For most systems it should be sufficient to change the OS_FSYS define at the top of
RTOSInit.c. When using profiling, certain values may require a change in
OS_ConvertCycles2us(). The RTOSInit.c file contains more information about in
which cases this is necessary and what needs to be done.

20.4.2 Using a different timer to generate the tick-interrupts for
embOS

Relevant routines

OS_InitHW()

embOS usually generates 1 interrupt per ms, making the timer-interrupt, or tick,
normally equal to 1 ms. This is done by a timer initialized in the routine
OS_InitHW(). If you have to use a different timer for your application, you must
modify OS_InitHW() to initialize the appropriate timer. For details about initialization,
read the comments in RTOSInit.c.

20.4.3 Using a different UART or baudrate for embOSView
Relevant defines

OS_UART
OS_BAUDRATE

Relevant routines:

OS_COM_Init()
OS_COM_Send1()
OS_ISR_rx()
OS_ISR_tx()

In some cases, this is done by simply changing the define OS_UART. Refer to the con-
tents of the RTOSInit.c file for more information about which UARTS that are sup-
ported for your CPU.

20.4.4 Changing the tick frequency
Relevant defines

OS_FSYS

As noted above, embOS usually generates 1 interrupt per ms. OS_FSYS defines the
clock frequency of your system in Hz (times per second). The value of OS_FSYS is
used for calculating the desired reload counter value for the system timer for 1000
interrupts/sec. The interrupt frequency is therefore normally 1 kHz.

Different (lower or higher) interrupt rates are possible. If you choose an interrupt
frequency different from 1 kHz, the value of the time variable OS_Time will no longer
be equivalent to multiples of 1 ms. However, if you use a multiple of 1 ms as tick

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

301

time, the basic time unit can be made 1 ms by using the function OS_TICK_Config().
The basic time unit does not have to be 1 ms; it might just as well be 100 µs or 10
ms or any other value. For most applications, 1 ms is an appropriate value.

302 CHAPTER 20 Configuration of target system (BSP)

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

20.5 STOP / HALT / IDLE modes
Most CPUs support power-saving STOP, HALT, or IDLE modes. Using these types of
modes is one possible way to save power consumption during idle times. As long as
the timer-interrupt will wake up the system with every embOS tick, or as long as
other interrupts will activate tasks, these modes may be used for saving power con-
sumption.

If required, you may modify the OS_Idle() routine, which is part of the hardware-
dependant module RTOSInit.c, to switch the CPU to power-saving mode during idle
times. Refer to the CPU & Compiler Specifics manual of embOS documentation for
details about your processor.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

303

Chapter 21

Profiling

This chapter explains the profiling functions that can be used by an application.

304 CHAPTER 21 Profiling

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

21.0.1 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_STAT_Sample() Starts a new task cpu load measurement. X X X X
OS_STAT_GetLoad() Returns the task specific cpu load. X X X X

OS_AddLoadMeasurement()
Adds total CPU load measurement functinal-
ity. X X

OS_GetLoadMeasurement() Returns the total CPU load. X X X X
Table 21.1: API functions

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

305

21.0.1.1 OS_STAT_Sample()
Description

OS_STAT_Sample() starts profiling and calculates the absolute task run time since
the last call to OS_STAT_Sample().

Prototype
void OS_STAT_Sample (void);

Additional Information

OS_STAT_Sample() starts the profiling for 5 seconds, the next call to
OS_STAT_Sample() must be within this 5 seconds. Please use the embOS function
OS_STAT_GetLoad() to get the task specific cpu load in 1/10 percent.

306 CHAPTER 21 Profiling

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

21.0.1.2 OS_STAT_GetLoad()
Description

OS_STAT_GetLoad() calculates the current task cpu load in 1/10 percent.

Prototype
int OS_STAT_GetLoad(OS_TASK * pTask);

Return value

OS_STAT_GetLoad returns the current task cpu load in 1/10 percent.

Additional Information

OS_STAT_GetLoad() requires that OS_STAT_Sample() is called periodically.

Parameter Description

pTask Pointer to task control block
Table 21.2: OS_STAT_GetLoad() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

307

21.0.1.3 Sample application for OS_STAT_Sample() and
OS_STAT_GetLoad()

#include "RTOS.h"
#include "stdio.h"

OS_STACKPTR int StackHP[128], StackLP[128], StackMP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP, TCBMP; /* Task-control-blocks */

static void HPTask(void) {
 volatile int r;
 while (1) {
 OS_Delay (1000);
 OS_STAT_Sample();
 r = OS_STAT_GetLoad(&TCBMP);
 printf("CPU Usage of MP Task: %d\n", r);
 }
}

static void MPTask(void) {
 while (1) {
 }
}

static void LPTask(void) {
 while (1) {
 }
}

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 /* You need to create at least one task before calling OS_Start() */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBMP, "MP Task", MPTask, 50, StackMP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

Output:
500
499
501
500
500
...

308 CHAPTER 21 Profiling

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

21.0.1.4 OS_AddLoadMeasurement()
Description

OS_AddLoadMeasurement() may be used to start calculation of the total CPU load of
an application.

Prototype
void OS_AddLoadMeasurement(int Period,
 OS_U8 AutoAdjust,

 int DefaultMaxValue);

Additional Information

OS_AddLoadMeasurement() creates a task running at highest priority. The task sus-
pends itself periodically by calling OS_Delay(Period). When the task is resumed after
the delay, it calculates the CPU load by comparison of two counter values.
The CPU load is the percentage not spent in OS_Idle().
For the calculation, it is required that OS_Idle() is called.
OS_Idle() has to increment a counter by calling OS_INC_IDLE_CNT();
The maximum value of this counter is stored and is compared against the current
value of the counter, every time the measurement task is activated.
It is assumed, that the maximum value of the counter reperesents a CPU load of 0,
all time spent in OS_Idle().
When AutoAdjust is set, the task will initially suspend all other tasks for the Period-
time and than call OS_Delay(Period). This way, the whole period is spent in
OS_Idle() and the counter incremented in OS_Idle() reaches its maximum value
initially.
If this behavior is not wanted, because it blocks all tasks for the Period-time once ini-
tially, the maximum value for the counter may be examined once and then be set by
the parameter DefaultMaxValue with AutoAdjust disabled.
The value for DefaultMaxValue can be examined once from one task before any
other tasks are created:
void MainTask(void) {
 OS_I32 DefaultMax;
 OS_Delay(100);
 DefaultMax = OS_IdleCnt; /* This value can be used as DefaultMaxValue. */
 /* Now other tasks can be created and started. */

The calculation does not work when OS_Idle() puts the CPU in Low-power (Stop)
mode.

OS_Idle() has to look like follows:
void OS_Idle(void) { /* Idle loop: No task is ready to execute */
 while (1) {
 OS_INC_IDLE_CNT();
 }
}

Parameter Description

Period Period for measurement in embOS timer ticks
AutoAdjust When != 0, the measurement is autoadjusted once initially.

DefaultMaxValue
May be used to set a default counter value when AutoAdjust is
not used. (See additional information)

Table 21.3: OS_STAT_GetLoad() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

309

21.0.1.5 OS_GetLoadMeasurement()
Description

OS_GetLoadMeasurement() can be called from the application to retrieve the result of
the CPU load measurement.

Prototype
int OS_GetLoadMeasurement(void)

Return value

OS_GetLoadMeasurement returns the total CPU load in percent.

Additional Information

OS_GetLoadMeasurement() delivers correct results when the CPU load measurement
was started by calling OS_AddLoadMeasurement() with auot-adjustment before, and
OS_Idle() updates the measurement by calling OS_INC_IDLE_CNT().

The calculation does not work when OS_Idle() puts the CPU in Low-power (Stop)
mode.

OS_Idle() has to look like follows:
void OS_Idle(void) { /* Idle loop: No task is ready to execute */
 while (1) {
 OS_INC_IDLE_CNT();
 }
}

310 CHAPTER 21 Profiling

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

21.0.1.6 OS_CPU_Load
Description

This global variable shows the total CPU load in percent. It may be usefull to show
the variable in a debugger with life-watch capability during programm development.

Declaration
volatile OS_INT OS_CPU_Load;

Additional Information

This variable may not exist and will not show correct results, when the CPU load
measurement was not started by a call of OS_AddLoadMeasurement().
As an additional condition, embOS has to be running and OS_Idle has to call
OS_INC_IDLE_CNT() to update the CPU load measurement.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

311

Chapter 22

embOSView: Profiling and analyz-
ing

312 CHAPTER 22 embOSView: Profiling and analyzing

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

22.1 Overview
embOSView displays the state of a running application using embOS. A serial
interface (UART) is normally used for communication with the target. The hardware-
dependent routines and defines available for communication with embOSView are
located in RTOSInit.c. This file has to be configured properly. For details on how to
configure this file, refer the CPU & Compiler Specifics manual of embOS documenta-
tion. The embOSView utility is shipped as embOSView.exe with embOS and runs
under Windows 9x / NT / 2000 / Vista and Windows 7. The latest version is available
on our website at www.segger.com

embOSView is a very helpful tool for analysis of the running target application.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

313

22.2 Task list window
embOSView shows the state of every created task of the target application in the
Task list window. The information shown depends on the library used in your
application.

The Task list window is helpful in analysis of stack usage and CPU load for every
running task.

Item Description Builds

Prio Current priority of task. All

Id Task ID, which is the address of the task control
block. All

Name Name assigned during creation. All

Status Current state of task (ready, executing, delay,
reason for suspension). All

Data Depends on status. All

Timeout Time of next activation. All

Stack Used stack size/max. stack size/stack location. S, SP, D, DP, DT

CPULoad Percentage CPU load caused by task. SP, DP, DT

Context
Switches Number of activations since reset. SP, DP, DT

Table 22.1: Task list window overview

314 CHAPTER 22 embOSView: Profiling and analyzing

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

22.3 System variables window
embOSView shows the actual state of major system variables in the System vari-
ables window. The information shown also depends on the library used in your
application:

Item Description Builds

OS_VERSION Current version of embOS. All

CPU Target CPU and compiler. All

LibMode Library mode used for target application. All

OS_Time Current system time in timer ticks. All

OS_NUM_TASKS Current number of defined tasks. All

OS_Status Current error code (or O.K.). All

OS_pActiveTask Active task that should be running. SP, D, DP, DT

OS_pCurrentTask Actual currently running task. SP, D, DP, DT

SysStack Used size/max. size/location of system
stack. SP, DP, DT

IntStack Used size/max. size/location of interrupt
stack. SP, DP, DT

TraceBuffer Current count/maximum size and current
state of trace buffer. All trace builds

Table 22.2: System variables window overview

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

315

22.4 Sharing the SIO for terminal I/O
The serial input/output (SIO) used by embOSView may also be used by the
application at the same time for both input and output. This can be very helpful.
Terminal input is often used as keyboard input, where terminal output may be used
for outputting debug messages. Input and output is done via the Terminal window,
which can be shown by selecting View/Terminal from the menu.

To ensure communication via the Terminal window in parallel with the viewer
functions, the application uses the function OS_SendString() for sending a string to
the Terminal window and the function OS_SetRxCallback() to hook a recep-
tion routine that receives one byte.

316 CHAPTER 22 embOSView: Profiling and analyzing

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

22.5 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_SendString()
Sends a string over SIO to the Terminal win-
dow. X X

OS_SetRxCallback()
Sets a callback hook to a routine for receiving
one character. X X X

Table 22.3: Shared SIO API functions

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

317

22.5.1 OS_SendString()
Description

Sends a string over SIO to the Terminal window.

Prototype
void OS_SendString (const char* s);

Additional Information

This function uses OS_COM_Send1() which is defined in RTOSInit.c.

Parameter Description

s
Pointer to a zero-terminated string that should be sent to the
Terminal window.

Table 22.4: OS_SendString() parameter list

318 CHAPTER 22 embOSView: Profiling and analyzing

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

22.5.2 OS_SetRxCallback()
Description

Sets a callback hook to a routine for receiving one character.

Prototype
typedef void OS_RX_CALLBACK (OS_U8 Data)

OS_RX_CALLBACK* OS_SetRxCallback (OS_RX_CALLBACK* cb);

Return value

OS_RX_CALLBACK* as described above. This is the pointer to the callback function that
was hooked before the call.

Additional Information

The user function is called from embOS. The received character is passed as parame-
ter. See the example below.

Example

void GUI_X_OnRx(OS_U8 Data); /* Callback ... called from Rx-interrupt */

void GUI_X_Init(void) {
 OS_SetRxCallback(&GUI_X_OnRx);
}

Parameter Description

cb
Pointer to the application routine that should be called when one
character is received over the serial interface.

Table 22.5: OS_SetRxCallback() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

319

22.6 Using the API trace
embOS versions 3.06 or higher contain a trace feature for API calls. This requires the
use of the trace build libraries in the target application.

The trace build libraries implement a buffer for 100 trace entries. Tracing of API calls
can be started and stopped from embOSView via the Trace menu, or from within the
application by using the functions OS_TraceEnable() and OS_TraceDiasable().
Individual filters may be defined to determine which API calls should be traced for
different tasks or from within interrupt or timer routines.

Once the trace is started, the API calls are recorded in the trace buffer, which is peri-
odically read by embOSView. The result is shown in the Trace window:

Every entry in the Trace list is recorded with the actual system time. In case of calls
or events from tasks, the task ID (TaskId) and task name (TaskName) (limited to
15 characters) are also recorded. Parameters of API calls are recorded if possible,
and are shown as part of the APIName column. In the example above, this can be
seen with OS_Delay(3). Once the trace buffer is full, trace is automatically stopped.
The Trace list and buffer can be cleared from embOSView.

Setting up trace from embOSView

Three different kinds of trace filters are defined for tracing. These filters can be set
up from embOSView via the menu Options/Setup/Trace.

Filter 0 is not task-specific and records all specified events regardless of the task. As
the Idle loop is not a task, calls from within the idle loop are not traced.

Filter 1 is specific for interrupt service routines, software timers and all calls that
occur outside a running task. These calls may come from the idle loop or during star-
tup when no task is running.

Filters 2 to 4 allow trace of API calls from named tasks.

320 CHAPTER 22 embOSView: Profiling and analyzing

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

To enable or disable a filter, simply check or uncheck the corresponding checkboxes
labeled Filter 4 Enable to Filter 0 Enable.

For any of these five filters, individual API functions can be enabled or disabled by
checking or unchecking the corresponding checkboxes in the list. To speed up the
process, there are two buttons available:

� Select all - enables trace of all API functions for the currently enabled (checked)
filters.

� Deselect all - disables trace of all API functions for the currently enabled
(checked) filters.

Filter 2, Filter 3, and Filter 4 allow tracing of task-specific API calls. A task name
can therefore be specified for each of these filters. In the example above, Filter 4 is
configured to trace calls of OS_Delay() from the task called MainTask. After the set-
tings are saved (via the Apply or OK button), the new settings are sent to the target
application.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

321

22.7 Trace filter setup functions
Tracing of API or user function calls can be started or stopped from embOSView. By
default, trace is initially disabled in an application program. It may be very helpful to
control the recording of trace events directly from the application, using the following
functions.

322 CHAPTER 22 embOSView: Profiling and analyzing

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

22.8 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_TraceEnable() Enables tracing of filtered API calls. X X X X

OS_TraceDisable()
Disables tracing of API and user function
calls. X X X X

OS_TraceEnableAll()
Sets up Filter 0 (any task), enables trac-
ing of all API calls and then enables the
trace function.

X X X X

OS_TraceDisableAll()
Sets up Filter 0 (any task), disables trac-
ing of all API calls and also disables
trace.

X X X X

OS_TraceEnableId()

Sets the specified ID value in Filter 0
(any task), thus enabling trace of the
specified function, but does not start
trace.

X X X X

OS_TraceDisableId()

Resets the specified ID value in Filter 0
(any task), thus disabling trace of the
specified function, but does not stop
trace.

X X X X

OS_TraceEnableFilterId()

Sets the specified ID value in the speci-
fied trace filter, thus enabling trace of the
specified function, but does not start
trace.

X X X X

OS_TraceDisableFilterId()

Resets the specified ID value in the spec-
ified trace filter, thus disabling trace of
the specified function, but does not stop
trace.

X X X X

Table 22.6: Trace filter API functions

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

323

22.8.1 OS_TraceEnable()
Description

Enables tracing of filtered API calls.

Prototype
void OS_TraceEnable (void);

Additional Information

The trace filter conditions should have been set up before calling this function. This
functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

324 CHAPTER 22 embOSView: Profiling and analyzing

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

22.8.2 OS_TraceDisable()
Description

Disables tracing of API and user function calls.

Prototype
void OS_TraceDisable (void);

Additional Information

This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

325

22.8.3 OS_TraceEnableAll()
Description

Sets up Filter 0 (any task), enables tracing of all API calls and then enables the trace
function.

Prototype
void OS_TraceEnableAll (void);

Additional Information

The trace filter conditions of all the other trace filters are not affected.
This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

326 CHAPTER 22 embOSView: Profiling and analyzing

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

22.8.4 OS_TraceDisableAll()
Description

Sets up Filter 0 (any task), disables tracing of all API calls and also disables trace.

Prototype
void OS_TraceDisableAll (void);

Additional Information

The trace filter conditions of all the other trace filters are not affected, but tracing is
stopped.
This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

327

22.8.5 OS_TraceEnableId()
Description

Sets the specified ID value in Filter 0 (any task), thus enabling trace of the specified
function, but does not start trace.

Prototype
void OS_TraceEnableId (OS_U8 Id);

Additional Information

To enable trace of a specific embOS API function, you must use the correct Id value.
These values are defined as symbolic constants in RTOS.h.
This function may also enable trace of your own functions.
This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

Parameter Description

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

Table 22.7: OS_TraceEnableId() parameter list

328 CHAPTER 22 embOSView: Profiling and analyzing

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

22.8.6 OS_TraceDisableId()
Description

Resets the specified ID value in Filter 0 (any task), thus disabling trace of the speci-
fied function, but does not stop trace.

Prototype
void OS_TraceDisableId (OS_U8 Id);

Additional Information

To disable trace of a specific embOS API function, you must use the correct Id value.
These values are defined as symbolic constants in RTOS.h.
This function may also be used for disabling trace of your own functions.
This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

Parameter Description

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

Table 22.8: OS_TraceDisabledId() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

329

22.8.7 OS_TraceEnableFilterId()
Description

Sets the specified ID value in the specified trace filter, thus enabling trace of the
specified function, but does not start trace.

Prototype
void OS_TraceEnableFilterId (OS_U8 FilterIndex,

 OS_U8 Id)

Additional Information

To enable trace of a specific embOS API function, you must use the correct Id value.
These values are defined as symbolic constants in RTOS.h.
This function may also be used for enabling trace of your own functions.
This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

Parameter Description

FilterIndex
Index of the filter that should be affected:
0 <= FilterIndex <= 4
0 affects Filter 0 (any task) and so on.

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

Table 22.9: OS_TraceEnabledFilterId() parameter list

330 CHAPTER 22 embOSView: Profiling and analyzing

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

22.8.8 OS_TraceDisableFilterId()
Description

Resets the specified ID value in the specified trace filter, thus disabling trace of the
specified function, but does not stop trace.

Prototype
void OS_TraceDisableFilterId (OS_U8 FilterIndex,

 OS_U8 Id)

Additional Information

To disable trace of a specific embOS API function, you must use the correct Id value.
These values are defined as symbolic constants in RTOS.h.
This function may also be used for disabling trace of your own functions.
This functionality is available in trace builds only. In non-trace builds, the API call is
removed by the preprocessor.

Parameter Description

FilterIndex
Index of the filter that should be affected:
0 <= FilterIndex <= 4
0 affects Filter 0 (any task) and so on.

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

Table 22.10: OS_TraceDisableFilterId() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

331

22.9 Trace record functions
The following functions are used for writing (recording) data into the trace buffer. As
long as only embOS API calls should be recorded, these functions are used internally
by the trace build libraries. If, for some reason, you want to trace your own functions
with your own parameters, you may call one of these routines.

All of these functions have the following points in common:

� To record data, trace must be enabled.
� An ID value in the range from 100 to 127 must be used as the Id parameter. ID

values from 0 to 99 are internally reserved for embOS.
� The events specified as Id have to be enabled in any of the trace filters.
� Active system time and the current task are automatically recorded together with

the specified event.

332 CHAPTER 22 embOSView: Profiling and analyzing

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

22.10 API functions

Routine Description

m
a

in
T

a
s

k
IS

R
T

im
e

r

OS_TraceVoid()
Writes an entry identified only by its ID into
the trace buffer. X X X X

OS_TracePtr()
Writes an entry with ID and a pointer as
parameter into the trace buffer. X X X X

OS_TraceData()
Writes an entry with ID and an integer as
parameter into the trace buffer. X X X X

OS_TraceDataPtr()
Writes an entry with ID, an integer, and a
pointer as parameter into the trace buffer. X X X X

OS_TraceU32Ptr()
Writes an entry with ID, a 32-bit unsigned
integer, and a pointer as parameter into the
trace buffer.

X X X X

Table 22.11: Trace record API functions

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

333

22.10.1 OS_TraceVoid()
Description

Writes an entry identified only by its ID into the trace buffer.

Prototype
void OS_TraceVoid (OS_U8 Id);

Additional Information

This functionality is available in trace builds only, and the API call is not removed by
the preprocessor.

Parameter Description

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

Table 22.12: OS_TraceVoid() parameter list

334 CHAPTER 22 embOSView: Profiling and analyzing

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

22.10.2 OS_TracePtr()
Description

Writes an entry with ID and a pointer as parameter into the trace buffer.

Prototype
void OS_TracePtr (OS_U8 Id,
 void* p);

Additional Information

The pointer passed as parameter will be displayed in the trace list window of
embOSView. This functionality is available in trace builds only. In non-trace builds,
the API call is removed by the preprocessor.

Parameter Description

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

p Any void pointer that should be recorded as parameter.
Table 22.13: OS_TracePtr() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

335

22.10.3 OS_TraceData()
Description

Writes an entry with ID and an integer as parameter into the trace buffer.

Prototype
void OS_TraceData (OS_U8 Id,
 int v);

Additional Information

The value passed as parameter will be displayed in the trace list window of
embOSView.This functionality is available in trace builds only. In non-trace builds,
the API call is removed by the preprocessor.

Parameter Description

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

v Any integer value that should be recorded as parameter.
Table 22.14: OS_TraceData() parameter list

336 CHAPTER 22 embOSView: Profiling and analyzing

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

22.10.4 OS_TraceDataPtr()
Description

Writes an entry with ID, an integer, and a pointer as parameter into the trace buffer.

Prototype
void OS_TraceDataPtr (OS_U8 Id,
 int v,
 void* p);

Additional Information

The values passed as parameters will be displayed in the trace list window of embOS-
View. This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

Parameter Description

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

v Any integer value that should be recorded as parameter.
p Any void pointer that should be recorded as parameter.

Table 22.15: OS_TraceDataPtr() parameter list

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

337

22.10.5 OS_TraceU32Ptr()
Description

Writes an entry with ID, a 32-bit unsigned integer, and a pointer as parameter into
the trace buffer.

Prototype
void OS_TraceU32Ptr (OS_U8 Id,
 OS_U32 p0,
 void* p1);

Additional Information

This function may be used for recording two pointers. The values passed as parame-
ters will be displayed in the trace list window of embOSView. This functionality is
available in trace builds only. In non-trace builds, the API call is removed by the pre-
processor.

Parameter Description

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

p0 Any unsigned 32-bit value that should be recorded as parameter.
p1 Any void pointer that should be recorded as parameter.

Table 22.16: OS_TraceU32Ptr() parameter list

338 CHAPTER 22 embOSView: Profiling and analyzing

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

22.11 Application-controlled trace example
As described in the previous section, the user application can enable and set up the
trace conditions without a connection or command from embOSView. The trace
record functions can also be called from any user function to write data into the trace
buffer, using ID numbers from 100 to 127.

Controlling trace from the application can be very helpful for tracing API and user
functions just after starting the application, when the communication to embOSView
is not yet available or when the embOSView setup is not complete.

The example below shows how a trace filter can be set up by the application. The
function OS_TraceEnableID() sets the trace filter 0 which affects calls from any
running task. Therefore, the first call to SetState() in the example would not be
traced because there is no task running at that moment. The additional filter setup
routine OS_TraceEnableFilterId() is called with filter 1, which results in tracing
calls from outside running tasks.

Example code

#include "RTOS.h"

#ifndef OS_TRACE_FROM_START
 #define OS_TRACE_FROM_START 1
#endif

/* Application specific trace id numbers */
#define APP_TRACE_ID_SETSTATE 100

char MainState;

/* Sample of application routine with trace */

void SetState(char* pState, char Value) {
 #if OS_TRACE
 OS_TraceDataPtr(APP_TRACE_ID_SETSTATE, Value, pState);
 #endif
 * pState = Value;
}

/* Sample main routine, that enables and setup API and function call trace
 from start */
void main(void) {
 OS_InitKern();
 OS_InitHW();
 #if (OS_TRACE && OS_TRACE_FROM_START)
 /* OS_TRACE is defined in trace builds of the library */
 OS_TraceDisableAll(); /* Disable all API trace calls */
 OS_TraceEnableId(APP_TRACE_ID_SETSTATE); /* User trace */
 OS_TraceEnableFilterId(APP_TRACE_ID_SETSTATE); /* User trace */
 OS_TraceEnable();
 #endif

 /* Application specific initialization */
 SetState(&MainState, 1);
 OS_CREATETASK(&TCBMain, "MainTask", MainTask, PRIO_MAIN, MainStack);
 OS_Start(); /* Start multitasking -> MainTask() */
}

By default, embOSView lists all user function traces in the trace list window as Rou-
tine, followed by the specified ID and two parameters as hexadecimal values. The
example above would result in the following:

Routine100(0xabcd, 0x01)

where 0xabcd is the pointer address and 0x01 is the parameter recorded from
OS_TraceDataPtr().

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

339

22.12 User-defined functions
To use the built-in trace (available in trace builds of embOS) for application program
user functions, embOSView can be customized. This customization is done in the
setup file embOS.ini.

This setup file is parsed at the startup of embOSView. It is optional; you will not see
an error message if it cannot be found.

To enable trace setup for user functions, embOSView needs to know an ID number,
the function name and the type of two optional parameters that can be traced. The
format is explained in the following sample embOS.ini file:

Example code

File: embOS.ini
#
embOSView Setup file
#
embOSView loads this file at startup. It has to reside in the same
directory as the executable itself.
#
Note: The file is not required to run embOSView. You will not get
an error message if it is not found. However, you will get an error message
if the contents of the file are invalid.

#
Define add. API functions.
Syntax: API(<Index>, <Routinename> [parameters])
Index: Integer, between 100 and 127
Routinename: Identifier for the routine. Should be no more than 32 characters
parameters: Optional paramters. A max. of 2 parameters can be specified.
Valid parameters are:
int
ptr
Every parameter has to be placed after a colon.
#
API(100, "Routine100")
API(101, "Routine101", int)
API(102, "Routine102", int, ptr)

340 CHAPTER 22 embOSView: Profiling and analyzing

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

341

Chapter 23

Performance and resource usage

This chapter covers the performance and resource usage of embOS. It explains how
to benchmark embOS and contains information about the memory requirements in
typical systems which can be used to obtain sufficient estimates for most target sys-
tems.

342 CHAPTER 23 Performance and resource usage

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

23.1 Introduction
High performance combined with low resource usage has always been a major design
consideration. embOS runs on 8/16/32-bit CPUs. Depending on which features are
being used, even single-chip systems with less than 2 Kbytes ROM and 1 Kbyte RAM
can be supported by embOS. The actual performance and resource usage depends on
many factors (CPU, compiler, memory model, optimization, configuration, etc.).

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

343

23.2 Memory requirements
The memory requirements of embOS (RAM and ROM) differs depending on the used
features of the library. The following table shows the memory requirements for the
different modules.

* These values are typical values for a 32 bit cpu and depends on CPU, compiler, and
library model used.

Module Memory type Memory requirements

embOS kernel ROM 1100 - 1600 bytes *

embOS kernel RAM 18 - 50 bytes *

Mailbox RAM 8 - 20 bytes *

Semaphore RAM 2 bytes

Resource semaphore RAM 8 bytes *

Timer RAM 8 - 20 bytes *

Event RAM 0 bytes

Table 23.1: embOS memory requirements

344 CHAPTER 23 Performance and resource usage

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

23.3 Performance
The following section shows how to benchmark embOS with the supplied example
programs.

23.4 Benchmarking
embOS is designed to perform fast context switches. This section describes two dif-
ferent methods to calculate the execution time of a context switch from a task with
lower priority to a task with a higher priority.

The first method uses port pins and requires an oscilloscope. The second method
uses the high-resolution measurement functions. Example programs for both meth-
ods are supplied in the \Sample directory of your embOS shipment.

Segger uses these programs to benchmark the embOS performance. You can use
these examples to evaluate the benchmark results. Note, that the actual perfor-
mance depends on many factors (CPU, clock speed, toolchain, memory model, opti-
mization, configuration, etc.).

Please be aware that the amount of cycles are not equal to the amount of instruc-
tions. Many instructions on ARM7 need two or three cycles even at zero waitstates,
e.g. LDR needs 3 cycles.

The following table gives an overview about the variations of the context switch time
depending on the memory type and the CPU mode:

All named example performance values in the following section are determined with
the following system configuration:

All sources are compiled with IAR Embedded Workbench version 5.40 using thumb or
arm mode, XR library and high optimization level. embOS version 3.82 has been
used; values may differ for different builds.

Target Memory CPU mode Time / Cycles

ATMEL AT91SAM7S256 @ 48Mhz RAM ARM 4.09us / 196

ATMEL AT91SAM7S256 @ 48Mhz Flash ARM 6.406us / 307

ATMEL AT91SAM7S256 @ 48Mhz RAM Thumb 5.28us / 253

ATMEL AT91SAM7S256 @ 48Mhz Flash Thumb 6.823us / 327

NXP LPC3180 @ 208Mhz RAM ARM 0.948us / 197

Table 23.2: embOS context switch times

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

345

23.4.1 Measurement with port pins and oscilloscope
The example file MeasureCST_Scope.c uses the LED.c module to set and clear a port
pin. This allows measuring the context switch time with an oscilloscope.

The following source code is excerpt from MeasureCST_Scope.c:

#include "RTOS.h"
#include "LED.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task-control-blocks

/***
*
* HPTask
*/
static void HPTask(void) {
 while (1) {
 OS_Suspend(NULL); // Suspend high priority task
 LED_ClrLED0(); // Stop measurement
 }
}

/***
*
* LPTask
*/
static void LPTask(void) {
 while (1) {
 OS_Delay(100); // Synchronize to tick to avoid jitter
 //
 // Display measurement overhead
 //
 LED_SetLED0();
 LED_ClrLED0();
 //
 // Perform measurement
 //
 LED_SetLED0(); // Start measurement
 OS_Resume(&TCBHP); // Resume high priority task to force task switch
 }
}

/***
*
* main
*/
int main(void) {
 OS_IncDI(); // Initially disable interrupts
 OS_InitKern(); // Initialize OS
 OS_InitHW(); // Initialize Hardware for OS
 LED_Init(); // Initialize LED ports
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 99, StackLP);
 OS_Start(); // Start multitasking
 return 0;
}

346 CHAPTER 23 Performance and resource usage

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

23.4.1.1 Oscilloscope analysis
The context switch time is the time between switching the LED on and off. If the LED
is switched on with an active high signal, the context switch time is the time between
the rising and the falling edge of the signal. If the LED is switched on with an active
low signal, the signal polarity is reversed.

The real context switch time is shorter, because the signal also contains the overhead
of switching the LED on and off. The time of this overhead is also displayed on the
oscilloscope as a small peak right before the task switch time display and has to be
subtracted from the displayed context switch time. The picture below shows a simpli-
fied oscilloscope signal with an active-low LED signal (low means LED is illuminated).
There are switching points to determine:

� A = LED is switched on for overhead measurement
� B = LED is switched off for overhead measurement
� C = LED is switched on right before context switch in low-prio task
� D = LED is switched off right after context switch in high-prio task

The time needed to switch the LED on and off in subroutines is marked as time tAB.
The time needed for a complete context switch including the time needed to switch
the LED on and off in subroutines is marked as time tCD.

The context switching time tCS is calculated as follows:

tCS = tCD - tAB

Voltage [V]

A B C D

tAB tCD

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

347

23.4.1.2 Example measurements AT91SAM7S, ARM code in RAM
Task switching time has been measured with the parameters listed below:

embOS Version V3.82
Application program: MeasureCST_Scope.c
Hardware: AT91SAM7SE512 processor with 48MHz
Program is executing in RAM
ARM mode is used
Compiler used: IAR V5.40
CPU frequency (fCPU): 47.9232MHz
CPU clock cycle (tCycle): tCycle = 1 / fCPU = 1 / 47.9232MHz = 20,866ns

Measuring tAB and tCD

Resulting context switching time and number of cycles

The time which is required for the pure context switch is:
tCS = tCD - tAB = 212Cycles - 16Cycles = 196Cycles
=> 196Cycles (4.09us @48MHz).

tAB is measured as 312ns.
The number of cycles calcu-
lates as follows:
CyclesAB = tAB / tCycle
=332ns / 20.866ns
= 15.911Cycles
=> 16Cycles

tCD is measured as 4420.0ns.
The number of cycles calcu-
lates as follows:
CyclesCD = tCD / tCycle
= 4420.0ns / 20.866ns
= 211.83Cycles
=> 212Cycles

348 CHAPTER 23 Performance and resource usage

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

23.4.1.3 Example measurements AT91SAM7S, Thumb code in FLASH
Task switching time has been measured with the parameters listed below:

embOS Version V3.82
Application program: MeasureCST_Scope.c
Hardware: AT91SAM7E512 processor with 48MHz
Program is executing in FLASH
Thumb mode is used
Compiler used: IAR V5.40
CPU frequency (fCPU): 47.9232MHz
CPU clock cycle (tCycle): tCycle = 1 / fCPU = 1 / 47.9232MHz = 20,866ns

Measuring tAB and tCD

Resulting context switching time and number of cycles

The time which is required for the pure context switch is:
tCS = tCD - tAB = 347Cycles - 20Cycles = 327Cycles
=> 327Cycles (6.83us @48MHz).

tAB is measured as 436.8ns.
The number of cycles calcu-
lates as follows:
CyclesAB = tAB / tCycle
=416.0ns / 20.866ns
= 19.937Cycles
=> 20Cycles

tCD is measured as 7250ns.
The number of cycles calcu-
lates as follows:
CyclesCD = tCD / tCycle
= 7250ns / 20.866ns
= 347.46Cycles
=> 347Cycles

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

349

23.4.1.4 Measurement with high-resolution timer
The context switch time may be measured with the high-resolution timer. Refer to
section High-resolution measurement on page 273 for detailed information about the
embOS high-resolution measurement.

The example MeasureCST_HRTimer_embOSView.c uses a high resolution timer to
measure the context switch time from a low priority task to a high priority task and
displays the results on embOSView.

#include "RTOS.h"
#include "stdio.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task-control-blocks
static OS_U32 _Time; // Timer values

/***
*
* HPTask
*/
static void HPTask(void) {
 while (1) {
 OS_Suspend(NULL); // Suspend high priority task
 OS_Timing_End(&_Time); // Stop measurement
 }
}

/***
*
* LPTask
*/
static void LPTask(void) {
 char acBuffer[100]; // Output buffer
 OS_U32 MeasureOverhead; // Time for Measure Overhead
 OS_U32 v;

 //
 // Measure Overhead for time measurement so we can take
 // this into account by subtracting it
 //
 OS_Timing_Start(&MeasureOverhead);
 OS_Timing_End(&MeasureOverhead);
 //
 // Perform measurements in endless loop
 //
 while (1) {
 OS_Delay(100); // Sync. to tick to avoid jitter
 OS_Timing_Start(&_Time); // Start measurement
 OS_Resume(&TCBHP); // Resume high priority task to force task switch
 v = OS_Timing_GetCycles(&_Time) - OS_Timing_GetCycles(&MeasureOverhead);
 v = OS_ConvertCycles2us(1000 * v); // Convert cycles to nano-seconds
 sprintf(acBuffer, "Context switch time: %u.%.3u usec\r", v / 1000, v % 1000);
 OS_SendString(acBuffer);
 }
}

The example program calculates and subtracts the measurement overhead itself, so
there is no need to do this. The results will be transmitted to embOSView, so the
example runs on every target that supports UART communication to embOSView.

The example program MeasureCST_HRTimer_Printf.c is equal to the example pro-
gram MeasureCST_HRTimer_embOSView.c but displays the results with the printf()
function for those debuggers which support terminal output emulation.

350 CHAPTER 23 Performance and resource usage

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

351

Chapter 24

Debugging

352 CHAPTER 24 Debugging

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

24.1 Runtime errors
Some error conditions can be detected during runtime. These are:

� Usage of uninitialized data structures
� Invalid pointers
� Unused resource that has not been used by this task before
� OS_LeaveRegion() called more often than OS_EnterRegion()
� Stack overflow (this feature is not available for some processors)

Which runtime errors that can be detected depend on how much checking is per-
formed. Unfortunately, additional checking costs memory and speed (it is not that
significant, but there is a difference). If embOS detects a runtime error, it calls the
following routine:

void OS_Error(int ErrCode);

This routine is shipped as source code as part of the module OS_Error.c. It simply
disables further task switches and then, after re-enabling interrupts, loops forever as
follows:

Example

/*
 Run time error reaction
*/
void OS_Error(int ErrCode) {
 OS_EnterRegion(); /* Avoid further task switches */
 OS_DICnt =0; /* Allow interrupts so we can communicate */
 OS_EI();
 OS_Status = ErrCode;
 while (OS_Status);
}

If you are using embOSView, you can see the value and meaning of OS_Status in the
system variable window.

When using an emulator, you should set a breakpoint at the beginning of this routine
or simply stop the program after a failure. The error code is passed to the function as
parameter.

You can modify the routine to accommodate your own hardware; this could mean
that your target hardware sets an error-indicating LED or shows a little message on
the display.

Note: When modifying the OS_Error() routine, the first statement needs
to be the disabling of scheduler via OS_EnterRegion(); the last statement
needs to be the infinite loop.

If you look at the OS_Error() routine, you will see that it is more complicated than
necessary. The actual error code is assigned to the global variable OS_Status. The
program then waits for this variable to be reset. Simply reset this variable to 0 using
your in circuit-emulator, and you can easily step back to the program sequence caus-
ing the problem. Most of the time, looking at this part of the program will make the
problem clear.

24.1.1 OS_DEBUG_LEVEL
The define OS_DEBUG_LEVEL defines the embOS debug level. The default value is 1.
With higher debug level more debug code is included. The debug level 2 checks if
OS_RegionCnt overflows.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

353

24.2 List of error codes

Value Define Explanation

100 OS_ERR_ISR_INDEX
Index value out of bounds during inter-
rupt controller initialization or interrupt
installation.

101 OS_ERR_ISR_VECTOR
Default interrupt handler called, but
interrupt vector not initialized.

102 OS_ERR_ISR_PRIO Wrong interrupt priority
103 OS_ERR_WRONG_STACK Wrong stack used before main()

104 OS_ERR_ISR_NO_HANDLER
No interrupt handler was defined for
this interrupt

105 OS_ERR_TLS_INIT
OS_TLS_Init() called multiple times for
one task. (Port specific error message)

106 OS_ERR_MB_BUFFER_SIZE

The maximum buffer size of 64KB for
one mailbox buffer is exceed by call of
OS_CreateMB(). THis limit exists on 8
and 16bit CPUs only.

116 OS_ERR_EXTEND_CONTEXT
OS_ExtendTaskContext called multiple
times from one task

117 OS_ERR_TIMESLICE

An illegal timeslice value of 0 was used
when calling OS_CreateTask(),
OS_CreateTaskEx() or
OS_SetTimeSlice().
Since version 3.86f of embOS, a time
slice of zero is legal (as described in
chapter 4). The error is not generated
when a task is created with a timeslice
value of 0.

118 OS_ERR_INTERNAL
OS_ChangeTask called without Region-
Cnt set (or other internal error)

119 OS_ERR_IDLE_RETURNS Idle loop should not return
120 OS_ERR_STACK Stack overflow or invalid stack.
121 OS_ERR_CSEMA_OVERFLOW Counting semaphore overflow.

122 OS_ERR_POWER_OVER
Counter overflows when calling
OS_POWER_UsageInc()

123 OS_ERR_POWER_UNDER
Counter underflows when calling
OS_POWER_UsageDec()

124 OS_ERR_POWER_INDEX
Index to high, exceeds
(OS_POWER_NUM_COUNTERS - 1)

125 OS_ERR_SYS_STACK System stack overflow
126 OS_ERR_INT_STACK Interrupt stack overflow

128 OS_ERR_INV_TASK
Task control block invalid, not initial-
ized or overwritten.

129 OS_ERR_INV_TIMER
Timer control block invalid, not initial-
ized or overwritten.

130 OS_ERR_INV_MAILBOX
Mailbox control block invalid, not ini-
tialized or overwritten.

132 OS_ERR_INV_CSEMA
Control block for counting semaphore
invalid, not initialized or overwritten.

133 OS_ERR_INV_RSEMA
Control block for resource semaphore
invalid, not initialized or overwritten.

Table 24.1: Error code list

354 CHAPTER 24 Debugging

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

135 OS_ERR_MAILBOX_NOT1

One of the following 1-byte mailbox
functions has been used on a multi-
byte mailbox:
OS_PutMail1()
OS_PutMailCond1()
OS_GetMail1()
OS_GetMailCond1().

136 OS_ERR_MAILBOX_DELETE
OS_DeleteMB() was called on a mail-
box with waiting tasks.

137 OS_ERR_CSEMA_DELETE
OS_DeleteCSema() was called on a
counting semaphore with waiting
tasks.

138 OS_ERR_RSEMA_DELETE
OS_DeleteRSema() was called on a
resource semaphore which is claimed
by a task.

140 OS_ERR_MAILBOX_NOT_IN_LIST

The mailbox is not in the list of mail-
boxes as expected. Possible reasons
may be that one mailbox data struc-
ture was overwritten.

142 OS_ERR_TASKLIST_CORRUPT The OS internal task list is destroyed.
143 OS_ERR_QUEUE_INUSE Queue in use
144 OS_ERR_QUEUE_NOT_INUSE Queue not in use
145 OS_ERR_QUEUE_INVALID Queue invalid

146 OS_ERR_QUEUE_DELETE
A queue was deleted by a call of
OS_Q_Delete() while tasks are waiting
at the queue.

150 OS_ERR_UNUSE_BEFORE_USE
OS_Unuse() has been called before
OS_Use().

151 OS_ERR_LEAVEREGION_BEFORE_ENTE
RREGION

OS_LeaveRegion() has been called
before OS_EnterRegion().

152 OS_ERR_LEAVEINT Error in OS_LeaveInterrupt().

153 OS_ERR_DICNT

The interrupt disable counter
(OS_DICnt) is out of range (0-15). The
counter is affected by the following API
calls:
OS_IncDI()
OS_DecRI()
OS_EnterInterrupt()
OS_LeaveInterrupt()

154 OS_ERR_INTERRUPT_DISABLED
OS_Delay() or OS_DelayUntil() called
from inside a critical region with inter-
rupts disabled.

155 OS_ERR_TASK_ENDS_WITHOUT_TERMI
NATE

Task routine returns without
0S_TerminateTask()

156 OS_ERR_RESOURCE_OWNER
OS_Unuse() has been called from a
task which does not own the resource.

157 OS_ERR_REGIONCNT The Region counter overflows (>255)

160 OS_ERR_ILLEGAL_IN_ISR

Illegal function call in an interrupt ser-
vice routine: A routine that may not be
called from within an ISR has been
called from within an ISR.

161 OS_ERR_ILLEGAL_IN_TIMER

Illegal function call in an interrupt ser-
vice routine: A routine that may not be
called from within a software timer has
been called from within a timer.

Value Define Explanation

Table 24.1: Error code list (Continued)

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

355

162 OS_ERR_ILLEGAL_OUT_ISR
embOS timer tick handler or UART han-
dler for embOSView was called without
a call of OS_EnterInterrupt().

163 OS_ERR_NOT_IN_ISR
OS_EnterInterrupt() has been called,
but CPU is not in ISR state

164 OS_ERR_IN_ISR
OS_EnterInterrupt() has not been
called, but CPU is in ISR stat

165 OS_ERR_INIT_NOT_CALLED OS_InitKern() was not called

166 OS_ERR_CPU_STATE_ISR_ILLEGAL
OS-function called from ISR with high
priority

167 OS_ERR_CPU_STATE_ILLEGAL CPU runs in illegal mode

168 OS_ERR_CPU_STATE_UNKNOWN
CPU runs in unknown mode or mode
could not be read

170 OS_ERR_2USE_TASK
Task control block has been initialized
by calling a create function twice.

171 OS_ERR_2USE_TIMER
Timer control block has been initialized
by calling a create function twice.

172 OS_ERR_2USE_MAILBOX
Mailbox control block has been initial-
ized by calling a create function twice.

174 OS_ERR_2USE_CSEMA
Counting semaphore has been initial-
ized by calling a create function twice.

175 OS_ERR_2USE_RSEMA
Resource semaphore has been initial-
ized by calling a create function twice.

176 OS_ERR_2USE_MEMF
Fixed size memory pool has been ini-
tialized by calling a create function
twice.

180 OS_ERR_NESTED_RX_INT
OS_Rx interrupt handler for embOS-
View is nested. Disable nestable inter-
rupts.

190 OS_ERR_MEMF_INV
Fixed size memory block control struc-
ture not created before use.

191 OS_ERR_MEMF_INV_PTR
Pointer to memory block does not
belong to memory pool on Release

192 OS_ERR_MEMF_PTR_FREE
Pointer to memory block is already free
when calling OS_MEMF_Release(). Pos-
sibly, same pointer was released twice.

193 OS_ERR_MEMF_RELEASE

OS_MEMF_Release() was called for a
memory pool, that had no memory
block allocated (all available blocks
were already free before).

194 OS_ERR_POOLADDR
OS_MEMF_Create() was called with a
memory pool base address which is not
located at a word aligned base address

195 OS_ERR_BLOCKSIZE
OS_MEMF_Create() was called with a
data block size which is not a multiple
of processors word size.

200 OS_ERR_SUSPEND_TOO_OFTEN
Nested call of OS_Suspend() exceeded
OS_MAX_SUSPEND_CNT

201 OS_ERR_RESUME_BEFORE_SUSPEND
OS_Resume() called on a task that was
not suspended.

202 OS_ERR_TASK_PRIORITY

OS_CreateTask() was called with a
task priority which is already assigned
to another task. This error can only
occur when embOS was compiled with-
out round robin support.

Value Define Explanation

Table 24.1: Error code list (Continued)

356 CHAPTER 24 Debugging

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

The latest version of the defined error table is part of the comment just before the
OS_Error() function declaration in the source file OS_Error.c.

210 OS_ERR_EVENT_INVALID
An OS_EVENT object was used before it
was created.

211 OS_ERR_2USE_EVENTOBJ
An OS_EVENT object was created twice.
This error should not be reported. Con-
tact Segger support.

212 OS_ERR_EVENT_DELETE
An OS_EVENT object was deleted with
waiting tasks

223 OS_ERR_TICKHOOK_INVALID Invalid tick hook.
224 OS_ERR_TICKHOOK_FUNC_INVALID Invalid tick hook function

230 OS_ERR_NON_ALIGNED_INVALIDATE
Cache invalidation needs to be cache
line aligned

254 OS_ERR_TRIAL_LIMIT Trial time limit reached

Value Define Explanation

Table 24.1: Error code list (Continued)

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

357

24.3 Application defined error codes
The embOS error codes begin at 100. The range 1 - 99 can be used for application
defined error codes. With it you can call OS_Error() with you own defined error code
from your application.

Example

#define OS_ERR_APPL 0x02

void UserAppFunc(void) {
 int r;
 r = DoSomething()
 if (r == 0) {
 OS_Error(OS_ERR_APPL)
 }
}

358 CHAPTER 24 Debugging

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

359

Chapter 25

Supported development tools

360 CHAPTER 25 Supported development tools

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

25.1 Overview
embOS has been developed with and for a specific C compiler version for the selected
target processor. Check the file RELEASE.HTML for details. It works with the specified
C compiler only, because other compilers may use different calling conventions
(incompatible object file formats) and therefore might be incompatible. However, if
you prefer to use a different C compiler, contact us and we will do our best to satisfy
your needs in the shortest possible time.

Reentrance

All routines that can be used from different tasks at the same time have to be fully
reentrant. A routine is in use from the moment it is called until it returns or the task
that has called it is terminated.

All routines supplied with your real-time operating system are fully reentrant. If for
some reason you need to have non-reentrant routines in your program that can be
used from more than one task, it is recommended to use a resource semaphore to
avoid this kind of problem.

C routines and reentrance

Normally, the C compiler generates code that is fully reentrant. However, the com-
piler may have options that force it to generate non-reentrant code. It is recom-
mended not to use these options, although it is possible to do so under certain
circumstances.

Assembly routines and reentrance

As long as assembly functions access local variables and parameters only, they are
fully reentrant. Everything else has to be thought about carefully.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

361

Chapter 26

Limitations

362 CHAPTER 26 Limitations

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

The following limitations exist for embOS:

We appreciate your feedback regarding possible additional functions and we will do
our best to implement these functions if they fit into the concept.

Do not hesitate to contact us. If you need to make changes to embOS, the full source
code is available.

Max. no. of tasks: limited by available RAM only
Max. no. of priorities: 255
Max. no. of semaphores: limited by available RAM only
Max. no. of mailboxes: limited by available RAM only
Max. no. of queues: limited by available RAM only
Max. size. of queues: limited by available RAM only
Max. no. of timers limited by available RAM only
Task specific Event flags: 8 bits / task (32 bits on 32 bit CPU)

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

363

Chapter 27

Source code of kernel and library

364 CHAPTER 27 Source code of kernel and library

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

27.1 Introduction
embOS is available in two versions:

1. Object version: Object code + hardware initialization source.
2. Full source version: Complete source code.

Because this document describes the object version, the internal data structures are
not explained in detail. The object version offers the full functionality of embOS
including all supported memory models of the compiler, the debug libraries as
described and the source code for idle task and hardware initialization. However, the
object version does not allow source-level debugging of the library routines and the
kernel.

The full source version gives you the ultimate options: embOS can be recompiled for
different data sizes; different compile options give you full control of the generated
code, making it possible to optimize the system for versatility or minimum memory
requirements. You can debug the entire system and even modify it for new memory
models or other CPUs.

The source code distribution of embOS contains the following additional files:

� The CPU folder contains all CPU and compiler specific source code and header
files used for building the embOS libraries. It also contains the sample start
project, workspace, and source files for the embOS demo project delivered in the
Start folder. Normally, you should not modify any of the files in the CPU folder.

� The GenOSSrc folder contains all embOS sources and a batch file used for compil-
ing all of them in batch mode as described in the following section.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

365

27.2 Building embOS libraries
The embOS libraries can only be built if you have purchased a source code version of
embOS.

In the root path of embOS, you will find a DOS batch file PREP.BAT, which needs to
be modified to match the installation directory of your C compiler. Once this is done,
you can call the batch file M.BAT to build all embOS libraries for your CPU.

Note: Rebuilding the embOS libraries using the M.bat file will delete and
rebuild the entire Start folder. If you made any modifications or built own
projects in the Start folder, make a copy of your start folder before rebuild-
ing embOS.

The build process should run without any error or warning message. If the build
process reports any problem, check the following:

� Are you using the same compiler version as mentioned in the file RELEASE.HTML?
� Can you compile a simple test file after running PREP.BAT and does it really use

the compiler version you have specified?
� Is there anything mentioned about possible compiler warnings in the

RELEASE.HTML?

If you still have a problem, let us know.

The whole build process is controlled with a few amount of batch files which are
located in the root directory of your source code distribution:

� Prep.bat: Sets up the environment for the compiler, assembler, and linker.
Ensure, that this file sets the path and additional include directories which are
needed for your compiler. Normally, this batch file is the only one which might
have to be modified to build the embOS libraries. Normally, this file is called from
M.bat during the build process of all libraries.

� Clean.bat: Deletes the whole output of the embOS library build process. It is
called automatically during the build process, before new libraries are generated.
Normally it deletes the Start folder. Therefore, be careful not to call this batch
file accidentally. Normally, this file is called initially by M.bat during the build
process of all libraries.

� cc.bat: This batch file calls the compiler and is used for compiling one embOS
source file without debug information output. Most compiler options are defined
in this file and should normally not be modified. For your purposes, you might
activate debug output and may also modify the optimization level. All modifica-
tions should be done with care. Normally, this file is called from the embOS inter-
nal batch file CC_OS.bat and can not be called directly.

� ccd.bat: This batch file calls the compiler and is used for compiling OS_Global.c
which contains all global variables. All compiler settings are equal to those used
in cc.bat, except debug output is activated to enable debugging of global vari-
ables when using embOS libraries. Normally, this file is called from the embOS
internal batch file CC_OS.bat and can not be called directly.

� asm.bat: This batch file calls the assembler and is used for assembling the
assembly part of embOS which normally contains the task switch functionality.
Normally this file is called from the embOS internal batch file CC_OS.bat and can
not be called directly.

� MakeH.bat: Builds the embOS header file RTOS.h which is composed from the
CPU/compiler-specific part OS_Chip.h and the generic part OS_RAW.h. Normally,
RTOS.h is output in the subfolder Start\Inc.

� M1.bat: This batch file is called from M.bat and is used for building one specific
embOS library, it can not be called directly.

� M.bat: This batch file has to be called to generate all embOS libraries. It initially
calls Clean.bat and therefore deletes the whole Start folder. The generated
libraries are then placed in a new Start folder which contains start projects,
libraries, header, and sample start programs.

366 CHAPTER 27 Source code of kernel and library

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

27.3 Major compile time switches
Many features of embOS may be modified by compile-time switches. All of them are
predefined to reasonable values in the distribution of embOS. The compile-time
switches must not be changed in RTOS.h. When the compile-time switches should be
modified to alter any of the embOS features, the modification has to be done in
OS_RAW.h or has to be passed as parameters during the library build process. embOS
sources have to be recompiled and RTOS.h has to be rebuilt with the modified
switches.

27.3.1 OS_RR_SUPPORTED
This switch defines whether round robin scheduling algorithm is supported. All
embOS versions enable round robin scheduling by default. If you never use round
robin scheduling and all of your tasks run on different individual priorities, you may
disable round robin scheduling by defining this switch to 0. This will save RAM and
ROM and will also speed up the task-switching process. Ensure that none of your
tasks ever run on the same priority when you disable round robin scheduling. This
compile time switch must not be modified in RTOS.h. It has to be modified in
OS_RAW.h before embOS libraries are rebuilt.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

367

Chapter 28

FAQ (frequently asked questions)

368 CHAPTER 28 FAQ (frequently asked questions)

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

Q: Can I implement different priority scheduling algorithms?
A: Yes, the system is fully dynamic, which means that task priorities can be changed

while the system is running (using OS_SetPriority()). This feature can be used
for changing priorities in a way so that basically every desired algorithm can be
implemented. One way would be to have a task control task with a priority higher
than that of all other tasks that dynamically changes priorities. Normally, the
priority-controlled round-robin algorithm is perfect for real-time applications.

Q: Can I use a different interrupt source for embOS?
A: Yes, any periodical signal can be used, that is any internal timer, but it could also

be an external signal.

Q: What interrupt priorities can I use for the interrupts my program uses?
A: Any.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

369

Chapter 29

Support

This chapter should help if any problem occurs. This could be a problem with the tool
chain, with the hardware or the use of the embOS functions and it describes how to
contact the embOS support.

370 CHAPTER 29 Support

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

29.1 Contacting support
If you are a registered embOS user and you need to contact the embOS support
please send the following information via email to support_embos@segger.com:

� Which embOS do you use? (CPU, compiler).
� The embOS version.
� Your embOS registration number.
� If you are unsure about the above information you can also use the name of the

embOS zip file (which contains the above information).
� A detailed description of the problem.
� Optionally a project with which we can reproduce the problem.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

371

Chapter 30

Glossary

372 CHAPTER 30 Glossary

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

Cooperative multi-
tasking

A scheduling system in which each task is allowed to run until
it gives up the CPU; an ISR can make a higher priority task
ready, but the interrupted task will be returned to and finished
first.

Counting sema-
phore

A type of semaphore that keeps track of multiple resources.
Used when a task must wait for something that can be sig-
naled more than once.

CPU Central Processing Unit. The �brain� of a microcontroller; the
part of a processor that carries out instructions.

Critical region A section of code which must be executed without interrup-
tion.

Event A message sent to a single, specified task that something has
occurred. The task then becomes ready.

Interrupt Handler Interrupt Service Routine. The routine is called automatically
by the processor when an interrupt is acknowledged. ISRs
must preserve the entire context of a task (all registers).

ISR Interrupt Service Routine. The routine is called automatically
by the processor when an interrupt is acknowledged. ISRs
must preserve the entire context of a task (all registers).

Mailbox A data buffer managed by the RTOS, used for sending mes-
sages to a task or interrupt handler.

Message An item of data (sent to a mailbox, queue, or other container
for data).

Multitasking The execution of multiple software routines independently of
one another. The OS divides the processor's time so that the
different routines (tasks) appear to be happening simulta-
neously.

NMI Non-Maskable Interrupt. An interrupt that cannot be masked
(disabled) by software. Example: Watchdog timer-interrupt.

Preemptive multi-
tasking

A scheduling system in which the highest priority task that is
ready will always be executed. If an ISR makes a higher prior-
ity task ready, that task will be executed before the inter-
rupted task is returned to.

Process Processes are tasks with their own memory layout. 2 pro-
cesses can not normally access the same memory locations.
Different processes typically have different access rights and
(in case of MMUs) different translation tables.

Processor Short for microprocessor. The CPU core of a controller

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

373

Priority The relative importance of one task to another. Every task in
an RTOS has a priority.

Priority inversion A situation in which a high priority task is delayed while it
waits for access to a shared resource which is in use by a
lower priority task. A task with medium priority in the ready
state may run, instead of the high priority task. embOS avoids
this situation by priority inheritance.

Queue Like a mailbox, but used for sending larger messages, or mes-
sages of individual size, to a task or an interrupt handler.

Ready Any task that is in �ready state� will be activated when no
other task with higher priority is in �ready state�.

Resource Anything in the computer system with limited availability (for
example memory, timers, computation time). Essentially, any-
thing used by a task.

Resource sema-
phore

A type of semaphore used for managing resources by ensuring
that only one task has access to a resource at a time.

RTOS Real-time Operating System.

Running task Only one task can execute at any given time. The task that is
currently executing is called the running task.

Scheduler The program section of an RTOS that selects the active task,
based on which tasks are ready to run, their relative priorities,
and the scheduling system being used.

Semaphore A data structure used for synchronizing tasks.

Software timer A data structure which calls a user-specified routine after a
specified delay.

Stack An area of memory with LIFO storage of parameters, auto-
matic variables, return addresses, and other information that
needs to be maintained across function calls. In multitasking
systems, each task normally has its own stack.

Superloop A program that runs in an infinite loop and uses no real-time
kernel. ISRs are used for real-time parts of the software.

Task A program running on a processor. A multitasking system
allows multiple tasks to execute independently from one
another.

Thread Threads are tasks which share the same memory layout. 2
threads can access the same memory locations. If virtual
memory is used, the same virtual to physical translation and
access rights are used
(-> Thread, Process)

374 CHAPTER 30 Glossary

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

Tick The OS timer interrupt. Usually equals 1 ms.

Timeslice The time (number of ticks) for which a task will be executed
until a round-robin task change may occur.

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

375

Index

B
Baudrate for embOSView 300

C
C startup ..37
Compiler .. 360
Configuration defines 299
Configuration, of embOS285, 295�303
Counting Semaphores 121
Critical regions30, 261�265

D
Debug version, of embOS38
Debugging 351�356

error codes353, 357
runtime errors 352

Development tools 359

E
embOS

building libraries of 365
different builds of38
features of21

embOS features21
embOS profiling38
embOSView 311�339

API trace .. 319
overview .. 312
SIO ... 315
system variables window 314
task list window 313
trace filter setup functions 321
trace record functions 331

Error codes353, 357
Events 33, 173�183, 185�202

I
Internal data-structures 284
Interrupt control macros 255
Interrupt level25
Interrupt service routines25, 239

Interrupts239�260
enabling/disabling252
interrupt handler246

ISR ..239

L
Libraries, building365
Limitations, of embOS361

M
Mailboxes 33, 135�154

basics ..137
single-byte139

Measurement269
high-resolution273
low-resolution269

Memory management
fixed block size207
heap memory203

Memory pools207�221
Multitasking systems 27

cooperative multitasking 29
preemptives multitasking 28

N
Nesting interrupts256
Non-maskable interrupts260

O
OS_AddLoadMeasurement()308
OS_AddOnTerminateHook() 48
OS_BAUDRATE299
OS_CallISR()248
OS_CallNestableISR()249
OS_ClearEvents()183
OS_ClearMB()152
OS_COM_Init()297
OS_COM_Send1()297
OS_ConvertCycles2us()297
OS_CPU_Load310
OS_CREATECSEMA()124
OS_CreateCSema()125

376 Index

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

OS_CREATEMB() 141
OS_CREATERSEMA() 111
OS_CREATETASK() 49
OS_CreateTask() 51
OS_CREATETASK_EX() 53
OS_CreateTaskEx() 54
OS_CREATETIMER() 84
OS_CreateTimer() 85
OS_CREATETIMER_EX() 95
OS_CreateTimerEx() 96
OS_CSemaRequest() 130
OS_DecRI() 253
OS_Delay() .. 55
OS_DelayUntil() 56
OS_Delayus() 57
OS_DeleteCSema() 133
OS_DeleteMB() 154
OS_DeleteTimer() 90
OS_DeleteTimerEx() 101
OS_DI() ... 254
OS_EI() ... 254
OS_EnterInterrupt() 250
OS_EnterNestableInterrupt() 257
OS_EnterRegion() 264
OS_EVENT_Create() 188
OS_EVENT_CreateEx() 189
OS_EVENT_Delete() 197
OS_EVENT_Get() 196
OS_EVENT_GetResetMode() 199
OS_EVENT_Pulse() 195
OS_EVENT_Reset() 194
OS_EVENT_RESET_MODE_AUTO .. 189, 198
OS_EVENT_RESET_MODE_MANUAL 189, 198
OS_EVENT_RESET_MODE_SEMIAUTO . 189,

198
OS_EVENT_Set() 193
OS_EVENT_SetResetMode() 198
OS_EVENT_Wait() 190
OS_EVENT_WaitTimed() 191
OS_ExtendTaskContext() 58
OS_free() ... 205
OS_FSYS .. 299
OS_GetCSemaValue() 131
OS_GetEventsOccurred() 182
OS_GetIntStackBase() 235
OS_GetIntStackSize() 236
OS_GetIntStackSpace() 237
OS_GetIntStackUsed() 238
OS_GetLoadMeasurement() 309
OS_GetMail() 146
OS_GetMail1() 146
OS_GetMailCond() 147
OS_GetMailCond1() 147
OS_GetMailTimed() 148
OS_GetMessageCnt() 153
OS_GetpCurrentTask() 61
OS_GetpCurrentTimer() 94
OS_GetpCurrentTimerEx() 105
OS_GetPriority() 62
OS_GetResourceOwner() 118
OS_GetSemaValue() 117
OS_GetStackBase() 227
OS_GetStackSize() 228
OS_GetStackSpace() 229
OS_GetStackUsed() 230
OS_GetSysStackBase() 231
OS_GetSysStackSize() 232

OS_GetSysStackSpace() 233
OS_GetSysStackUsed() 234
OS_GetTaskID()64
OS_GetTaskName()65
OS_GetTime() 271
OS_GetTime_Cycles() 297
OS_GetTime32() 272
OS_GetTimerPeriod()91
OS_GetTimerPeriodEx() 102
OS_GetTimerStatus()93
OS_GetTimerStatusEx() 104
OS_GetTimerValue()92
OS_GetTimerValueEx() 103
OS_GetTimeSliceRem()66
OS_Global.Time 283
OS_Global.TimeDex 283
OS_Idle()297, 302
OS_IncDI() 253
OS_InInterrupt() 259
OS_InitHW() 297
OS_ISR_rx() 297
OS_ISR_tx() 297
OS_IsRunning()67
OS_IsTask() ..68
OS_LeaveInterrupt() 251
OS_LeaveNestableInterrupt() 258
OS_LeaveRegion() 265
OS_malloc() 205
OS_MEMF_Alloc() 212
OS_MEMF_AllocTimed() 213
OS_MEMF_Create() 210
OS_MEMF_Delete() 211
OS_MEMF_FreeBlock() 216
OS_MEMF_GetBlockSize() 218
OS_MEMF_GetMaxUsed() 220
OS_MEMF_GetNumBlocks() 217
OS_MEMF_GetNumFreeBlocks() 219
OS_MEMF_IsInPool() 221
OS_MEMF_Release() 215
OS_MEMF_Request() 214
OS_ON_TERMINATE_FUNC48
OS_PeekMail() 151
OS_PutMail() 142
OS_PutMail1() 142
OS_PutMailCond() 143
OS_PutMailCond1() 143
OS_PutMailFront() 144
OS_PutMailFront1() 144
OS_PutMailFrontCond() 145
OS_PutMailFrontCond1() 145
OS_Q_Clear() 167
OS_Q_Create() 159
OS_Q_Delete() 169
OS_Q_GetMessageCnt() 168
OS_Q_GetPtr()163, 171
OS_Q_GetPtrCond() 164
OS_Q_GetPtrTimed() 165
OS_Q_IsInUse() 170
OS_Q_Purge() 166
OS_Q_Put() 160
OS_Q_PutTimed() 162
OS_realloc() 205
OS_Request() 116
OS_RestoreI() 254
OS_Resume()69
OS_ResumeAllSuspendedTasks()70
OS_RetriggerTimer()88

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

Index 377

OS_RetriggerTimerEx()99
OS_SendString() 317
OS_SetCSemaValue() 132
OS_SetInitialSuspendCnt()71
OS_SetPriority()72
OS_SetRxCallback() 318
OS_SetTaskName()73
OS_SetTimerPeriod()89
OS_SetTimerPeriodEx() 100
OS_SetTimeSlice()74
OS_SignalCSema() 126
OS_SignalCSemaMax() 127
OS_SignalEvent() 180
OS_Start() ..75
OS_StartTimer()86
OS_StartTimerEx()97
OS_STAT_GetLoad() 306
OS_STAT_Sample() 305
OS_StopTimer()87
OS_StopTimerEx()98
OS_Suspend()76
OS_SuspendAllTasks()77
OS_TASK_EVENT 174
OS_TerminateTask()78
OS_TICK_AddHook() 293
OS_TICK_Config() 291
OS_TICK_Handle() 288
OS_TICK_HandleEx() 289
OS_TICK_HandleNoHook() 290
OS_TICK_RemoveHook() 294
OS_Timing_End() 276
OS_Timing_GetCycles() 278
OS_Timing_Getus() 277
OS_Timing_Start() 275
OS_TraceData() 335
OS_TraceDataPtr() 336
OS_TraceDisable() 324
OS_TraceDisableAll() 326
OS_TraceDisableFilterId() 330
OS_TraceDisableId() 328
OS_TraceEnable() 323
OS_TraceEnableAll() 325
OS_TraceEnableFilterId() 329
OS_TraceEnableId() 327
OS_TracePtr() 334
OS_TraceU32Ptr() 337
OS_TraceVoid() 333
OS_UART .. 299
OS_Unuse() 115
OS_Use() ... 112
OS_UseTimed() 114
OS_WaitCSema() 128
OS_WaitCSemaTimed() 129
OS_WaitEvent() 176
OS_WaitEventTimed() 178
OS_WaitMail() 149
OS_WaitMailTimed() 150
OS_WaitSingleEvent() 177
OS_WaitSingleEventTimed() 179
OS_WakeTask()79

P
Preemptive multitasking28
Priority ...30
Priority inheritance31
priority inversion31

Profiling ... 38

Q
Queues 33, 155�170

R
Reentrance ..360
Release version, of embOS 38
Resource semaphores107
Round-robin 30
RTOSInit.c configuration296
Runtime errors352

S
Scheduler .. 30
Semaphores 33

Counting121�133
Resource107�119

Software timer 81�94
Software timer API functions 83
Stack 34, 223�238
Stack pointer 34
Stacks

switching ... 35
Superloop .. 25
Switching stacks 35
Syntax, conventions used 9
System variables281�284

T
Task communication 33
Task control block 34, 42
Task routines ??� 80
Tasks24, 40�41

communication 33
global variables 33
multitasking systems 27
periodical polling 33
single-task systems 25
status ... 36
superloop .. 25
switching ... 34

TCB ... 34
Time measurement267�280
Time variables283

U
UART ..312
UART, for embOS300

V
Vector table file300

378 Index

UM01001 User & Reference Guide for embOS © 1995- 2013 SEGGER Microcontroller GmbH & Co. KG

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001
Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

 Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

 http://moschip.ru/get-element

 Вы можете разместить у нас заказ для любого Вашего проекта, будь то
серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и
пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы
двойного назначения, продукции таких производителей как XILINX, Intel
(ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits,
Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов,
предоставляет возможность заказывать и получать с международных складов
практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить
квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с
ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

 Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:
moschip.ru
moschip.ru_4

moschip.ru_6
moschip.ru_9

mailto:info@moschip.ru

