MJ11021(PNP) MJ11022 (NPN) # **Complementary Darlington Silicon Power Transistors** Complementary Darlington Silicon Power Transistors are designed for use as general purpose amplifiers, low frequency switching and motor control applications. #### **Features** - High dc Current Gain @ 10 Adc h_{FE} = 400 Min (All Types) - Collector-Emitter Sustaining Voltage $$V_{CEO(sus)} = 250 \text{ Vdc (Min)} - \text{MJ}11022, 21$$ • Low Collector-Emitter Saturation $$V_{CE(sat)} = 1.0 \text{ V (Typ)} @ I_C = 5.0 \text{ A}$$ = 1.8 V (Typ) @ $I_C = 10 \text{ A}$ - 100% SOA Tested @ $V_{CE} = 44 \text{ V}$ - $I_{\rm C} = 4.0 \; {\rm A}$ t = 250 ms • Pb-Free Packages are Available* #### MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |--|-----------------------------------|----------------------------|-----------| | Collector-Emitter Voltage | V _{CEO} | 250 | Vdc | | Collector-Base Voltage | V _{CBO} | 250 | Vdc | | Emitter-Base Voltage | V _{EBO} | 50 | Vdc | | Collector Current - Continuous
- Peak (Note 1) | I _C | 15
30 | Adc | | Base Current | Ι _Β | 0.5 | Adc | | Total Power Dissipation @ T _C = 25°C
Derate Above 25°C | P _D | 175
1.16 | W
W/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -65 to +175
-65 to +200 | °C | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--------------------------------------|-----------------|------|------| | Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 0.86 | °C/W | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. Pulse Test: Pulse Width = 5 ms, Duty Cycle \leq 10%. 1 ## ON Semiconductor® http://onsemi.com # 15 AMPERE COMPLEMENTARY DARLINGTON POWER TRANSISTORS 250 VOLTS, 175 WATTS TO-204 (TO-3) CASE 1-07 STYLE 1 ## MARKING DIAGRAM MJ1102x = Device Code x = 1 or 2 G = Pb-Free Package A = Location Code YY = Year WW = Work Week MEX = Country of Orgin #### **ORDERING INFORMATION** | Device | Package | Shipping | |----------|-------------------|----------------| | MJ11021 | TO-3 | 100 Units/Tray | | MJ11021G | TO-3
(Pb-Free) | 100 Units/Tray | | MJ11022 | TO-3 | 100 Units/Tray | | MJ11022G | TO-3
(Pb-Free) | 100 Units/Tray | ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # MJ11021(PNP) # MJ11022 (NPN) Figure 1. Power Derating For NPN test circuit reverse diode and voltage polarities. Figure 2. Switching Times Test Circuit #### **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) | | Symbol | Min | Max | Unit | |--------------------|-----------------------|--|---|-------------------------------------| | | | • | | | | MJ11021, MJ11022 | V _{CEO(sus)} | 250 | _ | Vdc | | MJ11021, MJ11022 | I _{CEO} | _ | 1.0 | mAdc | | | I _{CEV} | _
_ | 0.5
5.0 | mAdc | | | I _{EBO} | - | 2.0 | mAdc | | | | | | | | | h _{FE} | 400
100 | 15,000
– | - | | | V _{CE(sat)} | _
_ | 2.0
3.4 | Vdc | | | V _{BE(on)} | - | 2.8 | Vdc | | | V _{BE(sat)} | - | 3.8 | Vdc | | | | | | | | | [h _{fe}] | 3.0 | - | Mhz | | MJ11022
MJ11021 | C _{ob} | _
_ | 400
600 | pF | | | h _{fe} | 75 | - | _ | | | MJ11021, MJ11022 | MJ11021, MJ11022 MJ11021, MJ11022 ICEO ICEV IEBO VCE(sat) VBE(on) VBE(sat) MJ11022 MJ11022 MJ11022 MJ11021 | MJ11021, MJ11022 MJ11021, MJ11022 ICEO ICEO ILEBO ILEBO VCE(sat) VBE(on) I[hfe] MJ11022 MJ11021 MJ11022 MJ11021 ICEO | MJ11021, MJ11022 VCEO(sus) 250 | | | | | Typical | | | |--------------|---|----------------|---------|-----|------| | | Characteristic | Symbol | NPN | PNP | Unit | | Delay Time | | t _d | 150 | 75 | ns | | Rise Time | $(V_{CC} = 100 \text{ V}, I_C = 10 \text{ A}, I_B = 100 \text{ mA}$
$V_{BE(off)} = 50 \text{ V}) \text{ (See Figure 2)}$ | t _r | 1.2 | 0.5 | μs | | Storage Time | | t _s | 4.4 | 2.7 | μs | | Fall Time | | t _f | 10.0 | 2.5 | μs | ^{1.} Pulsed Test: Pulse Width = 300 μ s, Duty Cycle \leq 2%. Figure 3. Thermal Response Figure 4. Maximum Rated Forward Bias Safe Operating Area (FBSOA) #### **FORWARD BIAS** There are two limitations on the power handling ability of a transistor average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 4 is based on $T_{J(pk)} = 175^{\circ}C$, T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 175^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 3. At high case temperatures thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. Figure 5. Maximum RBSOA, Reverse Bias Safe Operating Area #### **REVERSE BIAS** For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be hold to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current conditions during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 5 gives ROSOA characteristics. # MJ11021(PNP) MJ11022 (NPN) Figure 6. DC Current Gain Figure 7. Collector Saturation Region Figure 8. "On" Voltages #### MJ11021(PNP) MJ11022 (NPN) #### PACKAGE DIMENSIONS TO-204 (TO-3) CASE 1-07 **ISSUE Z** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982. - CONTROLLING DIMENSION: INCH. ALL RULES AND NOTES ASSOCIATED WITH - REFERENCED TO-204AA OUTLINE SHALL APPLY. | | INC | HES | MILLIMETERS | | | |-----|-----------|-------|-------------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 1.550 | REF | 39.37 | REF | | | В | | 1.050 | | 26.67 | | | С | 0.250 | 0.335 | 6.35 | 8.51 | | | D | 0.038 | 0.043 | 0.97 | 1.09 | | | E | 0.055 | 0.070 | 1.40 | 1.77 | | | G | 0.430 BSC | | 10.92 BSC | | | | Н | 0.215 | BSC | 5.46 BSC | | | | K | 0.440 | 0.480 | 11.18 | 12.19 | | | L | 0.665 BSC | | 16.89 BSC | | | | N | | 0.830 | | 21.08 | | | Q | 0.151 | 0.165 | 3.84 | 4.19 | | | U | 1.187 BSC | | 30.15 BSC | | | | v | 0.131 | 0.188 | 3 33 | 4 77 | | STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) as Solitude services are injected in the chargest without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative # **ПОСТАВКА** ЭЛЕКТРОННЫХ КОМПОНЕНТОВ Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107 # Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip. Для оперативного оформления запроса Вам необходимо перейти по данной ссылке: # http://moschip.ru/get-element Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора. В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов. Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair. Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки. На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров. Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009 ## Офис по работе с юридическими лицами: 105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский» Телефон: +7 495 668-12-70 (многоканальный) Факс: +7 495 668-12-70 (доб.304) E-mail: info@moschip.ru Skype отдела продаж: moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9