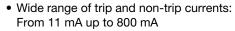


www.vishay.com

Vishay BCcomponents

265 V PTC Thermistors for Overload Protection

QUICK REFERENCE DATA				
PARAMETER	VALUE	UNIT		
Maximum voltage (RMS or DC)	265	V		
Maximum holding current (Int)	0.011 to 0.8	Α		
Resistance at 25 °C (R ₂₅)	2.1 to 3000	Ω		
Tolerance on R_{25} value	20	%		
Maximum overload current Iol	0.8 to 5.5	Α		
Switching temperature	135 to 145	°C		
Operating temperature range at max. voltage	0 to 70	°C		
Storage temperature	-40 to +175	°C		


QUALITY

UL approved PTCs are guaranteed to withstand severe test programs and have factory audited follow-up programs. Major UL qualification tests are long-life (6000 cycles) electrical cycle tests at trip-current, long-life stability storage tests (3000 h at 250 °C), damp heat and water immersion tests and over-voltage tests up to 200 % of rated voltage.

UL approved PTCs are guaranteed to withstand severe test programs

- Long-life cycle tests (over 5000 trip cycles)
- Long-life storage tests (3000 h at 250 °C)
- Electrical cycle tests at low ambient temperatures (-40 °C or 0 °C)
- Damp-heat and water immersion tests
- Overvoltage tests at up to 200 % of rated voltage

FEATURES

 Small ratio between trip and non-trip currents (I_t/I_{nt} = 1.5 at 25 °C)

High maximum inrush current (up to 5.5 A)

- High maximum infusir current (up to 3.5 A)
- Leaded parts withstand mechanical stresses and vibration
- UL file E148885 according to XGPU standard UL1434
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

Overload (current, voltage, temperature) protection in:

- Industrial electronics
- Consumer electronics
- · Electronic data processing

DESCRIPTION

These directly heated ceramic-based thermistors have a positive temperature coefficient and are primarily intended for overload protection. They consist of a ceramic pellet soldered between two tinned CCS wires and coated with a UL 94 V-0 high temperature hard silicone lacquer.

MOUNTING

PTC thermistors can be mounted by wave, reflow, or hand-soldering. Current levels have been determined according IEC 60738 conditions. Different ways of mounting or connecting the thermistors can influence their thermal and electrical behavior. Standard operation is in still air, any potting or encapsulation of PTC thermistors is not recommended and will change its operating characteristics.

Typical Soldering

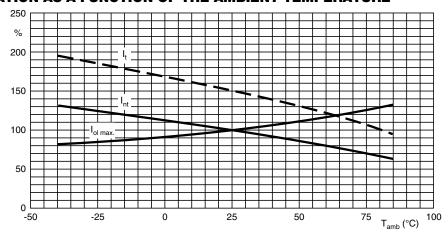
235 °C; duration: 5 s (Lead (Pb)-bearing) 245 °C, duration: 5 s (Lead (Pb)-free)

Resistance to Soldering Heat

260 °C, duration: 10 s max.

MARKING

Only the gray lacquered thermistors with a diameter of 8.5 mm to 20.5 mm are marked with BC, R_{25} value (example 1R9) on one side and I_{nt} , V_{max} on the other side.



www.vishay.com

Vishay BCcomponents

ELECTRICAL DATA AND ORDERING INFORMATION								
I _{nt} MAX.	I _t MIN.	R ₂₅	I _{ol} MAX.	I _{res} MAX. at	DISSIP.	Ø D MAX. (mm)	ORDERING PART NUMBERS	
at 25 °C (mA) ⁽¹⁾	at 25 °C (mA) ⁽¹⁾	± 20 % (Ω)	at 25 °C (mA) ⁽²⁾	V _{max.} and 25 °C (mA) ⁽¹⁾	FACTOR (mW/K) ⁽¹⁾		BULK	TAPE ON REEL
11	17	3000	80	6.5	7.3	5	PTCCL05H110HBE	PTCCL05H110HTE
15	23	1900	110	6.5	7.3	5	PTCCL05H150HBE	PTCCL05H150HTE
19	29	1200	140	6.5	7.3	5	PTCCL05H190HBE	PTCCL05H190HTE
28	42	500	200	6.8	7.3	5	PTCCL05H280HBE	PTCCL05H280HTE
39	59	260	300	6.8	7.3	5	PTCCL05H390HBE	PTCCL05H390HTE
63	95	120	450	7	7.3	5	PTCCL05H630HBE	PTCCL05H630HTE
76	115	85	550	7	7.3	5	PTCCL05H760HBE	PTCCL05H760HTE
95	143	56	600	7	7.3	5	PTCCL05H950HBE	PTCCL05H950HTE
110	165	48	650	7.5	8.3	7	PTCCL07H111HBE	PTCCL07H111HTE
140	210	29	800	8	8.3	7	PTCCL07H141HBE	PTCCL07H141HTE
170	255	22	900	9	9	8.5	PTCCL09H171HBE	PTCCL09H171HTE
190	285	18	1000	9.5	9	8.5	PTCCL09H191HBE	PTCCL09H191HTE
210	315	17	1300	10	10.5	10.5	PTCCL11H211HBE	PTCCL11H211HTE
250	375	12	1500	11	10.5	10.5	PTCCL11H251HBE	PTCCL11H251HTE
280	420	11	1800	12	11.7	12.5	PTCCL13H281HBE	PTCCL13H281HTE
320	480	8.4	2200	13	11.7	12.5	PTCCL13H321HBE	PTCCL13H321HTE
400	600	6.6	3000	15	15.5	16.5	PTCCL17H401HBE	-
490	735	4.4	3500	16	15.5	16.5	PTCCL17H491HBE	-
590	855	4	4500	19.5	19.8	20.5	PTCCL21H591HBE	-
700	1050	2.8	5500	21	19.8	20.5	PTCCL21H701HBE	-
800	1200	2.1	5500	22.5	19.8	20.5	PTCCL21H801HBE (3)	-

CURRENT DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE

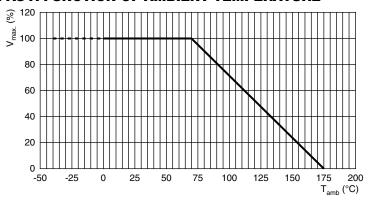
Notes The indicated current levels are guaranteed according IEC 60738 mounting conditions. For different mounting conditions the indicated current levels can change and should be evaluated in the application.

I_{ol max.} is the maximum overload current that may flow through the PTC when it passes from the low ohmic to the high ohmic state. UL approval: I_{ol max.} x 0.85

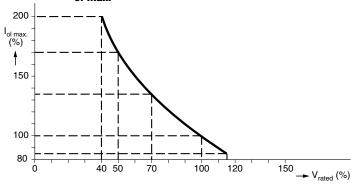
⁽³⁾ Not UL approved

Vishay BCcomponents

Curve 1: Ø D_{max.} = 20.5 mm

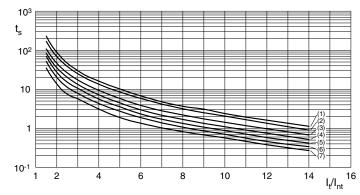

Curve 2: \emptyset D_{max.} = 16.5 mm

Curve 3: \varnothing D_{max.} = 12.5 mm Curve 4: \varnothing D_{max.} = 10.5 mm


Curve 5: \emptyset D_{max.} = 8.5 mm Curve 6: \emptyset D_{max.} = 7.0 mm Curve 7: \emptyset D_{max.} = 5.0 mm Measured in accordance with

"IEC 60738".

VOLTAGE DERATING AS A FUNCTION OF AMBIENT TEMPERATURE


MAXIMUM OVERLOAD CURRENT Iol max. DERATING AS A FUNCTION OF VOLTAGE

 $I_{\text{ol max.}}$ as stated in the electrical data and ordering information tables, is the maximum overload current that may flow through the PTC when passing from the low ohmic to high ohmic state at rated voltage.

When other voltages are present after tripping, the $I_{ol\ max.}$ value can be derived from the above $I_{max.}$ as a function of voltage graph. Voltages below V_{rated} will allow higher overload currents to pass the PTC.

TYPICAL TRIP-TIME AS A FUNCTION OF TRIP CURRENT RATIO

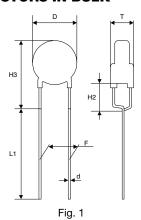
Trip-Time or Switching Time (t_s)

To check the trip-time for a specific PTC, refer to the Electrical Data and Ordering Information tables for the value I_{nt} . Divide the overload or trip current by this I_{nt} and you realize the factor I_t/I_{nt} . This rule is valid for any ambient temperature between 0 °C and 70 °C. Adapt the correct non-trip current with the appropriate curve in the Current Deviation as a Function of the Ambient Temperature graph. The relationship between the It/Int factor and the switching time is a function of the PTC diameter; see the above graphs.

Example

What will be the trip-time at I_{ol} = 0.8 A and T_{amb} = 50 °C of a thermistor type PTCCL09H171HBE; 22 Ω ; Ø $D_{max.}$ = 8.5 mm: I_{nt} from the table: 170 mA at 25 °C

 I_{nt} : 170 x 0.87 = 148 mA (at 50 °C)


Overload current = 0.8 A; factor I_t/I_{nt} : 0.8/0.148 = 5.40. In the Typical trip-time as a function of trip current ratio graph, at the 8.5 mm line and I_t/I_{nt} = 5.40, the typical trip-time is 3.0 s.

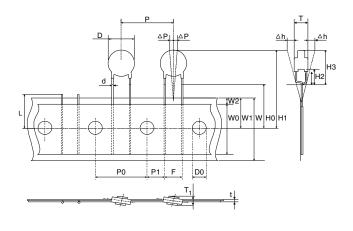
Vishay BCcomponents

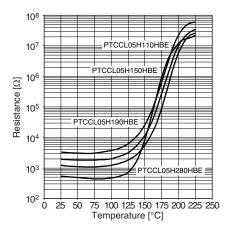
COMPONENTS PACKING INFORMATION				
SAP ORDERIN	G PART NUMBER	SPQ	PACKING OUTLINE	
PTCCI	_05HBE	500	Bulk	
PTCCI	_05HTE	1500	Tape and reel	
PTCCL07HBE	PTCCL09HBE	250	Bulk	
PTCCL07HTE	PTCCL09HTE	1500	Tape and reel	
PTCCL11HBE	PTCCL13HBE	200	Bulk	
PTCCI	_11HTE	1500	Tape and reel	
PTCCI	_13HTE	750	Tape and reel	
PTCCI	_17HBE	100	Bulk	
PTCCI	_21HBE	50	Bulk	

PTC THERMISTORS IN BULK

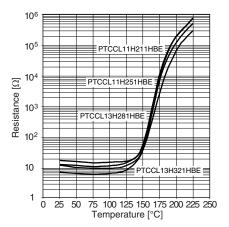
DIMENSIONS OF BULK TYPE PTCs (in mm)				
D	See table			
d	0.6 ± 0.05			
Т	5.5 max.			
H2	4.0 ± 1.0			
H3	D + 5 max.			
L1	20 min.			
F	5.0			

PTC THERMISTORS ON TAPE AND REEL

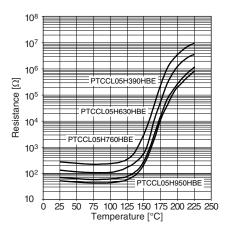


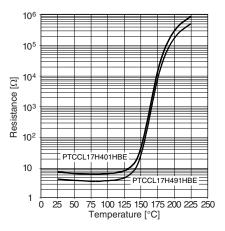

Fig. 2

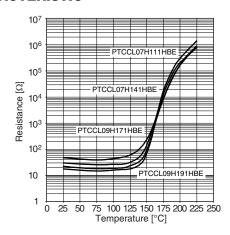
TAPE AND REEL ACCORDING TO IEC 60286-2 (in mm)					
SYMBOL	PARAMETER	DIMENSIONS	TOLERANCE		
D	Body diameter	See table	max.		
d	Lead diameter	0.6	± 0.05		
Р	Pitch of components Diameter < 12 mm Diameter ≥ 12 mm	12.7 25.4	± 1.0 ± 2.0		
P ₀	Feedhole pitch	12.7	± 0.3		
F	Leadcenter to leadcenter distance (between component and tape)	5.0	+ 0.5 / - 0.2		
H0	Lead wire clinch height	16.0	± 0.5		
H2	Component bottom to seating plane	4.0	± 1.0		
НЗ	Component top to seating plane	D + 5	max.		
H4	Seating plane difference (left-right lead)	0	± 0.2		
Т	Total thinkness	5.5	max.		

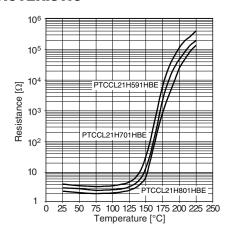


Vishay BCcomponents


TYPICAL RESISTANCE / TEMPERATURE CHARACTERISTIC


TYPICAL RESISTANCE / TEMPERATURE CHARACTERISTIC


TYPICAL RESISTANCE / TEMPERATURE CHARACTERISTIC


TYPICAL RESISTANCE / TEMPERATURE CHARACTERISTIC

TYPICAL RESISTANCE / TEMPERATURE CHARACTERISTIC

TYPICAL RESISTANCE / TEMPERATURE CHARACTERISTIC

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9