Dual buffer gate

Rev. 1 — 2 November 2015

1. General description

The 74HC2G16; 74HCT2G16 is a high-speed Si-gate CMOS device.

The 74HC2G16; 74HCT2G16 provides two buffers.

2. Features and benefits

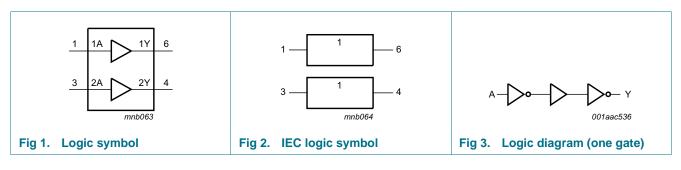
- Wide supply voltage range from 2.0 V to 6.0 V
- Complies with JEDEC standard no. 7A
- High noise immunity
- ESD protection:
 - HBM JESD22-A114-D exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Low power dissipation
- Balanced propagation delays
- Unlimited input rise and fall times
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3. Ordering information

Table 1. Ordering information

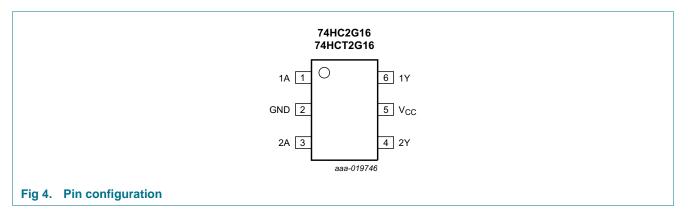
Type number	Package						
	Temperature range	Name	Description	Version			
74HC2G16GW	–40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363			
74HC2G16GV	–40 °C to +125 °C	SC-74	plastic surface-mounted package (TSOP6); 6 leads	SOT457			
74HCT2G16GW	–40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363			
74HCT2G16GV	–40 °C to +125 °C	SC-74	plastic surface-mounted package (TSOP6); 6 leads	SOT457			

4. Marking


Table 2.Marking

Type number	Marking code
74HC2G16GW	P6
74HC2G16GV	P6
74HCT2G16GW	U6
74HCT2G16GV	U6

nexperia


Dual buffer gate

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description		
Symbol	Pin	Description
1A	1	data input
GND	2	ground (0 V)
2A	3	data input
2Y	4	data output
V _{CC}	5	supply voltage
1Y	6	data output

Dual buffer gate

7. Functional description

Table 4.Function table^[1]

Input	Output
	nY
L	L
Н	Н

[1] H = HIGH voltage level;

L = LOW voltage level.

8. Limiting values

Table 5.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+7.0	V
I _{IK}	input clamping current	V_{I} < -0.5 V or V_{I} > V_{CC} + 0.5 V	<u>[1]</u>	-	±20	mA
I _{OK}	output clamping current	V_{O} < -0.5 V or V_{O} > V_{CC} + 0.5 V	<u>[1]</u>	-	±20	mA
I _O	output current	$V_{O} = -0.5$ V to V_{CC} + 0.5 V	<u>[1]</u>	-	±25	mA
I _{CC}	supply current		<u>[1]</u>	-	+50	mA
I _{GND}	ground current		<u>[1]</u>	-	-50	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation		[2]	-	250	mW

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SC-88 and SC-74 packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Type 74HC	2G16		1			
V _{CC}	supply voltage		2.0	5.0	6.0	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
t _r	rise time	except for Schmitt trigger inputs				
		V _{CC} = 2.0 V	-	-	1000	ns
		$V_{CC} = 4.5 V$	-	-	500	ns
		V _{CC} = 6.0 V	-	-	400	ns
t _f	fall time	except for Schmitt trigger inputs				
		V _{CC} = 2.0 V	-	-	1000	ns
		V _{CC} = 4.5 V	-	-	500	ns
		V _{CC} = 6.0 V	-	-	400	ns

Dual buffer gate

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Type 74HC	Г2G16				_	
V _{CC}	supply voltage		4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
t _r	rise time	except for Schmitt trigger inputs				
		$V_{CC} = 4.5 V$	-	-	500	ns
t _f	fall time	except for Schmitt trigger inputs				
		V _{CC} = 4.5 V	-	-	500	ns

Table 6. Recommended operating conditions ...continued

10. Static characteristics

Table 7. Static characteristics for 74HC2G16

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C	, ,	I		1	
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	1.2	-	V
		$V_{CC} = 4.5 V$	3.15	2.4	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	0.8	0.5	V
		$V_{CC} = 4.5 V$	-	2.1	1.35	V
		$V_{CC} = 6.0 V$	-	2.8	1.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	2.0	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	6.0	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	4.18	4.32	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.68	5.81	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = 20 \ \mu A; \ V_{CC} = 2.0 \ V$	-	0	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	0	0.1	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	V
l _l	input leakage current	$V_I = GND \text{ or } V_{CC}; V_{CC} = 6.0 \text{ V}$	-	-	±0.1	μA
I _{CC}	supply current	$V_I = GND \text{ or } V_{CC}; I_O = 0 \text{ A};$	-	-	1.0	μA
		$V_{CC} = 6.0 V$				
CI	input capacitance		-	1.5	-	pF

Dual buffer gate

Table 7. Static characteristics for 74HC2G16 ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -40) °C to +85 °C		I			
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.5	V
νı <u>c</u>		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	-	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	-	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	4.13	-	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.63	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_0 = 20 \ \mu A; \ V_{CC} = 2.0 \ V$	-	-	0.1	V
		$I_0 = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	-	0.1	V
		$I_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	-	0.1	V
		$I_0 = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.33	V
		$I_0 = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.33	V
lı	input leakage current	$V_{I} = GND \text{ or } V_{CC}; V_{CC} = 6.0 \text{ V}$	-	-	±1.0	μA
I _{CC}	supply current	$V_I = GND \text{ or } V_{CC}; I_O = 0 \text{ A};$	-	-	10.0	μA
		$V_{CC} = 6.0 V$				
T _{amb} = -40) °C to +125 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		$V_{CC} = 4.5 V$	3.15	-	-	V
		$V_{CC} = 6.0 V$	4.2	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.5	V
		$V_{CC} = 4.5 V$	-	-	1.35	V
		$V_{CC} = 6.0 V$	-	-	1.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_0 = -20 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	-	-	V
		$I_0 = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	-	-	V
		$I_0 = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.2	-	-	V

Dual buffer gate

Table 7. Static characteristics for 74HC2G16 ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_0 = 20 \ \mu A; \ V_{CC} = 2.0 \ V$	-	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	-	0.1	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.4	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.4	V
I _I	input leakage current	$V_I = GND \text{ or } V_{CC}; V_{CC} = 6.0 \text{ V}$	-	-	±1.0	μA
I _{CC}	supply current	$V_I = GND \text{ or } V_{CC}; I_O = 0 \text{ A};$	-	-	20.0	μA
		$V_{CC} = 6.0 V$				

Table 8. Static characteristics for 74HCT2G16

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
VIH	HIGH-level input voltage	$V_{CC} = 4.5 V \text{ to } 5.5 V$	2.0	1.6	-	V
VIL	LOW-level input voltage	$V_{CC} = 4.5 V \text{ to } 5.5 V$	-	1.2	0.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH}$ or V_{IL}			1	
		$I_{O} = -20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	4.4	4.5	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	4.18	4.32	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	V
I _I	input leakage current	$V_I = GND \text{ or } V_{CC}; V_{CC} = 5.5 \text{ V}$	-	-	±0.1	μA
I _{CC}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; \ I_{O} = 0 \ A; \\ V_{CC} = 5.5 \ V \end{array}$	-	-	1.0	μA
ΔI_{CC}	additional supply current	$V_{I} = V_{CC} - 2.1 V;$ $V_{CC} = 4.5 V \text{ to } 5.5 V; I_{O} = 0 \text{ A}$	-	-	300	μA
Cı	input capacitance		-	1.5	-	pF
T _{amb} = -40) °C to +85 °C		1	•	-	
VIH	HIGH-level input voltage	$V_{CC} = 4.5 V \text{ to } 5.5 V$	2.0	-	-	V
VIL	LOW-level input voltage	$V_{CC} = 4.5 V \text{ to } 5.5 V$	-	-	0.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	4.4	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	4.13	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH}$ or V_{IL}				
		$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	-	0.1	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.33	V
l _l	input leakage current	$V_I = GND \text{ or } V_{CC}; V_{CC} = 5.5 \text{ V}$	-	-	±1.0	μA
I _{CC}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; \ I_{O} = 0 \ A; \\ V_{CC} = 5.5 \ V \end{array}$	-	-	10.0	μA
ΔI_{CC}	additional supply current	$V_{I} = V_{CC} - 2.1 \text{ V};$ $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}; I_{O} = 0 \text{ A}$	-	-	375	μA

74HC_HCT2G16
Product data sheet

Dual buffer gate

Table 8. Static characteristics for 74HCT2G16 ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -40	°C to +125 °C		I	1	1	
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	$V_{CC} = 4.5 V \text{ to } 5.5 V$	-	-	0.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = -20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	4.4	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	-	0.1	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.4	V
l _l	input leakage current	$V_{I} = GND \text{ or } V_{CC}; V_{CC} = 5.5 \text{ V}$	-	-	±1.0	μA
I _{CC}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; \ I_{O} = 0 \ A; \\ V_{CC} = 5.5 \ V \end{array}$	-	-	20.0	μΑ
Δl _{CC}	additional supply current	$V_{I} = V_{CC} - 2.1 V;$ $V_{CC} = 4.5 V \text{ to } 5.5 V; I_{O} = 0 \text{ A}$	-	-	410	μA

11. Dynamic characteristics

Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 6</u>.

Symbol	Parameter	Conditions		25 °C			–40 °C to +125 °C		
				Тур	Мах	Min	Max (85 °C)	Max (125 °C)	
74HC2G1	6								_
t _{pd}	propagation delay	nA to nY; see Figure 5	1]						
		$V_{CC} = 2.0 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$	-	29	75	-	95	125	ns
		$V_{CC} = 4.5 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$	-	9	15	-	19	25	ns
		$V_{CC} = 6.0 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$	-	8	13	-	16	20	ns
t _t	transition time	nY; see Figure 5	2]						
		$V_{CC} = 2.0 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$	-	18	75	-	95	125	ns
		$V_{CC} = 4.5 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$	-	6	15	-	19	25	ns
		$V_{CC} = 6.0 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$	-	5	13	-	16	20	ns
C _{PD}	power dissipation capacitance	$V_I = GND$ to V_{CC}	3] _	10	-	-	-	-	pF

Dual buffer gate

Table 9. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 6</u>.

Symbol	Parameter	Conditions		25 °C			–40 °C to +125 °C			Unit
				Min	Тур	Max	Min	Max (85 °C)	Max (125 °C)	
74HCT2G	16									
t _{pd}	propagation delay	nA to nY; see Figure 5	<u>[1]</u>							
		$V_{CC} = 4.5 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$		-	10	18	-	23	29	ns
t _t	transition time	nY; see Figure 5	[2]							
		$V_{CC} = 4.5 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$		-	6	15	-	19	25	ns
C _{PD}	power dissipation capacitance	$V_{I} = GND$ to $V_{CC} - 1.5 V$	<u>[3]</u>	-	9	-	-	-	-	pF

[1] t_{pd} is the same as t_{PLH} and t_{PHL}

[2] t_t is the same as t_{TLH} and t_{THL}

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 P_D = $C_{PD} \times V_{CC}{}^2 \times f_i \times N$ + $\Sigma (C_L \times V_{CC}{}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

12. Waveforms

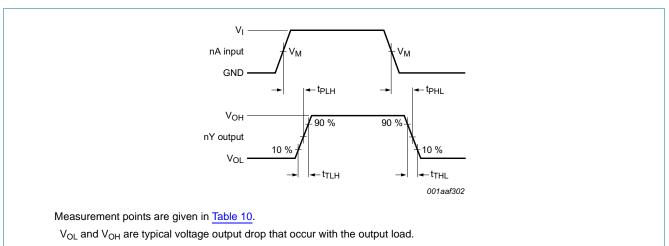
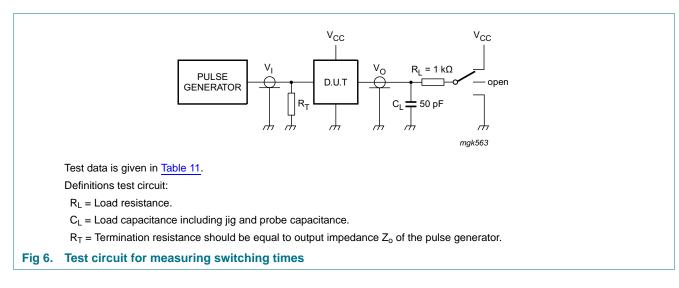


Fig 5. The data input (nA) to output (nY) propagation delays and output transition times

Table 10. Measurement points


Туре	Input	Output		
	V _M	VI	t _r = t _f	V _M
74HC2G16	0.5V _{CC}	GND to V _{CC}	6.0 ns	0.5V _{CC}
74HCT2G16	1.3 V	GND to 3.0 V	6.0 ns	1.3 V

74HC_HCT2G16 Product data sheet

Nexperia

74HC2G16; 74HCT2G16

Dual buffer gate

Table 11. Test data

Туре	Input	Test	
	VI	t _r , t _f	t _{PHL} , t _{PLH}
74HC2G16	GND to V _{CC}	6 ns	open
74HCT2G16	GND to 3.0 V	6 ns	open

Dual buffer gate

13. Package outline

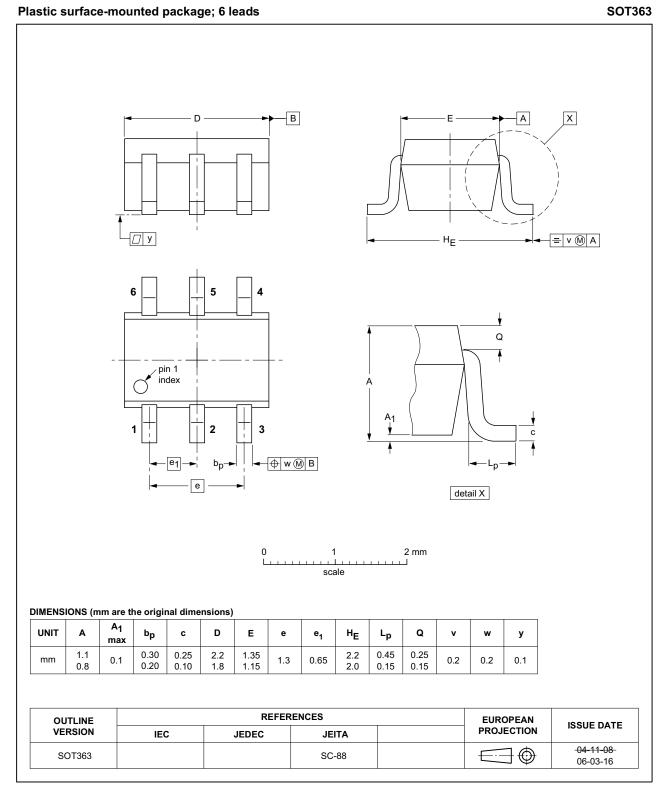
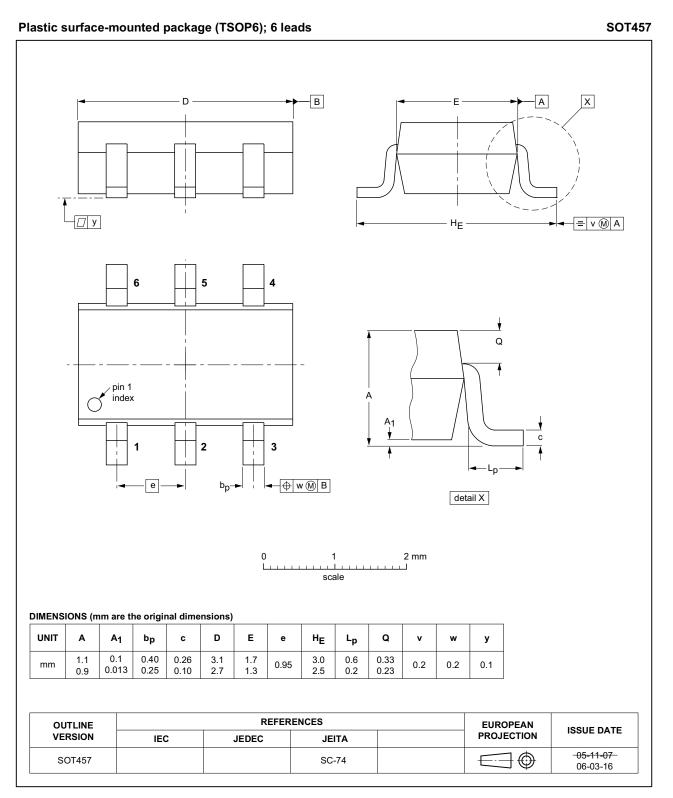



Fig 7. Package outline SOT363 (SC-88)

All information provided in this document is subject to legal disclaimers.

74HC_HCT2G16

Dual buffer gate

Fig 8. Package outline SOT457 (SC-74)

All information provided in this document is subject to legal disclaimers.

74HC_HCT2G16

Dual buffer gate

14. Abbreviations

Table 12. Abbreviations				
Acronym	Description			
CMOS	Complementary Metal Oxide Semiconductor			
ESD	ElectroStatic Discharge			
НВМ	Human Body Model			
MM	Machine Model			
DUT	Device Under Test			

15. Revision history

Table 13.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT2G16 v.1	20151102	Product data sheet	-	-

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Product data sheet

Nexperia

74HC2G16; 74HCT2G16

Dual buffer gate

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Dual buffer gate

18. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 1
4	Marking 1
5	Functional diagram 2
6	Pinning information 2
6.1	Pinning 2
6.2	Pin description 2
7	Functional description 3
8	Limiting values 3
9	Recommended operating conditions 3
10	Static characteristics 4
11	Dynamic characteristics 7
12	Waveforms
13	Package outline 10
14	Abbreviations 12
15	Revision history 12
16	Legal information 13
16.1	Data sheet status 13
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks 14
17	Contact information 14
18	Contents 15

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9