81 GHz to 86 GHz, E-Band I/Q Upconverter

FEATURES

Conversion loss: 10 dB typical Sideband rejection: $\mathbf{2 2 d B c}$ typical Input power for 1 dB compression (P 1 dB): 16 dBm typical Input third-order intercept (IP3): $\mathbf{2 4 ~ d B m}$ typical Input second-order intercept (IP2): -5 dBm typical $6 \times$ local oscillator (LO) leakage at RFOUT: - $\mathbf{2 3} \mathbf{d B m}$ typical RF return loss: 12 dB typical
LO return loss: $\mathbf{2 0 ~ d B ~ t y p i c a l ~}$
Die size: $\mathbf{3 . 6 0 1} \mathbf{~ m m} \times \mathbf{1 . 6 0 9 ~ m m} \times \mathbf{0 . 0 5} \mathbf{~ m m}$

APPLICATIONS

E-band communication systems

High capacity wireless backhaul
Test and measurement

GENERAL DESCRIPTION

The HMC8119 is an integrated E-band gallium arsenide (GaAs) pseudomorphic (pHEMT) monolithic microwave integrated circuit (MMIC), in-phase/quadrature (I/Q) upconverter chip that operates from 81 GHz to 86 GHz . The HMC8119 provides a small signal conversion loss of 10 dB with 22 dBc of sideband rejection across the frequency band. The device uses an image rejection mixer that is driven by a $6 \times$ LO multiplier. Differential I and Q mixer inputs are provided. The inputs can be driven with differential I and Q baseband waveforms for direct conversion applications. Alternatively, the inputs can be driven using an external 90° hybrid and two external 180° hybrids for singlesideband applications. All data includes the effect of a 1 mil gold wire wedge bond on the intermediate frequency (IF) ports.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
Thermal Resistance 4
ESD Caution 4
Pin Configuration and Function Descriptions 5
Interface Schematics 6
Typical Performance Characteristics 7
Upper Sideband (USB) Selected, IF $=500 \mathrm{MHz}$ 7
Return Loss Performance 9
Upper Sideband (USB) Selected, IF $=1000 \mathrm{MHz}$ 10
Upper Sideband (USB) Selected, IF = 2000 MHz 12
Lower Sideband (LSB) Selected, IF = 500 MHz 14
Lower Sideband (LSB) Selected, IF $=1000 \mathrm{MHz}$ 16
Lower Sideband (LSB) Selected, IF = 2000 MHz 18
Spurious Performance, USB 20
Spurious Performance, LSB 21
Theory of Operation 22
Applications Information 23
Biasing Sequence 23
Single Sideband Upconversion 23
Assembly Diagram 25
Mounting and Bonding Techniques for Millimeterwave GaAs MMICs 26
Handling Precautions 26
Mounting 26
Wire Bonding 26
Outline Dimensions 27
Ordering Guide 27

REVISION HISTORY

2/16—Revision A: Initial Version

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{IF}=500 \mathrm{MHz}, \mathrm{V}_{\text {GMIX }}=-1 \mathrm{~V}, \mathrm{~V}_{\text {DAMPX }}=4 \mathrm{~V}, \mathrm{~V}_{\text {DMULT }}=1.5 \mathrm{~V}, \mathrm{LO}=2 \mathrm{dBm}$, upper sideband selected (USB). Measurements performed as an upconverter with external 90° and 180° hybrids at the IF ports, unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
OPERATING CONDITIONS RF Frequency Range LO Frequency Range IF Frequency Range LO Drive Range		$\begin{aligned} & 81 \\ & 11.83 \\ & 0 \\ & 2 \end{aligned}$		$\begin{aligned} & 86 \\ & 14.33 \\ & 10 \\ & 8 \end{aligned}$	GHz GHz GHz dBm
PERFORMANCE Conversion Loss Sideband Rejection Input Power for 1 dB Compression (P1dB) Input Third-Order Intercept (IP3) Input Second-Order Intercept (IP2) $6 \times$ LO Leakage at RFOUT RF Return Loss LO Return Loss IF Return Loss			$\begin{aligned} & 10 \\ & 22 \\ & 16 \\ & 24 \\ & -5 \\ & -23 \\ & 12 \\ & 20 \\ & 25 \end{aligned}$	13 -19	dB dBc dBm dBm dBm dBm dB dB dB
POWER SUPPLY Supply Current Idamp ${ }^{1}$ Idmuit ${ }^{2}$	Under LO drive		$\begin{aligned} & 175 \\ & 80 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

${ }^{1}$ Adjust $\mathrm{V}_{\text {GAMP }}$ from -2 V to 0 V to achieve the total quiescent current, $\mathrm{I}_{\mathrm{DAMP}}=\mathrm{I}_{\text {DAMP1 }}+\mathrm{I}_{\text {DAMP2 }}=175 \mathrm{~mA}$.
${ }^{2}$ Adjust $\mathrm{V}_{\mathrm{G} \times 2}$ and $\mathrm{V}_{\mathrm{G} \times 3}$ from -2 V to 0 V to achieve the quiescent current, $\mathrm{I}_{\mathrm{DMULT}}=1 \mathrm{~mA}$ to 2 mA . Refer to the Applications Information section for more information.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Drain Bias Voltage	
$V_{\text {damp1, }} \mathrm{V}_{\text {damp2 }}$	4.5 V
$V_{\text {dmult }}$	3 V
Gate Bias Voltage	
VGamp	-3 V to 0 V
$\mathrm{V}_{\mathrm{GX} 2}, \mathrm{~V}_{\mathrm{GX}}$	-3 V to 0 V
$V_{\text {Gmix }}$	-3 V to 0 V
LO Input Power	10 dBm
Maximum Junction Temperature (to Maintain 1 Million Hours Mean Time to Failure (MTTF))	$175^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Table 3. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\boldsymbol{\prime} \mathbf{c}^{1}}$	Unit
24-Pad Bare Die [CHIP]	73.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Based on ABLEBOND ${ }^{\circledR}$ 84-1LMIT as die attach epoxy with thermal conductivity of $3.6 \mathrm{~W} / \mathrm{mK}$.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pad Configuration

Table 4. Pad Function Descriptions

Pad No.	Mnemonic	Description
1,2	IFQP, IFQN	Positive and Negative IF Q Inputs. These pads are dc-coupled. When operation to dc is not required, block these pads externally using a series capacitor with a value chosen to pass the necessary frequency range. For operation to dc, these pads must not source or sink more than 3 mA of current or die malfunction and die failure may result (see Figure 3).
3,4	IFIN, IFIP	Negative and Positive IF I Inputs. These pads are dc-coupled. When operation to dc is not required, block these pads externally using a series capacitor with a value chosen to pass the necessary frequency range. For operation to dc, these pads must not source or sink more than 3 mA of current or die malfunction and die failure may result (see Figure 3).
$\begin{aligned} & 5,7,9,11,13, \\ & 15,17,19,21, \\ & 22,24 \end{aligned}$	GND	Ground Connect (See Figure 4).
6	$V_{\text {Gmix }}$	Gate Voltage for the FET Mixer (See Figure 5).
8,12	$V_{\text {DAMP2, }}$ VDAMP1	Power Supply Voltage for the First and the Second Stage LO Amplifier (See Figure 5).
10	$V_{\text {Gamp }}$	Gate Voltage for the First and the Second Stage LO Amplifier (See Figure 5).
14	$V_{\text {dmult }}$	Power Supply Voltage for the Multiplier (See Figure 5).
16, 18	$\mathrm{V}_{G \times 3}, \mathrm{~V}_{\mathrm{GX2}}$	Gate Voltage for the Multiplier (See Figure 5).
20	LOIN	Local Oscillator Input. This pad is dc-coupled and matched to 50Ω (see Figure 6).
23	RFOUT	RF Output. This pad is ac-coupled and matched to 50Ω (see Figure 7).
Die Bottom	GND	Ground. The die bottom must be connected to RF/dc ground (see Figure 4).

INTERFACE SCHEMATICS

Figure 5. $V_{G M I X}, V_{D A M P 1}, V_{D A M P 2}, V_{D M U L T}, V_{G A M P}, V_{G X 2}, V_{G X 3}$ Interface

Figure 6. LOIN Interface

Figure 7. RFOUT Interface

TYPICAL PERFORMANCE CHARACTERISTICS

UPPER SIDEBAND (USB) SELECTED, IF = $\mathbf{5 0 0} \mathbf{~ M H z}$

Figure 8. Conversion Gain vs. RF Frequency at Various Temperatures, $I F I N=-8 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, U S B$

Figure 9. Sideband Rejection vs. RF Frequency at Various Temperatures, $I F I N=-8 d B m, L O=2 d B m, I F=500 \mathrm{MHz}, U S B$

Figure 10. Input IP3 vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, U S B$

Figure 11. Conversion Gain vs. RF Frequency at Various LO Powers, $I F I N=-8 d B m, I F=500 \mathrm{MHz}$, USB

Figure 12. Sideband Rejection vs. RF Frequency at Various LO Powers, $I F I N=-8 d B m, I F=500 \mathrm{MHz}, U S B$

Figure 13. Input IP3 vs. RF Frequency at Various LO Powers,
$I F I N=5 \mathrm{dBm}, I F=500 \mathrm{MHz}, U S B$

Figure 14. Input IP2 vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, U S B$

Figure 15. $6 \times$ LO Leakage at RFOUT vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, U S B$

Figure 16. Input P1dB vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, U S B$

Figure 17. Input IP2 vs. RF Frequency at Various LO Powers, $I F I N=5 \mathrm{dBm}, I F=500 \mathrm{MHz}, U S B$

Figure 18. $6 \times$ LO Leakage at RFOUT vs. RF Frequency at Various LO Powers, $I F I N=5 \mathrm{dBm}, I F=500 \mathrm{MHz}, U S B$

RETURN LOSS PERFORMANCE

Figure 19. IF Return Loss vs. IF Frequency, $L O=2 \mathrm{dBm}$ at 12 GHz

Figure 20. LO Return Loss vs. LO Frequency at Various Temperatures, $L O=2 d B m$

Figure 21. RF Return Loss vs. RF Frequency at Various Temperatures, RFIN $=-10 \mathrm{dBm}, L O=2 \mathrm{dBm}$ at 12 GHz

Figure 22. LO Return Loss vs. LO Frequency at Various LO Powers

Figure 23. RF Return Loss vs. RF Frequency at Various LO Powers, RFIN $=-10 \mathrm{dBm}$

UPPER SIDEBAND (USB) SELECTED, IF = $\mathbf{1 0 0 0} \mathbf{~ M H z}$

Figure 24. Conversion Gain vs. RF Frequency at Various Temperatures, $I F I N=-8 d B m, L O=2 d B m, I F=1000 \mathrm{MHz}, U S B$

Figure 25. Sideband Rejection vs. RF Frequency at Various Temperatures, $I F I N=-8 d B m, L O=2 d B m, I F=1000 \mathrm{MHz}, U S B$

Figure 26. Input IP3 vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, \mathrm{USB}$

Figure 27. Conversion Gain vs. RF Frequency at Various LO Powers, $I F I N=-8 d B m, I F=1000 \mathrm{MHz}$, USB

Figure 28. Sideband Rejection vs. RF Frequency at Various LO Powers, $I F I N=-8 d B m, I F=1000 \mathrm{MHz}, U S B$

Figure 29. Input IP3 vs. RF Frequency at Various LO Powers, $I F I N=5 \mathrm{dBm}, I F=1000 \mathrm{MHz}, U S B$

Figure 30. Input IP2 vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, U S B$

Figure 31. $6 \times$ LO Leakage at RFOUT vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, \mathrm{USB}$

Figure 32. Input P1dB vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, U S B$

Figure 33. Input IP2 vs. RF Frequency at Various LO Powers, $I F I N=5 \mathrm{dBm}, I F=1000 \mathrm{MHz}, U S B$

Figure 34. $6 \times$ LO Leakage at RFOUT vs. RF Frequency at Various LO Powers, IFIN $=5 \mathrm{dBm}, \mathrm{IF}=1000 \mathrm{MHz}, \mathrm{USB}$

UPPER SIDEBAND (USB) SELECTED, IF = $\mathbf{2 0 0 0} \mathbf{~ M H z}$

Figure 35. Conversion Gain vs. RF Frequency at Various Temperatures, $I F I N=-8 d B m, L O=2 d B m, I F=2000 \mathrm{MHz}, U S B$

Figure 36. Sideband Rejection vs. RF Frequency at Various Temperatures, $I F I N=-8 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, U S B$

Figure 37. Input IP3 vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, U S B$

Figure 38. Conversion Gain vs. RF Frequency at Various LO Powers, $I F I N=-8 d B m, I F=2000 \mathrm{MHz}, U S B$

Figure 39. Sideband Rejection vs. RF Frequency at Various LO Powers, $I F I N=-8 d B m, I F=2000 \mathrm{MHz}$, USB

Figure 40. Input IP3 vs. RF Frequency at Various LO Powers,
$I F I N=5 \mathrm{dBm}, I F=2000 \mathrm{MHz}, U S B$

Figure 41. Input IP2 vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, U S B$

Figure $42.6 \times$ LO Leakage at RFOUT vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, \mathrm{USB}$

Figure 43. Input P1dB vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, U S B$

Figure 44. Input IP2 vs. RF Frequency at Various LO Powers,
$I F I N=5 \mathrm{dBm}, I F=2000 \mathrm{MHz}, U S B$

Figure 45. $6 \times$ LO Leakage at RFOUT vs. RF Frequency at Various LO Powers, IFIN $=5 \mathrm{dBm}, I F=1000 \mathrm{MHz}$, USB

LOWER SIDEBAND (LSB) SELECTED, IF = $\mathbf{5 0 0} \mathbf{~ M H z}$

Figure 46. Conversion Gain vs. RF Frequency at Various Temperatures, $I F I N=-8 d B m, L O=2 d B m, I F=500 \mathrm{MHz}, L S B$

Figure 47. Sideband Rejection vs. RF Frequency at Various Temperatures, $I F I N=-8 d B m, L O=2 d B m, I F=500 \mathrm{MHz}, L S B$

Figure 48. Input IP3 vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, L S B$

Figure 49. Conversion Gain vs. RF Frequency at Various LO Powers, $I F I N=-8 d B m, I F=500 \mathrm{MHz}, L S B$

Figure 50. Sideband Rejection vs. RF Frequency at Various LO Powers, $I F I N=-8 d B m, I F=500 \mathrm{MHz}, L S B$

Figure 51. Input IP3 vs. RF Frequency at Various LO Powers, $I F I N=5 \mathrm{dBm}, I F=500 \mathrm{MHz}, L S B$

Figure 52. Input IP2 vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, L S B$

Figure 53. $6 \times$ LO Leakage at RFOUT vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, I F=500 \mathrm{MHz}, L S B$

Figure 54. Input P1dB vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, L S B$

Figure 55. Input IP2 vs. RF Frequency at Various LO Powers, $I F I N=5 d B m, I F=500 \mathrm{MHz}, L S B$

Figure 56. $6 \times$ LO Leakage at RFOUT vs. RF Frequency at Various LO
Powers, $I F I N=5 \mathrm{dBm}, I F=500 \mathrm{MHz}, L S B$

LOWER SIDEBAND (LSB) SELECTED, IF = $1000 \mathbf{~ M H z}$

Figure 57. Conversion Gain vs. RF Frequency at Various Temperatures, $I F I N=-8 d B m, L O=2 d B m, I F=1000 \mathrm{MHz}, L S B$

Figure 58. Sideband Rejection vs. RF Frequency at Various Temperatures, $I F I N=-8 d B m, L O=2 d B m, I F=1000 \mathrm{MHz}, L S B$

Figure 59. Input IP3 vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, L S B$

Figure 60. Conversion Gain vs. RF Frequency at Various LO Powers, $I F I N=-8 d B m, I F=1000 \mathrm{MHz}, L S B$

Figure 61. Sideband Rejection vs. RF Frequency at Various LO Powers, $I F I N=-8 d B m, I F=1000 \mathrm{MHz}, L S B$

Figure 62. Input IP3 vs. RF Frequency at Various LO Powers,
$I F I N=5 \mathrm{dBm}, I F=1000 \mathrm{MHz}, L S B$

Figure 63. Input IP2 vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, L S B$

Figure 64. $6 \times$ LO Leakage at RFOUT vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, L S B$

Figure 65. Input P1dB vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, L S B$

Figure 66. Input IP2 vs. RF Frequency at Various LO Powers, $I F I N=5 d B m, I F=1000 \mathrm{MHz}, L S B$

Figure 67. $6 \times$ LO Leakage at RFOUT vs. RF Frequency at Various LO Powers, $I F I N=5 \mathrm{dBm}, \mathrm{IF}=1000 \mathrm{MHz}, \mathrm{LSB}$

LOWER SIDEBAND (LSB) SELECTED, IF = $2000 \mathbf{~ M H z}$

Figure 68. Conversion Gain vs. RF Frequency at Various Temperatures, $I F I N=-8 d B m, L O=2 d B m, I F=2000 \mathrm{MHz}, L S B$

Figure 69. Sideband Rejection vs. RF Frequency at Various Temperatures, $I F I N=-8 d B m, L O=2 d B m, I F=2000 \mathrm{MHz}, L S B$

Figure 70. Input IP3 vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, L S B$

Figure 71. Conversion Gain vs. RF Frequency at Various LO Powers, $I F I N=-8 d B m, I F=2000 \mathrm{MHz}, L S B$

Figure 72. Sideband Rejection vs. RF Frequency at Various LO Powers, $I F I N=-8 d B m, I F=2000 \mathrm{MHz}, L S B$

Figure 73. Input IP3 vs. RF Frequency at Various LO Powers,
$I F I N=5 \mathrm{dBm}, I F=2000 \mathrm{MHz}, L S B$

Figure 74. Input IP2 vs. RF Frequency at Various Temperatures, $I F I N=5 d B m, L O=2 d B m, I F=2000 \mathrm{MHz}, L S B$

Figure 75. $6 \times$ LO Leakage at RFOUT vs. RF Frequency at Various Temperatures, $I F I N=5 \mathrm{dBm}, I F=2000 \mathrm{MHz}, L S B$

Figure 76. Input P1dB vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, L S B$

Figure 77. Input IP2 vs. RF Frequency at Various LO Powers, $I F I N=5 \mathrm{dBm}, I F=2000 \mathrm{MHz}, L S B$

Figure 78. $6 \times$ LO Leakage at RFOUT vs. RF Frequency at Various LO Powers, IFIN $=5 \mathrm{dBm}, I F=2000 \mathrm{MHz}, L S B$

SPURIOUS PERFORMANCE, USB

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {GMIX }}=-1 \mathrm{~V}, \mathrm{~V}_{\text {DAMPx }}=4 \mathrm{~V}, \mathrm{~V}_{\text {DMULT }}=1.5 \mathrm{~V}, \mathrm{LO}=2 \mathrm{dBm}$.
Mixer spurious products are measured in dBc from the RF output power level. Spur values are $(\mathrm{M} \times \mathrm{IF})+(\mathrm{N} \times \mathrm{LO})$. N/A means not applicable.
$\mathbf{M} \times \mathbf{N}$ Spurious Outputs, $\mathbf{R F}=\mathbf{8 2} \mathbf{~ G H z}$
$\mathrm{IF}=500 \mathrm{MHz}$ at $\mathrm{IFIN}=5 \mathrm{dBm}, \mathrm{LO}=13.583 \mathrm{GHz}$ at $\mathrm{LOIN}=$ 2 dBm .

		N \times LO						
		0	1	2	3	4	5	6
M \times IF	0	N/A	N/A	N/A	N/A	N/A	N/A	22.1
	1	N/A	N/A	N/A	N/A	N/A	N/A	0.00
	2	N/A	N/A	N/A	N/A	N/A	N/A	37.7
	3	N/A	N/A	N/A	N/A	N/A	N/A	54.5
	4	N/A	N/A	N/A	N/A	N/A	N/A	59.5
	5	N/A	N/A	N/A	N/A	N/A	N/A	58.6

IF $=1000 \mathrm{MHz}$ at $\mathrm{IFIN}=5 \mathrm{dBm}, \mathrm{LO}=13.5 \mathrm{GHz}$ at $\mathrm{LOIN}=$ 2 dBm .

		$\mathrm{N} \times$ LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ IF	0	N/A	N/A	N/A	N/A	N/A	N/A	22.8
	1	N/A	N/A	N/A	N/A	N/A	N/A	0.00
	2	N/A	N/A	N/A	N/A	N/A	N/A	31.6
	3	N/A	N/A	N/A	N/A	N/A	N/A	32.5
	4	N/A	N/A	N/A	N/A	N/A	N/A	32.1
	5	N/A	N/A	N/A	N/A	N/A	N/A	31.6

IF $=2000 \mathrm{MHz}$ at $\mathrm{IFIN}=5 \mathrm{dBm}, \mathrm{LO}=13.333 \mathrm{GHz}$ at $\mathrm{LOIN}=$ 2 dBm .

		N \times LO						
		0	1	2	3	4	5	6
M \times IF	0	N/A	N/A	N/A	N/A	N/A	N/A	29.7
	1	N/A	N/A	N/A	N/A	N/A	N/A	0.00
	2	N/A	N/A	N/A	N/A	N/A	N/A	31.5
	3	N/A	N/A	N/A	N/A	N/A	N/A	30.5
	4	N/A	N/A	N/A	N/A	N/A	N/A	29.5
	5	N/A	N/A	N/A	N/A	N/A	N/A	28.9

$\mathbf{M} \times \mathbf{N}$ Spurious Output, $R F=\mathbf{8 5} \mathbf{G H z}$

$\mathrm{IF}=500 \mathrm{MHz}$ at $\mathrm{IFIN}=5 \mathrm{dBm}, \mathrm{LO}=14.083 \mathrm{GHz}$ at $\mathrm{LOIN}=$ 2 dBm .

		N \times LO						
		0	1	2	3	4	5	6
M \times IF	0	N/A	N/A	N/A	N/A	N/A	N/A	15.8
	1	N/A	N/A	N/A	N/A	N/A	N/A	0.00
	2	N/A	N/A	N/A	N/A	N/A	N/A	38.3
	3	N/A	N/A	N/A	N/A	N/A	N/A	60.5
	4	N/A	N/A	N/A	N/A	N/A	N/A	59.7
	5	N/A	N/A	N/A	N/A	N/A	N/A	60.8

IF $=1000 \mathrm{MHz}$ at $\mathrm{IFIN}=5 \mathrm{dBm}, \mathrm{LO}=14 \mathrm{GHz}$ at $\mathrm{LOIN}=$ 2 dBm .

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{I F}$	0	N/A	N/A	N/A	N/A	N/A	N/A	15.7
	1	N/A	N/A	N/A	N/A	N/A	N/A	0.00
	2	N/A	N/A	N/A	N/A	N/A	N/A	32.5
	3	N/A	N/A	N/A	N/A	N/A	N/A	31.7
	4	N/A	N/A	N/A	N/A	N/A	N/A	29.7
	5	N/A	N/A	N/A	N/A	N/A	N/A	30.2

$\mathrm{IF}=2000 \mathrm{MHz}$ at $\mathrm{IFIN}=5 \mathrm{dBm}, \mathrm{LO}=13.833 \mathrm{GHz}$ at $\mathrm{LOIN}=$ 2 dBm .

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{I F}$	0	N/A	N/A	N/A	N/A	N/A	N/A	17.2
	1	N/A	N/A	N/A	N/A	N/A	N/A	0.00
	2	N/A	N/A	N/A	N/A	N/A	N/A	30.4
	3	N/A	N/A	N/A	N/A	N/A	N/A	29.7
	4	N/A	N/A	N/A	N/A	N/A	N/A	30
	5	N/A	N/A	N/A	N/A	N/A	N/A	28.6

SPURIOUS PERFORMANCE, LSB

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GMIX}}=-1 \mathrm{~V}, \mathrm{~V}_{\text {DAMPx }}=4 \mathrm{~V}, \mathrm{~V}_{\text {DMUIT }}=1.5 \mathrm{~V}, \mathrm{LO}=2 \mathrm{dBm}$.
Mixer spurious products are measured in dBc from the RF output power level. Spur values are $(M \times I F)-(N \times L O)$. N/A means not applicable.

$\mathbf{M} \times \mathbf{N}$ Spurious Outputs, $\mathbf{R F}=\mathbf{8 2} \mathbf{~ G H z}$

$\mathrm{IF}=500 \mathrm{MHz}$ at $\mathrm{IFIN}=5 \mathrm{dBm}, \mathrm{LO}=13.75 \mathrm{GHz}$ at $\mathrm{LOIN}=$ 2 dBm .

		$\mathrm{N} \times$ LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{I F}$	0	N/A	64.4	N/A	54.2	N/A	N/A	19.4
	1	63.4	N/A	N/A	N/A	N/A	N/A	0.00
	2	N/A	N/A	N/A	N/A	N/A	N/A	38.4
	3	N/A	N/A	N/A	N/A	N/A	N/A	59
	4	N/A	N/A	N/A	N/A	N/A	N/A	61.3
	5	N/A	N/A	N/A	N/A	N/A	N/A	61.4

IF $=1000 \mathrm{MHz}$ at $\mathrm{IFIN}=5 \mathrm{dBm}, \mathrm{LO}=13.833 \mathrm{GHz}$ at $\mathrm{LOIN}=$ 2 dBm .

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathrm{IF}$	0	N/A	N/A	N/A	N/A	N/A	N/A	17.2
	1	N/A	N/A	N/A	N/A	N/A	N/A	0.00
	2	N/A	N/A	N/A	N/A	N/A	N/A	42.2
	3	N/A	N/A	N/A	N/A	N/A	N/A	60.1
	4	N/A	N/A	N/A	N/A	N/A	N/A	62
	5	N/A	N/A	N/A	N/A	N/A	N/A	58.7

IF $=2000 \mathrm{MHz}$ at $\mathrm{IFIN}=5 \mathrm{dBm}, \mathrm{LO}=14 \mathrm{GHz}$ at $\mathrm{LOIN}=$ 2 dBm .

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{I F}$	0	N/A	N/A	N/A	N/A	N/A	N/A	17.2
	1	N/A	N/A	N/A	N/A	N/A	N/A	0.00
	2	N/A	N/A	N/A	N/A	N/A	N/A	49.3
	3	N/A	N/A	N/A	N/A	N/A	N/A	55.9
	4	N/A	N/A	N/A	N/A	N/A	N/A	65.2
	5	N/A	N/A	N/A	N/A	N/A	N/A	64.4

$\mathbf{M} \times \mathbf{N}$ Spurious Outputs, $\mathbf{R F}=\mathbf{8 5} \mathbf{~ G H z}$

$\mathrm{IF}=500 \mathrm{MHz}$ at $\mathrm{IFIN}=5 \mathrm{dBm}, \mathrm{LO}=14.25 \mathrm{GHz}$ at $\mathrm{LOIN}=$ 2 dBm .

		$\mathrm{N} \times$ LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ IF	0	N/A	56.9	N/A	57.3	N/A	N/A	19.5
	1	63.45	N/A	N/A	N/A	N/A	N/A	0.00
	2	N/A	N/A	N/A	N/A	N/A	N/A	38.8
	3	N/A	N/A	N/A	N/A	N/A	N/A	61.4
	4	N/A	N/A	N/A	N/A	N/A	N/A	61.8
	5	N/A	N/A	N/A	N/A	N/A	N/A	59.2

IF $=1000 \mathrm{MHz}$ at $\mathrm{IFIN}=5 \mathrm{dBm}, \mathrm{LO}=14.333 \mathrm{GHz}$ at $\mathrm{LOIN}=$ 2 dBm .

		$\mathrm{N} \times$ LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ IF	0	N/A	N/A	N/A	N/A	N/A	N/A	17.1
	1	N/A	N/A	N/A	N/A	N/A	N/A	0.00
	2	N/A	N/A	N/A	N/A	N/A	N/A	42.5
	3	N/A	N/A	N/A	N/A	N/A	N/A	59.6
	4	N/A	N/A	N/A	N/A	N/A	N/A	58.9
	5	N/A	N/A	N/A	N/A	N/A	N/A	59.9

$\mathrm{IF}=2000 \mathrm{MHz}$ at $\mathrm{IFIN}=5 \mathrm{dBm}, \mathrm{LO}=14.5 \mathrm{GHz}$ at $\mathrm{LOIN}=$ 2 dBm .

		$\mathrm{N} \times$ LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ IF	0	N/A	N/A	N/A	N/A	N/A	N/A	18.7
	1	N/A	N/A	N/A	N/A	N/A	N/A	0.00
	2	N/A	N/A	N/A	N/A	N/A	N/A	49.7
	3	N/A	N/A	N/A	N/A	N/A	N/A	60.2
	4	N/A	N/A	N/A	N/A	N/A	N/A	60.6
	5	N/A	N/A	N/A	N/A	N/A	N/A	63.2

THEORY OF OPERATION

The HMC8119 is a GaAs I/Q upconverter with an integrated LO buffer and $6 \times$ multiplier. See Figure 79 for a functional block diagram of the circuit architecture. The $6 \times$ multiplier allows the use of a lower frequency range LO input signal, typically between 11.83 GHz and 14.33 GHz . The $6 \times$ multiplier is implemented using a cascade of $3 \times$ and $2 \times$ multipliers. LO buffer amplifiers are included on chip to allow a typical LO drive level
of only 2 dBm for full performance. The LO path feeds a quadrature splitter followed by on-chip baluns that drive the I and Q mixer cores. The mixer cores comprise singly balanced passive mixers. The RF outputs of the I and Q mixers are then summed through an on-chip Wilkinson power combiner and reactively matched to provide a single-ended 50Ω output signal at the RFOUT pad.

Figure 79. Upconverter Circuit Architecture

APPLICATIONS INFORMATION

BIASING SEQUENCE

The HMC8119 uses several amplifier and multiplier stages in the LO signal path. The active stages all use depletion mode pseudomorphic high electron mobility transistors (pHEMTs). To ensure transistor damage does not occur, use the following power-up bias sequence:

1. Apply a - 2 V bias to $\mathrm{V}_{\mathrm{GAmp}}, \mathrm{V}_{\mathrm{GX}}$, and V_{GX}.
2. Apply a -1 V bias to $\mathrm{V}_{\text {Gmix. }}$
3. Apply 4 V to $\mathrm{V}_{\text {DAMP1 }}$ and $\mathrm{V}_{\mathrm{DAMP} 2}$, and apply 1.5 V to $\mathrm{V}_{\text {Dmult. }}$
4. Adjust $\mathrm{V}_{\mathrm{GAMP}}$ between -2 V and 0 V to achieve a total amplifier drain current ($\mathrm{I}_{\text {DAMP1 }}+\mathrm{I}_{\text {DAMP2 }}$) of 175 mA .
5. Apply a LO input signal and adjust $\mathrm{V}_{\mathrm{GX} 2}$ and V_{GX} between -2 V and 0 V to achieve 80 mA of drain current on $V_{\text {DMULT. }}$

To power down the HMC8119, follow the reverse procedure.
For additional guidance on general bias sequencing, see the MMIC Amplifier Biasing Procedure application note.

Figure 80. Single-Sideband Upconversion Configuration with Optional DC Bias Tee Network for Enhanced LO Suppression

Zero IF Direct Conversion

A zero IF direct conversion application circuit is shown in Figure 81. An optional bias tee network is included for applications requiring additional LO suppression correction. When omitting the bias tee configuration, it is still important to ac couple the IFIP, IFIN, IFQP, and IFQN pads to the DAC
outputs. Most DACs are designed to operate with a commonmode voltage that is above ground. The HMC8119 I/Q inputs are ground referenced and dc coupling to a differential signal source with a common-mode output voltage other than 0 V may cause degraded RF performance and possible device damage from electrical overstress.

Figure 81. Zero IF Direct Conversion Application Circuit with Optional Bias Tee Network for Enhanced LO Suppression

Data Sheet

ASSEMBLY DIAGRAM

Figure 82. Assembly Diagram

MOUNTING AND BONDING TECHNIQUES FOR MILLIMETERWAVE GaAs MMICS

Attach the die directly to the ground plane eutectically or with conductive epoxy.
To bring RF to and from the chip, use 50Ω microstrip transmission lines on 0.127 mm (5 mil) thick alumina thin film substrates (see Figure 83).

Figure 83. Routing RF Signals
To minimize bond wire length, place microstrip substrates as close to the die as possible. Typical die to substrate spacing is 0.076 mm to 0.152 mm (3 mil to 6 mil).

HANDLING PRECAUTIONS

To avoid permanent damage, adhere to the following storage, cleanliness, static sensitivity, transients, and general handling precautions.

Storage

All bare die ship in either waffle or gel-based ESD protective containers, sealed in an ESD protective bag. After opening the sealed ESD protective bag, all die must be stored in a dry nitrogen environment.

Cleanliness

Handle the chips in a clean environment. Never use liquid cleaning systems to clean the chip.

Static Sensitivity

Follow ESD precautions to protect against ESD strikes.

Transients

Suppress instrument and bias supply transients while bias is applied. To minimize inductive pickup, use shielded signal and bias cables.

General Handling

Handle the chip on the edges only using a vacuum collet or with a sharp pair of bent tweezers. Because the surface of the chip has fragile air bridges, never touch the surface of the chip with a vacuum collet, tweezers, or fingers.

MOUNTING

The chip is back metallized and can be die mounted with gold/tin (AuSn) eutectic preforms or with electrically conductive epoxy. The mounting surface must be clean and flat.

Eutectic Die Attach

It is best to use an $80 \% / 20 \%$ gold/tin preform with a work surface temperature of $255^{\circ} \mathrm{C}$ and a tool temperature of $265^{\circ} \mathrm{C}$. When hot $90 \% / 10 \%$ nitrogen/hydrogen gas is applied, maintain tool tip temperature at $290^{\circ} \mathrm{C}$. Do not expose the chip to a temperature greater than $320^{\circ} \mathrm{C}$ for more than 20 sec . No more than 3 sec of scrubbing is required for attachment.

Epoxy Die Attach

ABLEBOND 84-1LMIT is recommended for die attachment. Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip after placing it into position. Cure the epoxy per the schedule provided by the manufacturer.

WIRE BONDING

RF bonds made with $0.003 \mathrm{in} . \times 0.0005 \mathrm{in}$. gold ribbon are recommended for the RF port, and wedge bonds with 0.025 mm (1 mil) diameter gold wire are recommended for the IF and LO ports. These bonds must be thermosonically bonded with a force of 40 g to 60 g . DC bonds of 0.001 in . (0.025 mm) diameter, thermosonically bonded, are recommended. Create ball bonds with a force of 40 g to 50 g and wedge bonds with a force of 18 g to 22 g . Create all bonds with a nominal stage temperature of $150^{\circ} \mathrm{C}$. Apply a minimum amount of ultrasonic energy to achieve reliable bonds. Keep all bonds as short as possible, less than $12 \mathrm{mil}(0.31 \mathrm{~mm})$.

OUTLINE DIMENSIONS

Figure 84. 24-Pad Bare Die [CHIP]
(C-24-3)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option 2
HMC8119	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 -Pad Bare Die [CHIP]	$\mathrm{C}-24-3$
HMC8119-SX	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 -Pad Bare Die [CHIP]	$\mathrm{C}-24-3$

${ }^{1}$ The HMC8119-SX is two pairs of the die in a gel pack for the sample orders.
${ }^{2}$ This is a waffle pack option; contact Analog Devices, Inc., for additional packaging options.

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:
105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»
Телефон: +7 495 668-12-70 (многоканальный)
Факс: +7 495 668-12-70 (доб.304)
E-mail: info@moschip.ru
Skype отдела продаж:
moschip.ru
moschip.ru_6
moschip.ru_4
moschip.ru_9

