

Spec No.: DS22-2006-185

Effective Date: 06/12/2014

Revision: F

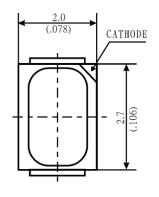
LITE-ON DCC

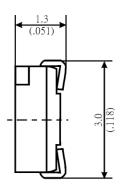
RELEASE

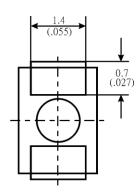
BNS-OD-FC001/A4

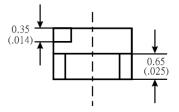
1. Description

The LTW (LiteOn White LED) is a revolutionary, energy efficient and ultra compact new light source, combining the lifetime and reliability advantages of Light Emitting Diodes with the brightness of conventional lighting. It gives you total design freedom and unmatched brightness, creating a new opportunities for solid state lighting to displace conventional lighting technologies..


1. Features


- Package in 8mm tape on 7" diameter reels
- Compatible with automatic placement equipment.
- Compatible with infrared and vapor phase reflow solder process.
- EIA STD package.
- I.C. compatible.
- Meet green product and Pb-free(According to RoHS)

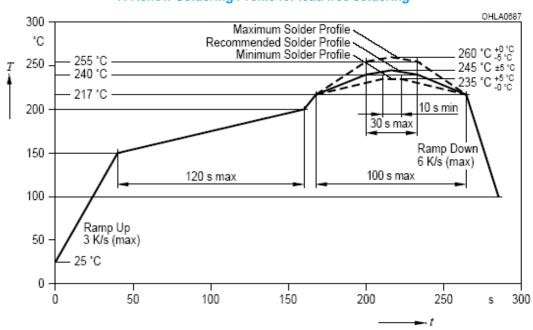

1. Features


- Reading lights (car, bus, aircraft)
- Portable (flashlight, bicycle)
- Downlighters/Orientation
- Decorative/Entertainment
- Bollards/Security/Garden
- Cove/Undershelf/Task
- Traffic signaling/Beacons/ Rail crossing and Wayside
- Indoor/Outdoor Commercial and Residential Architectural
- Edge_lit signs (Exit, point of sale)

2. Outline Dimensions

Notes:

- 1. All dimensions are in millimeters.
- 2. Tolerance is $\pm 0.2 \ \text{mm}$ (.008") unless otherwise noted.


Absolute Maximum Ratings at Ta=25°C

Parameter	LTW-M670ZVS-CS	Unit	
Power Dissipation	120	mW	
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse	100	mA	
DC Forward Current	30	mA	
Reverse Voltage	5	V	
Operating Temperature Range	-30°C to + 85°C		
Storage Temperature Range	-40°C to + 100°C		
Reflow Soldering Condition	260°C For 10 Seconds		

Note: Operating the LED (in an application) under reverse bias condition might result in damage or failure of the component.

Suggest IR Reflow Condition:

R-Reflow Soldering Profile for lead free soldering

Electro-Optical Characteristics at Ta=25 °C

Parameter	Symbol	Part No. LTW-	Min.	Тур.	Max.	Unit	Test Condition
Luminous Intensity	Iv	M670ZVS-CS	1600	2000	2500	mcd	IF = 20mA Note 1, 2, 5
Luminous Flux	$\Phi_{ m V}$	M670ZVS-CS		4500		mlm	$I_{\rm F} = 20 \text{mA}$ Note 1, 2, 5
Viewing Angle	2 0 1/2	M670ZVS-CS		120		deg	Fig.6
	X			0.33			IF = 20mA
Chromaticity Coordinates	у	M670ZVS-CS		0.35			Note 3, 5 Fig.1
Peak Wavelength	Wp	M670ZVS-CS		445		nm	$I_{\rm F} = 20 {\rm mA}$
Forward Voltage	$V_{\rm F}$	M670ZVS-CS	2.9	3.3	3.5	V	$I_{\rm F} = 20 { m mA}$
ESD-Withstand Voltage	ESD	M670ZVS-CS	2K			V	НВМ

Notes:

- 1. Luminous flux is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
- 2. Lm classification code is marked on each packing bag.
- 3. The chromaticity coordinates (x, y) is derived from the 1931 CIE chromaticity diagram.
- 4. Caution in ESD:

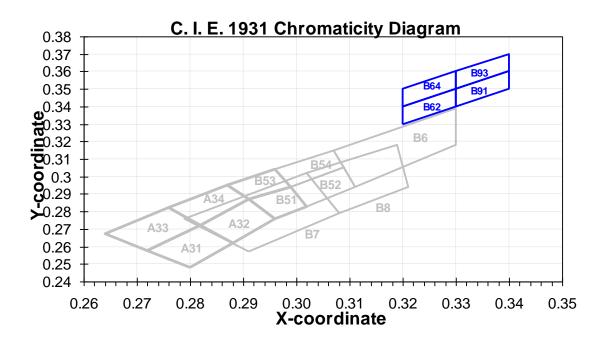
Static Electricity and surge damages the LED. It is recommend to use a wrist band or anti-Electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.

- 5. CAS140B is the test standard for the chromaticity coordinates (x, y) & lm.
- 6. The chromaticity coordinates (x, y) guarantee should be added +/- 0.01 tolerance.
- 7. The Forward Voltage (Vf) guarantee should be added \pm 0.10 volt tolerance.

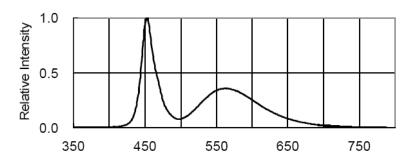
Bin Code List

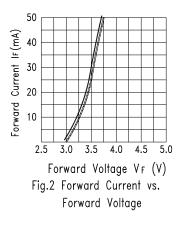
V _F Spec. Table				
Forward Voltage (volts) at IF = 20mA				
V _F Bin	Min.	Max.		
V0	2.9	3.0		
V1	3.0	3.1		
V2	3.1	3.2		
V3	3.2	3.3		
V4	3.3	3.4		
V5	3.4	3.5		

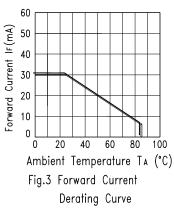
Tolerance on each Forward Voltage bin is +/- 0.1 V

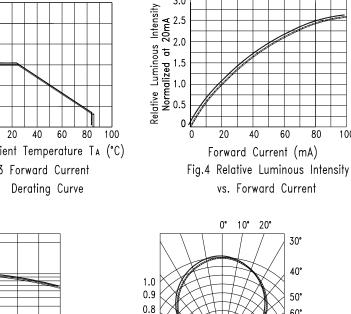

Luminous Flux Spec. Table				
IV Bin	Luminous Intensity (mcd) at IF = 20mA			
IV BIII	Min.	Max.		
S6	1600	1700		
S7	1700	1800		
S8	1800	1900		
S 9	1900	2000		
T1	2000	2100		
T2	2100	2200		
Т3	2200	2300		
T4	2300	2400		
T5	2400	2500		

Tolerance on each Luminous Intensity bin and Luminous Flux are +/- 10%, and IV (mcd) is for reference.


Color Ranks Table						
Ranks	Color bin limits at IF = 20mA					
Ranks	CIE 1931Chromaticity coordinates					
B62	X	0.32	0.32	0.33	0.33	
D02	у	0.33	0.34	0.35	0.34	
B64	X	0.32	0.32	0.33	0.33	
	у	0.34	0.35	0.36	0.35	
PO1	X	0.33	0.33	0.34	0.34	
B91	у	0.34	0.35	0.36	0.35	
B93	X	0.33	0.33	0.34	0.34	
	у	0.35	0.36	0.37	0.36	


Tolerance on each Hue (x, y) bin is +/- 0.01





Typical Electrical / Optical Characteristics Curves (25°C Ambient Temperature Unless Otherwise Noted

3.0

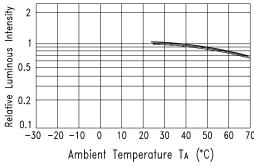


Fig.5 Luminous Intensity vs. Ambient Temperature

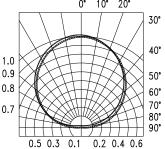
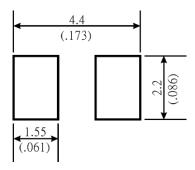


Fig.6 Spatial Distribution

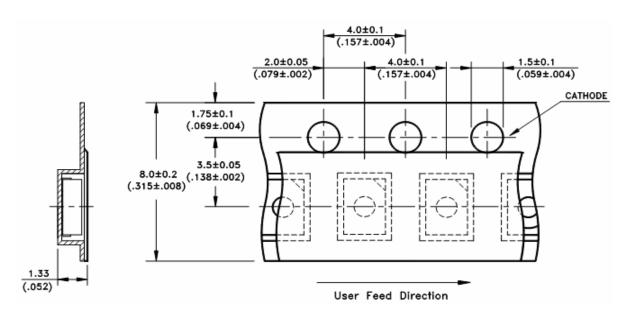
80

100

User Guide

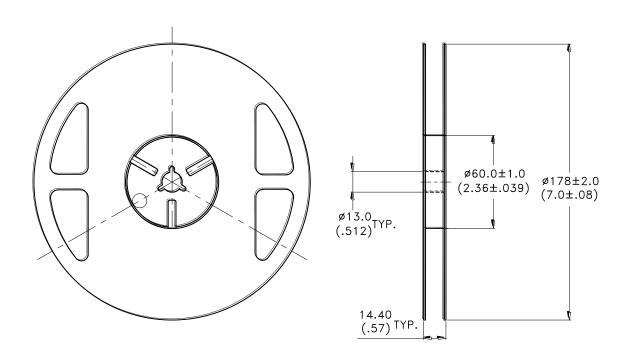

Cleaning

Do not use unspecified chemical liquid to clean LED they could harm the package.


If cleaning is necessary, immerse the LED in ethyl alcohol or isopropyl alcohol at normal temperature for less than one minute.

Recommend Printed Circuit Board Attachment Pad

Infrared / vapor phase Reflow Soldering


Package Dimensions of Tape

Note: All dimensions are in millimeters (inches).

Package Dimensions of Reel

Notes:

- 1. Empty component pockets sealed with top cover tape.
- 2. 7 inch reel-2000 pieces per reel.
- 3. Minimum packing quantity is 500 pieces for remainders.
- 4. The maximum number of consecutive missing lamps is two.
- 5. In accordance with EIA-481-1-B specifications.

CAUTIONS

1. Application

The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications). Consult Liteon's Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices).

2. Storage

This product is qualified as Moisture sensitive Level 3 per JEDEC J-STD-020 Precaution when handing this moisture sensitive product is important to ensure the reliability of the product.

The package is sealed:

The LEDs should be stored at 30°C or less and 90%RH or less. And the LEDs are limited to use within one year, while the LEDs is packed in moisture-proof package with the desiccants inside.

The package is opened:

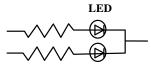
The LEDs should be stored at 30°C or less and 60%RH or less. Moreover, the LEDs are limited to solder process within 168hrs. If the Humidity Indicator shows the pink color in 10% even higher or exceed the storage limiting time since opened, that we recommended to baking LEDs at 60°C at least 48hrs. To seal the remainder LEDs return to package, it's recommended to be with workable desiccants in original package.

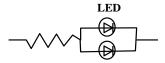
3. Cleaning

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED if necessary.

4. Soldering

Recommended soldering conditions:


Reflow soldering		Soldering iron		
Pre-heat	120~150°C	Temperature	300°C Max.	
Pre-heat time	120 sec. Max.	Soldering time	3 sec. Max.	
Soldering Temp. Soldering time	260°C Max.		(one time only)	
30 sec. Max.				


5. Drive Method

An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below.

Circuit model A

Circuit model B

- (A) Recommended circuit.
- (B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs.

6. ESD (Electrostatic Discharge)

Static Electricity or power surge will damage the LED.

Suggestions to prevent ESD damage:

- Use of a conductive wrist band or anti-Electrostatic glove when handling these LEDs.
- All devices, equipment, and machinery must be properly grounded.
- Work tables, storage racks, etc. should be properly grounded.
- Use ion blower to neutralize the static charge which might have built up on surface of the LED's plastic lens as a result of friction between LEDs during storage and handling.

ESD-damaged LEDs will exhibit abnormal characteristics such as high reverse leakage current, low forward voltage, or "no lightup" at low currents.

To verify for ESD damage, check for "lightup" and Vf of the suspect LEDs at low currents.

The Vf of "good" LEDs should be >2.0V@0.1mA for InGaN product

7.1 Reliability Test

Test Item	Test Condition	Reference Standard	Note	Number of Damaged
Solderability (Reflow Soldering)	Tsld=245±5°C, 3sec. (Lead Free Solder)	JEITA ED-4701 300 303	1 time Over 95%	0/30
Thermal Shock	-30°C ~ 85°C 30min. 30min.	JEITA ED-4701 300 307	100 cycles	0/30
High Temperature Storage	Ta=85°C	JEITA ED-4701 200 201	1000 hrs.	0/30
Temperature Humidity Storage	Ta=60°C, RH=90%	JEITA ED-4701 100 103	1000 hrs.	0/30
Steady State Operating Life Condition 1	Ta=25°C, IF=20mA		1000 hrs.	0/30
Steady State Operating Life Condition 2	Ta=25°℃, IF=30mA		500 hrs.	0/30
Steady State Operating Life of High Temperature	Ta=85°℃, IF=5mA		500 hrs.	0/30
Steady State Operating Life of High Humidity Heat	60℃, RH=90%, IF=15mA		500 hrs.	0/30
Steady State Operating Life of low Temperature	Ta=-30°C, IF=20mA		1000 hrs.	0/30

8. Others

The appearance and specifications of the product may be modified for improvement without prior notice.

9. Suggested Checking List

Training and Certification

- 1. Everyone working in a static-safe area is ESD-certified?
- 2. Training records kept and re-certification dates monitored?

Static-Safe Workstation & Work Areas

Note: *50V for Blue LED.

- 1. Static-safe workstation or work-Areas have ESD signs?
- 2. All surfaces and objects at all static-safe workstation and within 1 ft measure less than 100V?
- 3. All ionizer activated, positioned towards the units?
- 4. Each work surface mats grounding is good?

Personnel Grounding

- 1. Every person (including visitors) handling ESD sensitive (ESDS) items wear wrist strap, heel strap or conductive shoes with conductive flooring?
- 2. If conductive footwear used, conductive flooring also present where operator stand or walk?
- 3. Garments, hairs or anything closer than 1 ft to ESD items measure less than 100V*?
- 4. Every wrist strap or heel strap/conductive shoes checked daily and result recorded for all DLs?
- 5. All wrist strap or heel strap checkers calibration up to date?

Device Handling

- 1. Every ESDS items identified by EIA-471 labels on item or packaging?
- 2. All ESDS items completely inside properly closed static-shielding containers when not at static-safe workstation?
- 3. No static charge generators (e.g. plastics) inside shielding containers with ESDS items?
- 4. All flexible conductive and dissipative package materials inspected before reuse or recycle?

Others

- 1. Audit result reported to entity ESD control coordinator?
- 2. Corrective action from previous audits completed?
- 3. Are audit records complete and on file?

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

<u>Lite-On</u>: LTW-M670ZVS

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9