MAX3224E/MAX3225E/ MAX3226E/MAX3227E/ MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus #### **General Description** The MAX3224E/MAX3225E/MAX3226E/MAX3227E/MAX3244E/MAX3245E are 3V-powered EIA/TIA-232 and V.28/V.24 communications interfaces with automatic shutdown/wakeup features, high data-rate capabilities, and enhanced electrostatic discharge (ESD) protection. All transmitter outputs and receiver inputs are protected to ±15kV using IEC 1000-4-2 Air-Gap Discharge, ±8kV using IEC 1000-4-2 Contact Discharge, and ±15kV using the Human Body Model. All devices achieve a 1µA supply current using Maxim's revolutionary AutoShutdown Plus™ feature. These devices automatically enter a low-power shutdown mode when the RS-232 cable is disconnected or the transmitters of the connected peripherals are inactive, and the UART driving the transmitter inputs is inactive for more than 30 seconds. They turn on again when they sense a valid transition at any transmitter or receiver input. AutoShutdown Plus saves power without changes to the existing BIOS or operating system. The MAX3225E/MAX3227E/MAX3245E also feature MegaBaud™ operation, guaranteeing 1Mbps for highspeed applications such as communicating with ISDN modems. The MAX3224E/MAX3226E/MAX3244E guarantee 250kbps operation. The transceivers have a proprietary low-dropout transmitter output stage enabling true RS-232 performance from a +3.0V to +5.5V supply with a dual charge pump. The charge pump requires only four small 0.1µF capacitors for operation from a 3.3V supply. The MAX3224E–MAX3227E feature a logic-level output (READY) that asserts when the charge pump is regulating and the device is ready to begin transmitting. All devices are available in a space-saving TQFN, SSOP, and TSSOP (MAX3224E/MAX3225E/MAX3244E/MAX3245E) packages. #### **Applications** Notebook, Subnotebook, and Palmtop Computers Cellular Phones Battery-Powered Equipment Hand-Held Equipment Peripherals Printers #### **Next Generation Device Features** - ♦ For Space-Constrained Applications: MAX3228E/MAX3229E: ±15kV ESD-Protected, +2.5V to +5.5V, RS-232 Transceivers in UCSP™ MAX3222E/MAX3232E/MAX3241E/MAX3246E: ±15kV ESD-Protected, Down to 10nA, +3.0V to +5.5V, Up to 1Mbps, True RS-232 Transceivers (MAX3246E Available in UCSP) - ♦ For Low-Voltage or Data Cable Applications: MAX3380E/MAX3381E: +2.35V to +5.5V, 1μA, 2Tx/2Rx RS-232 Transceivers with ±15kV ESD-Protected I/O and Logic Pins #### **Ordering Information** | PART | TEMP RANGE | PIN-PACKAGE | |--------------|-----------------|----------------| | MAX3224ECTP+ | 0°C to +70°C | 20 TQFN-EP* | | MAX3224ECUP+ | 0°C to +70°C | 20 TSSOP | | MAX3224ECAP+ | 0°C to +70°C | 20 SSOP | | MAX3224ECPP+ | 0°C to +70°C | 20 Plastic DIP | | MAX3224EETP+ | -40°C to +85°C | 20 TQFN-EP* | | MAX3224EEUP+ | -40°C to +85°C | 20 TSSOP | | MAX3224EEAP+ | -40°C to +85°C | 20 SSOP | | MAX3224EEPP+ | -40°C to +85°C | 20 Plastic DIP | | MAX3224EAAP+ | -40°C to +125°C | 20 SSOP | ⁺Denotes a lead(Pb)-free/RoHS-compliant package. Ordering Information continued at end of data sheet. #### Selector Guide | PART | NO. OF
DRIVERS/
RECEIVERS | GUARANTEED
DATA RATE
(bps) | READY
OUTPUT | Auto-
Shutdown
Plus | |----------|---------------------------------|----------------------------------|-----------------|---------------------------| | MAX3224E | 2/2 | 250k | ~ | > | | MAX3225E | 2/2 | 1M | ~ | > | | MAX3226E | 1/1 | 250k | ~ | > | | MAX3227E | 1/1 | 1M | ~ | V | | MAX3244E | 3/5 | 250k | _ | ~ | | MAX3245E | 3/5 | 1M | _ | / | AutoShutdown Plus, MegaBaud, and UCSP are trademarks of Maxim Integrated Products, Inc. ^{*}EP = Exposed pad. ## MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus #### **ABSOLUTE MAXIMUM RATINGS** | V _{CC} to GND | 0.3V to +6V | 20-Pin TQFN (| |--|-------------------------------|------------------| | V+ to GND (Note 1) | | 20-Pin Plastic D | | V- to GND (Note 1) | | 20-Pin SSOP (| | V+ + V- (Note 1) | | 20-Pin TSSOP | | Input Voltages | | 28-Pin Wide St | | T_IN, FORCEON, FORCEOFF to GND | 0.3V to +6V | 28-Pin SSOP (| | R_IN to GND | ±25V | 28-Pin TSSOP | | Output Voltages | | 36-Pin TQFN (d | | T_OUT to GND | ±13.2V | Operating Tempe | | R_OUT, INVALID, READY to GND0.3\ | / to (V _{CC} + 0.3V) | MAX32EC_ | | Short-Circuit Duration | | MAX32EE_ | | T_OUT to GND | Continuous | MAX32EAA | | Continuous Power Dissipation ($T_A = +70$ °C) | | Storage Tempera | | 16-Pin SSOP (derate 7.14mW/°C above +70° | °C)571mW | Lead Temperatur | | 16-Pin TSSOP (derate 9.4mW/°C above +70° | °C)754.7mW | Soldering Tempe | | 16-Pin TQFN (derate 20.8mW/°C above +70° | °C)1666.7mW | | | | | | | 20-Pin TQFN (derate 21.3mW/°C above +70°C)1702.1m | ıW | |--|----| | 20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)889m | ıW | | 20-Pin SSOP (derate 8.00mW/°C above +70°C)640m | ıW | | 20-Pin TSSOP (derate 10.9mW/°C above +70°C)879m | ıW | | 28-Pin Wide SO (derate 12.5mW/°C above +70°C)1 | W | | 28-Pin SSOP (derate 9.52mW/°C above +70°C)762m | ıW | | 28-Pin TSSOP (derate 12.8mW/°C above +70°C)1026m | ıW | | 36-Pin TQFN (derate 26.3mW/°C above +70°C)2105m | ıW | | perating Temperature Ranges | | | MAX32EC0°C to +70° | °C | | MAX32EE40°C to +85° | °C | | MAX32EAA40°C to +125° | °C | | torage Temperature Range65°C to +160° | | | ead Temperature (soldering, 10s)+300° | ٥С | | oldering Temperature (reflow)+260° | | Note 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **ELECTRICAL CHARACTERISTICS** $(V_{CC} = +3V \text{ to } +5.5V, C1-C4 = 0.1\mu\text{F}, \text{ tested at } 3.3V \pm 10\%; C_1 = 0.047\mu\text{F}, C2-C4 = 0.33\mu\text{F}, \text{ tested at } 5.0V \pm 10\%; T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C}.)$ | PARAMETER | SYMBOL | CON | MIN | TYP | MAX | UNITS | | |---|----------------|---|---------------------------------|-----------------------|-------------------------|-------|-----| | DC CHARACTERISTICS (VCC | = 3.3V or 5.0\ | V, T _A = +25°C) | | <u>'</u> | | | • | | Supply Current,
AutoShutdown Plus | | FORCEON = GND, F
all R_IN idle, all T_IN | | | 1 | 10 | μА | | Supply Current, Shutdown | | FORCEOFF = GND | | | 1 | 10 | μΑ | | Supply Current,
AutoShutdown Plus Disabled | | FORCEON = FORCE | OFF = V _{CC} , no load | | 0.3 | 1 | mA | | LOGIC INPUTS AND RECEIVE | R OUTPUTS | 1 | | | | | | | Input Logic Threshold Low | | T_IN, FORCEON, FO | RCEOFF | | | 0.8 | V | | Input Logic Threshold High | | T_IN, FORCEON, | V _{CC} = 3.3V | 2 | | | V | | input Logic Trieshold High | | FORCEOFF | V _{CC} = 5.0V | 2.4 | | | 1 v | | Transmitter Input Hysteresis | | | • | | 0.5 | | V | | Input Leakage Current | | T_IN, FORCEON, FO | RCEOFF | | ±0.01 | ±1 | μΑ | | Output Leakage Current | | R_OUT (MAX3244E/I
disabled | MAX3245E), receivers | | ±0.05 | ±10 | μА | | Output Voltage Low | | I _{OUT} = 1.6mA | | | | 0.4 | V | | Output Voltage High | | $I_{OUT} = -1.0mA$ | | V _{CC} - 0.6 | 6 V _{CC} - 0.1 | 1 | V | | RECEIVER INPUTS | • | | | <u>'</u> | | | • | | Input Voltage Range | | | | -25 | | +25 | V | | Input Threshold Low | | T _A = +25°C | V _{CC} = 3.3V | 0.6 | 1.2 | | V | | input miesnoid Low | | 1A = +23 C | V _{CC} = 5.0V | 0.8 | 1.5 | | V | | Input Threshold High | | T _A = +25°C | V _{CC} = 3.3V | | 1.5 | 2.4 | V | | input mesnoid mgn | | V _{CC} = 5.0V | | | 1.8 | 2.4 | | | Input Hysteresis | | i i | | | 0.5 | | V | | Input Resistance | | T _A = +25°C | | 3 | 5 | 7 | kΩ | ## MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus #### **ELECTRICAL CHARACTERISTICS (continued)** $(V_{CC} = +3V \text{ to } +5.5V, C1-C4 = 0.1 \mu\text{F}, \text{ tested at } 3.3V \pm 10\%; C_1 = 0.047 \mu\text{F}, C2-C4 = 0.33 \mu\text{F}, \text{ tested at } 5.0V \pm 10\%; T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C}$.) | PARAMETER | SYMBOL | CONDITI | MIN | TYP | MAX | UNITS | | |--|--------------------------|--|--|-----------------------|------|-------|----| | TRANSMITTER OUTPUTS | | | | | | | | | Output Voltage Swing | | All transmitter outputs loaground | aded with 3k Ω to | ±5 | ±5.4 | | V | | Output Resistance | | $V_{CC} = V + = V - = 0V$, tran | smitter outputs = ±2V | 300 | 10M | | Ω | | Output Short-Circuit Current | | | | | | ±60 | mA | | Output Leakage Current | | V _{CC} = 0V or 3V to 5.5V, V
Transmitters disabled | $V_{OUT} = \pm 12V$, | | | ±25 | μΑ | | MOUSE DRIVEABILITY (MAX32 | 44E/MAX32 | 45E) | | | | | | | Transmitter Output Voltage | | T1IN = T2IN = GND, T3IN
T3OUT loaded with $3k\Omega$ t
T1OUT and T2OUT loade
2.5mA each | ±5 | | | V | | | ESD PROTECTION | | | | | | | | | | | IEC 1000-4-2 Air Dischar | | | ±15 | | | | R_IN, T_OUT | | IEC 1000-4-2 Contact Dis | scharge | | ±8 | | kV | | | | Human Body Model | | | ±15 | | | | AutoShutdown Plus (FORCEON | $I = GND, \overline{FC}$ | RCEOFF = V _{CC}) | T | | | | | | Receiver Input Threshold to INVALID Output High | | Figure 4a | Positive threshold Negative threshold | -2.7 | | 2.7 | V | | Receiver Input Threshold to INVALID Output Low | | Figure 4a | | -0.3 | | +0.3 | V | | INVALID, READY
Output Voltage Low
(MAX3224E–MAX3227E) | | I _{OUT} = -1.6mA | | | | 0.4 | V | | INVALID, READY
Output Voltage High
(MAX3224E–MAX3227E) | | I _{OUT} = -1.0mA | | V _{CC} - 0.6 | | | V | | Receiver Positive or Negative
Threshold to INVALID High | tinvh | V _{CC} = 5V, Figure 4b | | | 1 | | μs | | Receiver Positive or Negative
Threshold to INVALID Low | t _{INVL} | V _{CC} = 5V, Figure 4b | | | 30 | | μs | | Receiver or Transmitter Edge to
Transmitters Enabled | twu | V _{CC} = 5V, Figure 5b (Note 2) | | | 100 | | μs | | Receiver or Transmitter Edge to
Transmitters Shutdown | t _{AUTOSHDN} | V _{CC} = 5V, Figure 5b (Not | re 2) | 15 | 30 | 60 | S | ### MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus #### TIMING CHARACTERISTICS—MAX3224E/MAX3226E/MAX3244E $(V_{CC} = +3V \text{ to } +5.5V, C1-C4 = 0.1\mu\text{F}, \text{ tested at } 3.3V \pm 10\%; C_1 = 0.047\mu\text{F}, C2-C4 = 0.33\mu\text{F}, \text{ tested at } 5.0V \pm 10\%; T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C}$.) | PARAMETER | SYMBOL | CONDITION | S | MIN | TYP | MAX | UNITS | | |------------------------------|------------------|---|-------------------------------------|-----|------|------|-------|--| | Maximum Data Rate | | $R_L = 3k\Omega$, $C_L = 1000pF$, one transmitter switching | 250 | | | kbps | | | | Receiver Propagation Delay | tphL | R IN to R OUT, C ₁ = 150p | | | 0.15 | | HC | | | Neceiver Fropagation Delay | t _{PLH} | n_IIV to n_OOT, OL = 150PF | | | 0.15 | | μs | | | Receiver Output Enable Time | | Normal operation (MAX324 | | 200 | | ns | | | | Receiver Output Disable Time | | Normal operation (MAX324 | | 200 | | ns | | | | Transmitter Skew | tPHL - tPLH | (Note 3) | | | 100 | | ns | | | Receiver Skew | tphl - tplh | | | | 50 | | ns | | | Transition-Region Slew Rate | | $\begin{array}{c} \text{VCC} = 3.3\text{V}, \text{T}_{\text{A}} = +25^{\circ}\text{C}, \\ \text{R}_{\text{L}} = 3\text{k}\Omega \text{ to } 7\text{k}\Omega, \\ \text{measured from } +3\text{V to } -3\text{V} \\ \text{or } -3\text{V to } +3\text{V}, \text{ one transmitter switching} \end{array}$ | C _L = 150pF
to 1000pF | 6 | | 30 | V/µs | | #### TIMING CHARACTERISTICS—MAX3225E/MAX3227E/MAX3245E $(V_{CC} = +3V \text{ to } +5.5V, \text{C1-C4} = 0.1 \mu\text{F, tested at } 3.3V \pm 10\%; \text{C}_1 = 0.047 \mu\text{F, C2-C4} = 0.33 \mu\text{F, tested at } 5.0V \pm 10\%; \text{T}_A = \text{T}_{MIN} \text{ to } \text{T}_{MAX}, \text{unless otherwise noted. Typical values are at } \text{T}_A = +25^{\circ}\text{C.})$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |------------------------------|------------------|--|------|------|------|-------| | | | $R_L = 3k\Omega$, $C_L = 1000pF$, one transmitter switching | 250 | | | | | Maximum Data Rate | | V_{CC} = 3.0V to 4.5V, R_L = 3k Ω , C_L = 250pF, one transmitter switching | 1000 | | | kbps | | | | V_{CC} = 4.5V to 5.5V, R_L = 3k Ω , C_L = 1000pF, one transmitter switching | 1000 | | | | | Receiver Propagation Delay | t _{PHL} | R IN to R OUT, C _I = 150pF | | | LIC. | | | neceiver Fropagation Delay | tpLH | h_in to h_001, 6[= 130pr | | 0.15 | | μs | | Receiver Output Enable Time | | Normal operation (MAX3245E only) | | 200 | | ns | | Receiver Output Disable Time | | Normal operation (MAX3245E only) | | 200 | | ns | | Transmitter Skew | tphl - tplh | (Note 3) | | 25 | | ns | | Receiver Skew | tphl - tplh | | | 50 | | ns | | Transition-Region Slew Rate | | $\begin{array}{c} V_{CC}=3.3V,T_A=+25^{\circ}C,\\ R_L=3k\Omegato7k\Omega,C_L=150pFto1000pF,\\ measuredfrom+3Vto-3Vor-3Vto+3V,\\ onetransmitterswitching \end{array}$ | 24 | | 150 | V/µs | Note 2: A transmitter/receiver edge is defined as a transition through the transmitter/receiver input logic thresholds. Note 3: Transmitter skew is measured at the transmitter zero cross points. ## MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus #### **Typical Operating Characteristics** $(V_{CC} = +3.3V, 250 \text{kbps})$ data rate, 0.1µF capacitors, all transmitters loaded with $3k\Omega$ and C_L , $T_A = +25^{\circ}C$, unless otherwise noted.) ### MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus #### Typical Operating Characteristics (continued) $(V_{CC} = +3.3V, 250kbps data rate, 0.1\mu F capacitors, all transmitters loaded with <math>3k\Omega$ and C_L , $T_A = +25^{\circ}C$, unless otherwise noted.) #### MAX3245E TRANSMITTER OUTPUT VOLTAGE vs. Load Capacitance MAX3245E OPERATING SUPPLY CURRENT VS. LOAD CAPACITANCE #### MAX3245E SLEW RATE vs. LOAD CAPACITANCE MAX3245E Transmitter skew vs. Load capacitance ## MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus ___ Pin Description | | | | PIN | | | | | |--------------|------------------------|------|----------------|-----------------------------|-----------------------|---------|--| | MAX3
MAX3 | | | 3226E
3227E | MAX3244E | MAX3245E | NAME | FUNCTION | | TQFN | DIP/
SSOP/
TSSOP | TQFN | SSOP/
TSSOP | MAX3245E
SO/ SSOP/ TSSOP | TQFN | | | | 19 | 1 | 14 | 1 | _ | | | Ready to Transmit Output,
active-high. READY is
enabled high when V- goes
below -4V and the device is
ready to transmit. | | 1 | 2 | 16 | 2 | 28 | 31 | C1+ | Positive Terminal of Voltage-
Doubler Charge-Pump
Capacitor | | 20 | 3 | 15 | 3 | 27 | 30 | V+ | +5.5V generated by the charge pump | | 2 | 4 | 1 | 4 | 24 | 26 | C1- | Negative Terminal of Voltage-
Doubler Charge-Pump
Capacitor | | 3 | 5 | 2 | 5 | 1 | 33 | C2+ | Positive Terminal of Inverting Charge-Pump Capacitor | | 4 | 6 | 3 | 6 | 2 | 34 | C2- | Negative Terminal of
Inverting Charge-Pump
Capacitor | | 5 | 7 | 4 | 7 | 3 | 35 | V- | -5.5V Generated by the
Charge Pump | | 6, 15 | 8, 17 | 10 | 13 | 9, 10, 11 | 7, 8, 9 | T_OUT | RS-232 Transmitter Outputs | | 7, 14 | 9, 16 | 5 | 8 | 4-8 | 1-5 | R_IN | RS-232 Receiver Inputs | | 8, 13 | 10, 15 | 6 | 9 | 15-19 | 15, 16, 17,
19, 20 | R_OUT | TTL/CMOS Receiver Outputs | | 9 | 11 | 7 | 10 | 21 | 23 | ĪNVALĪD | Valid Signal Detector Output, active low. A logic high indicates that a valid RS-232 level is present on a receiver input. | | 10, 11 | 12, 13 | 8 | 11 | 12-14 | 11, 12, 13 | T_IN | TTL/CMOS Transmitter Inputs | ## MAX3224E/MAX3225E/ MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus #### Pin Description (continued) | | | | PIN | | | | | |--------------|------------------------|------|----------------|-----------------------------|-------------------------------------|----------|---| | MAX3
MAX3 | | | 3226E
3227E | MAX3244E | MAX3245E | NAME | FUNCTION | | TQFN | DIP/
SSOP/
TSSOP | TQFN | SSOP/
TSSOP | MAX3245E
SO/ SSOP/ TSSOP | TQFN | | 1 0.10.110.1 | | 12 | 14 | 9 | 12 | 23 | 25 | FORCEON | Force-On Input, Active High. Drive high to override AutoShutdown Plus, keeping transmitters and receivers on (FORCEOFF must be high) (Table 1). | | 16 | 18 | 11 | 14 | 25 | 27 | GND | Ground | | 17 | 19 | 12 | 15 | 26 | 29 | VCC | +3.0V to +5.5V Single Supply Voltage | | 18 | 20 | 13 | 16 | 22 | 24 | FORCEOFF | Force-Off Input, Active Low. Drive low to shut down transmitters, receivers (except R2OUTB), and charge pump. This overrides AutoShutdown Plus and FORCEON (Table 1). | | _ | _ | _ | _ | 20 | 21 | R2OUTB | TTL/CMOS Noninverting
Complementary Receiver
Outputs. Always active. | | _ | _ | _ | _ | _ | 6, 10, 14,
18, 22, 28,
32, 36 | N.C. | No Connection. Not internally connected. | | _ | _ | _ | _ | _ | _ | EP | Exposed Pad. Solder the exposed pad to the ground plane or leave unconnected. | #### _Detailed Description #### **Dual Charge-Pump Voltage Converter** The MAX3224E–MAX3227E/MAX3244E/MAX3245E's internal power supply consists of a regulated dual charge pump that provides output voltages of +5.5V (doubling charge pump) and -5.5V (inverting charge pump), over the +3.0V to +5.5V range. The charge pump operates in discontinuous mode: if the output voltages are less than 5.5V, the charge pump is enabled; if the output voltages exceed 5.5V, the charge-pump is disabled. Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the V+ and V- supplies. The READY output (MAX3224E–MAX3227E) is low when the charge pumps are disabled in shutdown mode. The READY signal asserts high when V- goes below -4V. ### MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus Figure 1. Interface Under Control of PMU #### **RS-232 Transmitters** The transmitters are inverting level translators that convert CMOS-logic levels to 5.0V EIA/TIA-232 levels. The MAX3224E/MAX3226E/MAX3244E guarantee a 250kbps data rate (1Mbps, for the MAX3225E/MAX3227E/MAX3245E) with worst-case loads of $3k\Omega$ in parallel with 1000pF, providing compatibility with PC-to-PC communication software (such as LapLink®). Transmitters can be paralleled to drive multiple receivers. Figure 1 shows a complete system connection. When $\overline{\text{FORCEOFF}}$ is driven to ground or when the Auto-Shutdown Plus circuitry senses that all receiver and transmitter inputs are inactive for more than 30s, the transmitters are disabled and the outputs go into a high-impedance state. When powered off or shut down, the outputs can be driven to $\pm 12\text{V}$. The transmitter inputs do not have pullup resistors. Connect unused inputs to GND or VCC. LapLink is a registered trademark of Laplink Software, Inc. Figure 2. The MAX3244E/MAX3245E detect RS-232 activity when the UART and interface are shut down. ### MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus **Table 1. Output Control Truth Table** | OPERATION
STATUS | FORCEON | FORCEOFF | VALID
RECEIVER
LEVEL | RECEIVER OR
TRANSMITTER
EDGE WITHIN
30s | T_OUT | R_OUT
(MAX3224E/
MAX3225E/
MAX3226E/
MAX3227E) | R_OUT
(MAX3244E/
MAX3245E) | R2OUTB
(MAX3244E/
MAX3245E) | |---|----------|-----------|----------------------------|--|--------|--|----------------------------------|-----------------------------------| | Shutdown
(Forced Off) | Х | 0 | Х | Х | High-Z | Active | High-Z | Active | | Normal
Operation
(Forced On) | 1 | 1 | Х | X | Active | Active | Active | Active | | Normal
Operation
(AutoShutdown
Plus) | 0 | 1 | Х | Yes | Active | Active | Active | Active | | Shutdown (Auto-
Shutdown Plus) | 0 | 1 | Х | No | High-Z | Active | Active | Active | | Normal
Operation | ĪNVALID* | 1 | Yes | Х | Active | Active | Active | Active | | Normal
Operation | ĪNVALID* | 1 | X | Yes | Active | Active | Active | Active | | Shutdown | ĪNVALĪD* | 1 | No | No | High-Z | Active | Active | Active | | Normal
Operation
(AutoShutdown) | ĪNVALĪD* | ĪNVALID** | Yes | X | Active | Active | Active | Active | | Shutdown
(AutoShutdown) | ĪNVALID* | ĪNVALĪD** | No | Х | High-Z | Active | High-Z | Active | X = Don't care #### **RS-232 Receivers** The receivers convert RS-232 signals to CMOS-logic output levels. The MAX3224E-MAX3227E feature inverting outputs that always remain active (Table 1). The MAX3244E/MAX3245E have inverting three-state outputs that are high impedance when shut down (FORCEOFF = GND) (Table 1). The MAX3244E/MAX3245E feature an extra, always active, noninverting output, R2OUTB. R2OUTB output monitors receiver activity while the other receivers are high impedance, allowing ring indicator applications to be monitored without forward biasing other devices connected to the receiver outputs. This is ideal for systems where VCC is set to ground in shutdown to accommodate peripherals such as UARTs (Figure 2). The MAX3224E–MAX3227E/MAX3244E/MAX3245E feature an INVALID output that is enabled low when no valid RS-232 voltage levels have been detected on all receiver inputs. Because INVALID indicates the receiver input's condition, it is independent of FORCEON and FORCEOFF states (Figures 3 and 4). #### **AutoShutdown Plus Mode** The MAX3224E–MAX3227E/MAX3244E/MAX3245E achieve a 1 μ A supply current with Maxim's AutoShutdown Plus feature, which operates when FORCEOFF is high and a FORCEON is low. When these devices do not sense a valid signal transition on any receiver and transmitter input for 30s, the on-board charge pumps are shut down, reducing supply current to 1 μ A. This occurs if the RS-232 cable is disconnected or if the connected ^{*} INVALID connected to FORCEON ^{**} INVALID connected to FORCEON and FORCEOFF ### MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus Figure 3a. INVALID Functional Diagram, INVALID Low Figure 3b. INVALID Functional Diagram, INVALID High #### Table 2. INVALID Truth Table | RS-232 SIGNAL
PRESENT AT ANY
RECEIVER INPUT | INVALID OUTPUT | |---|----------------| | Yes | High | | No | Low | peripheral transmitters are turned off, and the UART driving the transmitter inputs is inactive. The system turns on again when a valid transition is applied to any RS-232 receiver or transmitter input. As a result, the system saves power without changes to the existing BIOS or operating system. Figures 3a and 3b depict valid and invalid RS-232 receiver voltage levels. INVALID indicates the receiver input's condition, and is independent of FORCEON and FORCEOFF states. Figure 3 and Tables 1 and 2 summarize the operating modes of the MAX3224E–MAX3227E/MAX3244E/MAX3245E. FORCEON and FORCEOFF override AutoShutdown Plus circuitry. When neither control is asserted, the IC selects between these states automatically based on the last receiver or transmitter input edge received. Figure 3c. AutoShutdown Plus Logic Figure 3d. Power-Down Logic When shut down, the device's charge pumps turn off, V+ is pulled to V_{CC} , V- is pulled to ground, the transmitter outputs are high impedance, and READY (MAX3224E-MAX3227E) is driven low. The time required to exit shutdown is typically 100µs (Figure 8). By connecting FORCEON to INVALID, the MAX3224E–MAX3227E/MAX3244E/MAX3245E shut down when no valid receiver level and no receiver or transmitter edge is detected for 30s, and wake up when a valid receiver level or receiver or transmitter edge is detected. Figure 4a. Receiver Positive/Negative Thresholds for INVALID ## MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus Figure 4b. AutoShutdown Plus, INVALID, and READY Timing Diagram By connecting FORCEON and FORCEOFF to INVALID, the MAX3224E-MAX3227E/MAX3244E/MAX3245E shut down when no valid receiver level is detected and wake up when a valid receiver level is detected (same functionality as AutoShutdown feature on MAX3221E/MAX3223E/MAX3243E). A mouse or other system with AutoShutdown Plus may need time to wake up. Figure 5 shows a circuit that forces the transmitters on for 100ms, allowing enough time for the other system to realize that the MAX3244E/MAX3245E is awake. If the other system outputs valid RS-232 signal transitions within that time, the RS-232 ports on both systems remain enabled. #### **Software-Controlled Shutdown** If direct software control is desired, use <u>INVALID</u> to indicate DTR or ring indicator signal. Tie <u>FORCEOFF</u> and FORCEON together to bypass the AutoShutdown Plus so the line acts like a <u>SHDN</u> input. #### ±15kV ESD Protection As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX3224E–MAX3227E/MAX3244E/MAX3245E have extra protection against static electricity. Maxim's engineers have developed state-of-the-art structures to protect Figure 5. AutoShutdown Plus Initial Turn-On to Wake Up a Mouse or Another System ### MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus Figure 6a. Human Body ESD Test Model Figure 6b. Human Body Current Waveform these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, Maxim's E versions keep working without latchup, whereas competing RS-232 products can latch and must be powered down to remove latchup. ESD protection can be tested in various ways; the transmitter outputs and receiver inputs of this product family are characterized for protection to the following limits: - 1) ±15kV using the Human Body Model - 2) ±8kV using the Contact-Discharge Method specified in IEC 1000-4-2 - 3) ±15kV using IEC 1000-4-2's Air-Gap Method. Figure 7a. IEC 1000-4-2 ESD Test Model Figure 7b. IEC 1000-4-2 ESD Generator Current Waveform #### **ESD Test Conditions** ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results. #### **Human Body Model** Figure 6a shows the Human Body Model and Figure 6b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5 \mathrm{k}\Omega$ resistor. ### MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus #### IEC 1000-4-2 The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to integrated circuits. The MAX3224E–MAX3227E, MAX3244E/MAX3245E help you design equipment that meets Level 4 (the highest level) of IEC 1000-4-2, without the need for additional ESD-protection components. The major difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2, because series resistance is lower in the IEC 1000-4-2 model. Hence, the ESD withstand voltage measured to IEC 1000-4-2 is generally lower than that measured using the Human Body Model. Figure 7a shows the IEC 1000-4-2 model and Figure 7b shows the current waveform for the 8kV, IEC 1000-4-2, Level 4, ESD Contact-Discharge Method. The Air-Gap Method involves approaching the device with a charged probe. The Contact-Discharge Method connects the probe to the device before the probe is energized. #### Machine Model The Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protection during manufacturing, not just RS-232 inputs and outputs. Therefore, after PC board assembly, the Machine Model is less relevant to I/O ports. ## _____Applications Information Capacitor Selection The capacitor type used for C1–C4 is not critical for proper operation; polarized or nonpolarized capacitors Table 3. Required Minimum Capacitance Values | V _{CC}
(V) | C1, C _{BYPASS} (µF) | C2, C3, C4
(µF) | |------------------------|------------------------------|--------------------| | 3.0 to 3.6 | 0.22 | 0.22 | | 3.15 to 3.6 | 0.1 | 0.1 | | 4.5 to 5.5 | 0.047 | 0.33 | | 3.0 to 5.5 | 0.22 | 1 | Figure 8. Transmitter Outputs when Exiting Shutdown or Powering Up can be used. The charge pump requires 0.1µF capacitors for 3.3V operation. For other supply voltages, see Table 3 for required capacitor values. Do not use values smaller than those listed in Table 3. Increasing the capacitor values (e.g., by a factor of 2) reduces ripple on the transmitter outputs and slightly reduces power consumption. C2, C3, and C4 can be increased without changing C1's value. However, do not increase C1 without also increasing the values of C2, C3, C4, and CBYPASS, to maintain the proper ratios (C1 to the other capacitors). When using the minimum required capacitor values, make sure the capacitor value does not degrade excessively with temperature. If in doubt, use capacitors with a larger nominal value. The capacitor's equivalent series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+ and V-. #### **Power-Supply Decoupling** In most circumstances, a $0.1\mu F$ VCC bypass capacitor is adequate. In applications that are sensitive to power-supply noise, use a capacitor of the same value as charge-pump capacitor C1. Connect bypass capacitors as close to the IC as possible. ## Transmitter Outputs when Exiting Shutdown Figure 8 shows two transmitter outputs when exiting shutdown mode. As they become active, the two transmitter outputs are shown going to opposite RS-232 levels (one transmitter input is high, the other is low). Each ### MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus transmitter is loaded with $3k\Omega$ in parallel with 1000pF. The transmitter outputs display no ringing or undesirable transients as they come out of shutdown. Note that the transmitters are enabled only when the magnitude of V- exceeds approximately -3V. #### **High Data Rates** The MAX3224E/MAX3226E/MAX3244E maintain the RS-232 ±5.0V minimum transmitter output voltage even at high data rates. Figure 9 shows a transmitter loop-back test circuit. Figure 10 shows a loopback test result at 120kbps, and Figure 11 shows the same test at 250kbps. For Figure 10, all transmitters were driven simultaneously at 120kbps into RS-232 loads in parallel with 1000pF. For Figure 11, a single transmitter was driven at 250kbps, and all transmitters were loaded with an RS-232 receiver in parallel with 250pF. The MAX3225E/MAX3227E/MAX3245E maintain the RS-232 ±5.0V minimum transmitter output voltage at data rates up to 1Mbps (MegaBaud). Figure 12 shows a loopback test result with a single transmitter driven at 1Mbps and all transmitters loaded with an RS-232 receiver in parallel with 250pF. Figure 9. Loopback Test Circuit Figure 10. MAX3224E/MAX3226E/MAX3244E Loopback Test Result at 120kbps Figure 11. MAX3224E/MAX3226E/MAX3244E Loopback Test Result at 250kbps Figure 12. MAX3225E/MAX3227E/MAX3245E Loopback Test Result at 1Mbps ## MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus Figure 13a. Mouse Driver Test Circuit ## MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus Figure 13b. MAX324_E Transmitter Output Voltage vs. Load Current per Transmitter #### Mouse Driveability The MAX3244E/MAX3245E are specifically designed to power serial mice while operating from low-voltage power supplies. They have been tested with leading mouse brands from manufacturers such as Microsoft and Logitech. The MAX3244E/MAX3245E successfully drove all serial mice tested and met their respective current and voltage requirements. The MAX3244E/MAX3245E dual charge pump ensures the transmitters supply at least ±5V during worst-case conditions. Figure 13b shows the transmitter output voltages under increasing load current. Figure 13a shows a typical mouse connection. #### Interconnection with 3V and 5V Logic The MAX3224E–MAX3227E/MAX3244E/MAX3245E can directly interface with various 5V logic families, including ACT and HCT CMOS. See Table 4 for more information on possible combinations of interconnections. Table 5 lists other Maxim ESD-powered transceivers. Table 4. Logic Family Compatibility with Various Supply Voltages | SYSTEM POWER-SUPPLY VOLTAGE (V) | V _{CC} SUPPLY
VOLTAGE
(V) | COMPATIBILITY | |---------------------------------|--|---| | 3.3 | 3.3 | Compatible with all CMOS families | | 5 | 5 | Compatible with all TTL and CMOS families | | 5 | 3.3 | Compatible with ACT and HCT CMOS, and with AC, HC, or CD4000 CMOS | Table 5. ±15kV ESD-Protected, 3.0V to 5.5V Powered RS-232 Transceivers from Maxim | PART | SUPPLY
VOLTAGE
RANGE
(V) | NO.
OF
Tx/Rx | SUPPLY
CURRENT
(µA) | Auto-
Shutdown
Plus | Auto-
Shutdown | Human
Body
Model
(kV) | IEC 1000-4-2
Contact
Discharge
(kV) | IEC 1000-4-2
Air-Gap
Discharge
(kV) | GUARANTEED
DATA RATE
(kbps) | |----------|-----------------------------------|--------------------|---------------------------|---------------------------|-------------------|--------------------------------|--|--|-----------------------------------| | MAX3241E | +3.0 to +5.5 | 3/5 | 300 | _ | _ | ±15 | ±8 | ±15 | 250 | | MAX3243E | +3.0 to +5.5 | 3/5 | 1 | | Yes | ±15 | ±8 | ±15 | 250 | | MAX3244E | +3.0 to +5.5 | 3/5 | 1 | Yes | _ | ±15 | ±8 | ±15 | 250 | | MAX3245E | +3.0 to +5.5 | 3/5 | 1 | Yes | _ | ±15 | ±8 | ±15 | 1Mbps | | MAX3232E | +3.0 to +5.5 | 2/2 | 300 | _ | _ | ±15 | ±8 | ±15 | 250 | | MAX3222E | +3.0 to +5.5 | 2/2 | 300 | _ | _ | ±15 | ±8 | ±15 | 250 | | MAX3223E | +3.0 to +5.5 | 2/2 | 1 | _ | Yes | ±15 | ±8 | ±15 | 250 | | MAX3224E | +3.0 to +5.5 | 2/2 | 1 | Yes | _ | ±15 | ±8 | ±15 | 250 | | MAX3225E | +3.0 to +5.5 | 2/2 | 1 | Yes | _ | ±15 | ±8 | ±15 | 1Mbps | | MAX3221E | +3.0 to +5.5 | 1/1 | 1 | _ | Yes | ±15 | ±8 | ±15 | 250 | | MAX3226E | +3.0 to +5.5 | 1/1 | 1 | Yes | _ | ±15 | ±8 | ±15 | 250 | | MAX3227E | +3.0 to +5.5 | 1/1 | 1 | Yes | _ | ±15 | ±8 | ±15 | 1Mbps | ## MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus #### **Typical Operating Circuits** ## MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus #### **Pin Configurations** ## MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus #### **Ordering Information (continued)** | PART | TEMP RANGE | PIN-PACKAGE | |----------------|-----------------|----------------| | MAX3225ECUP+ | 0°C to +70°C | 20 TSSOP | | MAX3225ECTP+ | 0°C to +70°C | 20 TQFN-EP* | | MAX3225ECAP+ | 0°C to +70°C | 20 SSOP | | MAX3225ECPP+ | 0°C to +70°C | 20 Plastic DIP | | MAX3225EETP+ | -40°C to +85°C | 20 TQFN -EP* | | MAX3225EEUP+ | -40°C to +85°C | 20 TSSOP | | MAX3225EEAP+ | -40°C to +85°C | 20 SSOP | | MAX3225EEPP+ | -40°C to +85°C | 20 Plastic DIP | | MAX3225EAAP+ | -40°C to +125°C | 20 SSOP | | MAX3226ECTE+ | 0°C to +70°C | 16 TQFN-EP* | | MAX3226ECUE+ | 0°C to +70°C | 16 TSSOP | | MAX3226ECAE+ | 0°C to +70°C | 16 SSOP | | MAX3226EEAE+ | -40°C to +85°C | 16 SSOP | | MAX3226EETE+ | -40°C to +85°C | 16 TQFN-EP* | | MAX3226EEUE+ | -40°C to +85°C | 16 TSSOP | | MAX3226EAAE+ | -40°C to +125°C | 16 SSOP | | MAX3227ECAE+ | 0°C to +70°C | 16 SSOP | | MAX3227ECTE+ | 0°C to +70°C | 16 TQFN-EP* | | MAX3227ECUE+ | 0°C to +70°C | 16 TSSOP | | MAX3227EEAE+ | -40°C to +85°C | 16 SSOP | | MAX3227EEAE/V+ | -40°C to +85°C | 16 SSOP | | MAX3227EETE+ | -40°C to +85°C | 16 TQFN-EP* | | MAX3227EEUE+ | -40°C to +85°C | 16 TSSOP | | MAX3227EAAE+ | -40°C to +125°C | 16 SSOP | | MAX3244ECWI+ | 0°C to +70°C | 28 Wide SO | | MAX3244ECAI+ | 0°C to +70°C | 28 SSOP | | MAX3244ECUI+ | 0°C to +70°C | 28 TSSOP | | MAX3244EEWI+ | -40°C to +85°C | 28 Wide SO | | MAX3244EEAI+ | -40°C to +85°C | 28 SSOP | | MAX3244EEUI+ | -40°C to +85°C | 28 TSSOP | | MAX3245ECWI+ | 0°C to +70°C | 28 Wide SO | | MAX3245ECAI+ | 0°C to +70°C | 28 SSOP | | MAX3245ECTX+ | 0°C to +70°C | 36 TQFN- EP* | | MAX3245EEAI+ | -40°C to +85°C | 28 SSOP | | MAX3245EEWI+ | -40°C to +85°C | 28 WIDE SO | | MAX3245EEUI+ | -40°C to +85°C | 28 TSSOP | | MAX3245EETX+ | -40°C to +85°C | 36 TQFN- EP* | ⁺Denotes a lead(Pb)-free/RoHS-compliant package. /V denotes an automotive qualified part. #### _____Chip Information PROCESS: BICMOS #### _Package Information For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. | PACKAGE
TYPE | PACKAGE
CODE | OUTLINE
NO. | LAND
PATTERN NO. | |-----------------|-----------------|----------------|---------------------| | 16 SSOP | A16+2 | <u>21-0056</u> | <u>90-0106</u> | | 16 TSSOP | U16+1 | <u>21-0066</u> | <u>90-0117</u> | | 16 TQFN-EP | T1655+2 | 21-0140 | 90-0072 | | 20 DIP | P20+3 | 21-0043 | _ | | 20 SSOP | A20+1 | <u>21-0056</u> | 90-0094 | | 20 TSSOP | U20+2 | <u>21-0066</u> | 90-0116 | | 20 TQFN-EP | T2055+5 | 21-0140 | <u>90-0010</u> | | 28 Wide SO | W28+6 | 21-0042 | 90-0109 | | 28 SSOP | A28+1 | 21-0056 | 90-0095 | | 28 TSSOP | U28+2 | 21-0066 | 90-0171 | | 36 TQFN | T3666+3 | 21-0141 | 90-0050 | ^{*}EP = Exposed pad. ## MAX3226E/MAX3227E/MAX3244E/MAX3245E ## ±15kV ESD-Protected, 1µA, 1Mbps 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus #### **Revision History** | REVISION | REVISION | DESCRIPTION | PAGES | |----------|----------|--|---------| | NUMBER | DATE | | CHANGED | | 10 | 3/11 | Added an automotive qualified part to the <i>Ordering Information</i> ; changed all the parts listed in the <i>Ordering Information</i> to lead free | 1, 20 | Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. #### **ПОСТАВКА** ЭЛЕКТРОННЫХ КОМПОНЕНТОВ Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107 ## Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip. Для оперативного оформления запроса Вам необходимо перейти по данной ссылке: #### http://moschip.ru/get-element Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора. В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов. Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair. Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки. На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров. Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009 #### Офис по работе с юридическими лицами: 105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский» Телефон: +7 495 668-12-70 (многоканальный) Факс: +7 495 668-12-70 (доб.304) E-mail: info@moschip.ru Skype отдела продаж: moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9