

General Description

The MAX5258 evaluation kit (EV kit) provides a proven design to evaluate the MAX5258 low-power, 8-bit octal, digital-to-analog converter (DAC). The EV kit also includes Windows[®] 2000/XP- and Windows Vista[®]-compatible software that provides a simple graphical user interface (GUI) for exercising the features of the MAX5258.

The MAX5258 EV kit PCB comes with a MAX5258EE+ installed. This EV kit can also be used to evaluate the MAX5259EE+ low-power 8-bit octal DAC (2.7V to 3.6V). Contact the factory for free samples of the MAX5259EE+.

Features

- Windows 2000/XP- and Windows Vista (32-Bit)-Compatible Software
- ♦ Supports Standard SPI[™] Interface
- ♦ USB-PC Connection (Cable Included)
- USB Powered
- ♦ 16-Pin DAC Output Signal Header
- Proven PCB Layout
- ♦ Lead-Free and RoHS Compliant
- Fully Assembled and Tested

_Ordering Information

PART	ТҮРЕ
MAX5258EVKIT+	EV Kit
Depates lead free and DeLIC compliant	

+Denotes lead-free and RoHS compliant.

Component List

		1
DESIGNATION	QTY	DESCRIPTION
C1, C3–C10, C17, C25, C27, C28, C29, C31, C32, C34, C35, C36, C37	20	0.1µF ±10%, 16V X7R ceramic capacitors (0603) TDK C1608X7R1C104K
C2, C13, C15, C26, C33	5	10μF ±20%, 6.3V X5R ceramic capacitors (0805) TDK C2012X5R0J106M
C11, C12	2	10pF ±5%, 50V C0G ceramic capacitors (0603) TDK C1608C0G1H100J
C14, C16	2	1μF ±20%, 6.3V X5R ceramic capacitors (0603) TDK C1608X5R0J105K TDK C1608X5R0J105M
C18, C19	2	22pF ±5%, 50V C0G ceramic capacitors (0603) TDK C1608C0G1H220J
C20	1	3300pF ±10%, 50V X7R ceramic capacitor (0603) TDK C1608X7R1H332K
C30	1	4.7µF ±20%, 16V X7R ceramic capacitor (1206) TDK C3216X7R1C475M
D1	1	Green LED (0603)
FB1	1	$0\Omega \pm 5\%$ resistor (0603)

Windows and Windows Vista are registered trademarks of

DESIGNATION QTY DESCRIPTION H1 0 Not installed, 10-pin JTAG header H2 1 Dual-row (2 x 8) 16-pin header H3 1 Dual-row (2 x 5) 10-pin header JUA-JUE 0 Not installed JU1–JU5 5 3-pin headers JU6, JU7 2 4-pin headers USB type-B right-angle female Ρ1 1 receptacle R1 1 0Ω ±5% resistor (0603) R2 1 $220\Omega \pm 5\%$ resistor (0603) 1 R3 10kΩ ±5% resistor (0603) R4 1 2.2kΩ ±5% resistor (0603) R5 1 1.5kΩ ±5% resistor (0603) R6, R7 2 27Ω ±5% resistors (0603) R8-R15 8 $100k\Omega \pm 5\%$ resistors (0603) R16 0 Not installed, resistor (0402) Octal low-power DAC (16 QSOP) U1 1 Maxim MAX5258EEE+ Microcontroller (68 QFN-EP*) 112 1 Maxim MAXQ2000-RAX+ 93C46 type 3-wire EEPROM (8 SO) 1 U3 16-bit architecture

*EP = Exposed pad.

SPI is a trademark of Motorola, Inc.

Microsoft Corp.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

	-	
DESIGNATION	QTY	DESCRIPTION
U4	1	UART-to-USB converter (32 TQFP)
U5	1	3.3V regulator (5 SC70) Maxim MAX8511EXK33+T (Top Mark: AEI)
U6	1	2.5V regulator (5 SC70) Maxim MAX8511EXK25+T (Top Mark: ADV)
U7	1	+4.096V voltage reference (8 SO) Maxim MAX6126AASA41+
U8, U9, U10	3	Dual 1.8V to 5V level translators (8 SSOP) (Top Mark: CT2_)
Y1	1	16MHz crystal (HCM49) Hong Kong X'tals SSM1600000E18FAF
Y2	1	6MHz crystal (HCM49) Hong Kong X'tals SSL6000000E18FAF
	7	Shunts
_	1	USB high-speed A-to-B cable, 6ft
_	1	PCB: MAX5258 Evaluation Kit+

_Component List (continued)

*EP = Exposed pad.

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Hong Kong X'tals Ltd.	852-35112388	www.hongkongcrystal.com
TDK Corp.	847-803-6100	www.component.tdk.com

Note: Indicate that you are using the MAX5258 or MAX5259 when contacting these component suppliers.

MAX5258 EV Kit Files

FILE	DESCRIPTION
INSTALL.EXE	Installs the EV kit files on your computer
MAX5258.EXE	Application program
FTD2XX.INF	USB device driver file
UNINST.INI	Uninstalls the EV kit software
USB_Driver_Help.PDF	USB driver installation help file

Quick Start

Required Equipment

Before beginning, the following equipment is needed:

- MAX5258 EV kit (USB cable included)
- A user-supplied Windows 2000/XP- or Windows Vista-compatible PC with a spare USB port
- Two digital voltmeters (DVMs)
- USB powered. Use optional external power supply for enhanced performance.

Note: In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and under-lined** refers to items from the Windows operating system.

Procedure

The MAX5258 EV kit is fully assembled and tested. Follow the steps below to verify board operation:

- Visit <u>www.maxim-ic.com/evkitsoftware</u> to download the latest version of the EV kit software, 5258Rxx.ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file.
- Install the EV kit software on your computer by running the INSTALL.EXE program inside the temporary folder. The program files are copied and icons are created in the Windows <u>Start I Programs</u> menu.
- 3) Verify that all jumpers (JU1–JU7) are in their default positions, as shown in Table 1.
- 4) Connect the USB cable from the PC to the EV kit board. A <u>New Hardware Found</u> window pops up when installing the USB driver for the first time. If you do not see a window that is similar to the one described above after 30 seconds, remove the USB cable from the board and reconnect it. Administrator privileges are required to install the USB device driver on Windows.
- 5) Follow the directions of the <u>Add New Hardware</u> <u>Wizard</u> to install the USB device driver. Choose the <u>Search for the best driver for your device</u> option. Specify the location of the device driver to be <u>C:\Program Files\MAX5258</u> (default installation directory) using the <u>Browse</u> button. During device driver installation, Windows may show a warning message indicating that the device driver Maxim uses does not contain a digital signature. This is not an error condition and it is safe to proceed with installation. Refer to the USB_Driver_Help.PDF document included with the software for additional information.

- 6) Start the MAX5258 EV kit software by opening its icon in the <u>Start I Programs</u> menu. When the Part Selection window appears, click on the MAX5258 radio button and then press the Next button. The EV kit software main window appears, as shown in Figure 1.
- 7) To measure the OUTA voltage, connect the first DVM between H2-1 (OUTA) and H2-2 (GND).
- 8) To measure the OUTB voltage, connect the second DVM between H2-3 (OUTB) and H2-4 (GND).
- 9) Verify that the voltage on both DVMs is approximately 0V.

- 10) Enter **0x3F** into the **D7 D0 (Shift Register Data Bits)** edit box.
- 11) Press the Load All DACs button.
- 12) Verify that the voltage shown on both DVMs is approximately 1V.

_Detailed Description of Software

The main window of the evaluation software (shown in Figure 1) displays the voltages and codes for all DAC input and output registers. In addition, the main window has two tabs. The **Load DACs** tab sheet controls all of the DAC loading features of the MAX5258. The

ile <u>O</u> pti	ions <u>H</u> e	lp						
Load DAC	© Operat	ing Modes						
	Enteri	n the data b	elow and	then press	the appropriate button	to load the (corresponding DAC registers.	
				D7·	D0 (Shift Register Da	ata Bits)		
		Allov	wed forma	it: hex or d	ecimal <mark>0x00</mark> i.e. 0x3	3F or 63 for (DUT_ = 1V	
Shift to	Input Regi	ster			Load All DACs with s	ame data-	Shift to Input and Output R	egister
	CA	Load Input F	Register				O DACIA Load Inp	out and Output Register
O DAI	СВ	for Solooted F			Load All DAC	s	O DAC B	for Selected DAC
O DAI	сс г	Selected L	AC			_		
	_{cd} L	Load Sel	ected DAI					ad Selected DAC
O DAI	CE				Clear All DACs to Zer	10	O DACE	
O DAI	CF					_	O DAC F	
	CG				Clear All DAC	s	O DAC G	
O DAI	СН						O DACH	
	Input R	egister	Output	Register				
	Code	Voltage	Code	Voltage	Shutdown Mode	DOUT Ph	ase Mode	Reset All Regist
OUTA	0x00	0.000	0x00	0.000	Normal	DOUT Tra	ansitions on Falling Edge	
OUTC	0x00	0.000	0x00	0.000	Normal Namal	Softwa	ve Load DAC command	Set Vref
	0,00	0.000	0500	0.000	Normal	Solution	s i coso prio command	
OUTE	0x00	0.000	0x00	0.000	Normal		Software LDAC	4.096
OUTE	0x00	0.000	0x00	0.000	Normal			
OUTG	0x00	0.000	0x00	0.000	Normal			
	0,00	0.000	0,00	0.000	Normal	L] E	nable Hardware LDAC pin	👖 <u>C</u> lose

Figure 1. MAX5258 EV Kit Software Main Window (Load DACs Tab)

Operating Modes tab sheet (shown in Figure 2) controls all of the DAC modes of the MAX5258. The **Load Setting(s)** buttons must be pressed to write the corresponding mode settings to the DAC(s).

Software Reset

Press the **Reset All Registers** button to reset the MAX5258's registers and GUI to the power-on-reset (POR) state. This can be done at any time and is highly recommended after using the **Advanced User Interface** window (Figure 3).

Load DAC	s Operati	ing Modes					///
Enter th	ie appropria	ate DAC sett	ings and ti	nen press th	e Load Setting(s) I	button	
[Powe	r Control					-DOUT Phase Mode Selection	
	Shutdown E	ACA	hecked =	Shutdown S	etting	DOUT Transitions on Falling Edge, Read on Rising Edge Mode 0 (Default)	e
	Shutdown E Shutdown E	ACD ACC U	nchecked	= Normal Se	etting	DOUT Transitions on Rising Edge, Read on Falling Edge O Mode 1	e
	Shutdown E)AC E	Load Sett	ing(s) to sele	cted DAC(s)	Load Setting(s) to selected DAC(s)	
	Shutdown E)AC F		Load Setting	(s)		
	Shutdown E)AC G	Chu	tdown All Dr	ACs		
	Shutdown E)AC H	Snu				
	ihutdown [DAC H					
	ihutdown E	OAC H egister	Output	Register	Shutdown Med	e DOUT Phase Mode Reset A	All Registers
	Shutdown E	OAC H egister Voltage 0.000	Output Code 0x00	Register Voltage 0.000	Shutdown Mod	e DOUT Phase Mode Reset A DOUT Transitions on Falling Edge	All Registers
	Input R Code 0x00 0x00	egister Voltage 0.000 0.000	Output Code 0x00 0x00	Register Voltage 0.000 0.000	Shutdown Mod Normal Normal	e DOUT Phase Mode Reset A DOUT Transitions on Falling Edge	LII Registers
	Input R Code 0x00 0x00 0x00	egister Voltage 0.000 0.000 0.000	Output Code 0x00 0x00 0x00	Register Voltage 0.000 0.000 0.000	Shutdown Mod Normal Normal Normal	e DOUT Phase Mode Reset A DOUT Transitions on Falling Edge Software Load DAC command Set Vref	All Registers
	Input R Code 0x00 0x00 0x00 0x00	egister Voltage 0.000 0.000 0.000 0.000	Output Code 0x00 0x00 0x00 0x00	Register Voltage 0.000 0.000 0.000 0.000	Shutdown Mod Normal Normal Normal Normal	e DOUT Phase Mode Reset A DOUT Transitions on Falling Edge Software Load DAC command Set Vref Software LDAC // noc	All Registers
	Input R Code 0x00 0x00 0x00 0x00 0x00 0x00	egister Voltage 0.000 0.000 0.000 0.000 0.000 0.000	Output Code 0x00 0x00 0x00 0x00 0x00 0x00	Register Voltage 0.000 0.000 0.000 0.000 0.000	Shutdown Mod Normal Normal Normal Normal Normal	e DOUT Phase Mode Reset A DOUT Transitions on Falling Edge Software Load DAC command Set Vref Software LDAC 4.096	All Registers
	Input R Code 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x	egister Voltage 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Output Code 0x00 0x00 0x00 0x00 0x00 0x00 0x00	Register Voltage 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Shutdown Mod Normal Normal Normal Normal Normal Normal Normal	e DOUT Phase Mode Reset A DOUT Transitions on Falling Edge Software Load DAC command Set Vref Software LDAC 4.096	All Registers

Figure 2. MAX5258 EV Kit Software Main Window (Operating Modes Tab)

Advanced User Interface

A manual serial interface can be established by advanced users by selecting **Options I Interface (Advanced Users)** from the menu bar.

For SPI, click on the **3-wire interface** tab (shown in Figure 3). Enter data into the **Data bytes to be written:** edit box and press the **Send Now** button.

_Detailed Description of Hardware

The MAX5258 EV kit provides a proven layout for the MAX5258. An on-board analog output signal header (H2), an on-board digital input/output signal header (H3), and jumpers to disconnect the on-board micro-controller are all included on the EV kit.

K9 Chip-select (CS) for data framing V Use standard connections for high-speed SPI Send and Receive Data Data bytes to be written: 0x55, 0xAA Send Now repeat 1 0 P Chip-select (CS) for data framing 8.0 X Image: Chip-select (CS) for data framing 8.0 X Send Now repeat 1 P Image: Chip-select (CS) for data framing 8.0 X Image: Chip-select (CS) for data framing Image: Chip-select (CS) for data framing Image: Chip-select (CS) for data framing Image: Chip-select (CS) for data framing Image: Chip-select (CS) for data framing Image: Chip-select (CS) for data framing Image: Chip-select (CS) for data framing Image: Chip-select (CS) for data framing Image: Chip-select (CS) for data framing Image: Chip-select (CS) for data framing Image: Chip-select (CS) for data framing Image: Chip-select (CS) for data framing Image: Chip-select (CS) for data framing Image: Chip-select (CS) for data framing Image: Chip-select (CS) for data framing Image: Chip-select (CS) for data framing <td< th=""><th>Advanced User Interface Options Help Connection 3-wire interface Connection S-wire interface K10 Clock (SCK) (SCLK) K12 Data from master to slave (MOSI) (DIN) K11 Data from slave to master (MISO) (DOUT)</th><th>Configuration ✓ Send & receive MSB first □ CPOL=1 (clock idles high) □ CPHA=1 (sample 2nd edge) □ MOSI Data Inverted Logic □ MISO Data Inverted Logic □ CS is active high, idle low 8.0 × 1 MHz</th></td<>	Advanced User Interface Options Help Connection 3-wire interface Connection S-wire interface K10 Clock (SCK) (SCLK) K12 Data from master to slave (MOSI) (DIN) K11 Data from slave to master (MISO) (DOUT)	Configuration ✓ Send & receive MSB first □ CPOL=1 (clock idles high) □ CPHA=1 (sample 2nd edge) □ MOSI Data Inverted Logic □ MISO Data Inverted Logic □ CS is active high, idle low 8.0 × 1 MHz
Ox55, 0xAA Send Now repeat 1 Total bytes received:	K9 Image: Chip-select (CS) for data framing Image: Wight and Connections for high-speed SPI Send and Receive Data Data bytes to be written:	B.0 ▼ × 1 MHz ▼ Get Speed Set Speed
	0x55, 0xAA Send Now repeat 1 2	

Figure 3. Advanced User Interface Window (3-Wire Interface Tab)

Evaluates: MAX5258/MAX5259

Reference

At power-up, the MAX5258 EV kit defaults to using the on-board 4.096V reference.

To use VDD as the reference, place a shunt on jumper JU7 in the 1-2 position. For off-board external references,

Table 1. MAX5258 EV Kit Jumper Descriptions (JU1–JU7)

JUMPER	SHUNT POSITION	DESCRIPTION		
11 14	1-2*	MAX5258 CS signal connected to on-board microcontroller		
301	2-3	MAX5258 $\overline{\text{CS}}$ signal connected to on-board header H3		
1110	1-2*	MAX5258 SCLK signal connected to on-board microcontroller		
302	2-3	MAX5258 SCLK signal connected to on-board header H3		
11.12	1-2*	MAX5258 DIN signal connected to on-board microcontroller		
103	2-3	MAX5258 DIN signal connected to on-board header H3		
11.1.4	1-2*	MAX5258 DOUT signal connected to on-board microcontroller		
304	2-3	MAX5258 DOUT signal connected to on-board header H3		
11.15	1-2*	MAX5258 LDAC signal connected to on-board microcontroller		
105	1-3	MAX5258 LDAC signal connected to on-board header H3		
	1-2	MAX5258 VDD is set to the on-board +3.3V supply post regulated from the USB port		
JU6	1-3*	MAX5258 VDD is set to the on-board +5V supply powered directly from the USB port		
	1-4	Connect an external 2.7V to 5.5V supply to the VDD pad		
	1-2	MAX5258 REF pin is connected directly to VDD		
JU7	1-3	Connect an external reference voltage to the REF pad		
	1-4*	MAX5258 REF pin is connected to the on-board 4.096V reference		

connect a user-supplied reference voltage to REF and place a shunt on jumper JU7 in the 1-3 position. Type in the reference voltage value in the **Set Vref** edit box and press the **Set Vref** button. The MAX5258 EV kit software uses the value in the **Set Vref** edit box to calculate the input and output register voltage values. The **Set Vref** edit box value does not affect the register values.

User-Supplied SPI Interface

To use the MAX5258 EV kit with a user-supplied SPI interface, set the shunts as shown in Table 2. Then apply an external 2.7V to 5.5V power supply to VDD. Lastly, connect user-supplied CS, SCLK, DIN, DOUT, LDAC, and GND signals to the corresponding pins of header H3.

User-Supplied Power Supplies

Table 2. User-Supplied SPI InterfaceSettings

JUMPER	SHUNT POSITION
JU1–JU5	2-3
JU6	1-4
JU7	1-2

The MAX5258 EV kit is powered completely from the USB port by default. Place jumper JU6 in the 1-4 position and apply an external 2.7V to 5.5V power supply across the corresponding VDD and GND pads. Lastly, see the *Reference* section to choose the best reference option.

*Default position.

Figure 4a. MAX5258 EV Kit Schematic (Sheet 1 of 2)

Evaluates: MAX5258/MAX5259

Figure 4b. MAX5258 EV Kit Schematic (Sheet 2 of 2)

Figure 5. MAX5258 EV Kit Component Placement Guide—Component Side

Evaluates: MAX5258/MAX5259

Figure 7. MAX5258 EV Kit PCB Layout—Solder Side

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9