

## DEMO MANUAL DC1052A

# LTC4218 Hot Swap Controller

#### DESCRIPTION

Demonstration circuit DC1052A includes two separate circuits for performance evaluation of the LTC®4218 Hot Swap™ controller. The standard version of the controller (LTC4218) is intended to operate with 2.9V to 26.5V rails, while the LTC4218-12 has internal adjustment for 12V applications.

One circuit of DC1052A located on the upper board area is assembled with the LTC4218 configured for operation with a 24V rail. The circuit on the lower board area includes the LTC4218-12. Circuit breaker thresholds in both cases are adjusted to 7.5A.

The LTC4218 features accurate current limiting with foldback and a ground-referred current monitor. The current monitor sources a current that is proportional to the sense voltage, and it may be converted into a voltage signal with an appropriate resistor.

The current limit may be reduced by placing an external resistor between GND and the ISET pin.

The LTC4218 protects the load from overvoltage and undervoltage conditions.

The DC1052A schematic allows the LTC4218 to operate in turn-on and turn-off modes as well as in the steady-state mode with different loads, and in the fault state.

Design files for this circuit board are available at http://www.linear.com/demo

 $\mathcal{L}$ , LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and Hot Swap is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

### **PERFORMANCE SUMMARY** Specifications are at T<sub>A</sub> = 25°C

| SYMBOL                          | PARAMETER                            | CONDITIONS                                                                                                                                                       | MIN               | TYP         | MAX          | UNITS  |
|---------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|--------------|--------|
| 24V Circuit                     |                                      |                                                                                                                                                                  |                   |             | -            |        |
| $V_{DD}$                        | Input Supply Range                   | Typical Value                                                                                                                                                    | 19.89             | 24          | 26.34        | V      |
| $V_{\mathrm{DD}(\mathrm{UVL})}$ | Input Supply Undervoltage Range      | V <sub>DD</sub> Rising                                                                                                                                           | 19.32             | 19.89       | 20.68        | V      |
| V <sub>DD(OVH)</sub>            | Input Supply Overvoltage Range       | V <sub>DD</sub> Rising                                                                                                                                           | 25.56             | 26.34       | 27.39        | V      |
| V <sub>OUT(PG)</sub>            | Output Voltage Defined as Power Good | V <sub>SOURCE</sub> Rising                                                                                                                                       | 20.00 20.75 21.57 |             | 21.57        | V      |
| t <sub>TIMER</sub>              | Timer Period                         |                                                                                                                                                                  | 0.9               | 1.235       | 1.76         | ms     |
| I <sub>LIMIT</sub>              | Current Limit                        | $V_{FB}$ = 1.23V ( $V_{OUT}$ in the Range 20.33V to 21.16V)<br>$V_{FB}$ = 0V to 0.15V ( $V_{OUT}$ in the Range 0V to 2.6V)                                       | 7.05<br>1.38      | 7.5<br>1.88 | 7.95<br>2.37 | A<br>A |
| C <sub>MAX24</sub>              | Maximal Load Capacitance             | Successful Power-Up Mode                                                                                                                                         |                   | 600         |              | μF     |
| C <sub>MIN24</sub>              | Minimal Load Capacitance             | Unsuccessful Power-Up Mode                                                                                                                                       | 1800              |             | μF           |        |
| 12V Circuit                     |                                      |                                                                                                                                                                  |                   |             |              |        |
| $V_{DD}$                        | Input Supply Range                   | Typical Value                                                                                                                                                    | 9.88              | 12          | 15.05        | V      |
| $V_{\mathrm{DD}(\mathrm{UVL})}$ | Input Supply Undervoltage Range      | V <sub>DD</sub> Rising                                                                                                                                           | 9.6               | 9.88        | 10.2         | V      |
| V <sub>DD(OVH)</sub>            | Input Supply Overvoltage Range       | V <sub>DD</sub> Rising                                                                                                                                           | 14.7              | 15.05       | 15.4         | V      |
| V <sub>OUT(PG)</sub>            | Output Voltage Defined as Power Good | V <sub>SOURCE</sub> Rising                                                                                                                                       | 10.2              | 10.5        | 10.8         | V      |
| t <sub>TIMER</sub>              | Timer Period                         |                                                                                                                                                                  | 0.9               | 1.235       | 1.76         | ms     |
| I <sub>LIMIT</sub>              | Current Limit                        | $V_{FB} = 1.23V (V_{OUT} \text{ in the Range } 10.3V \text{ to } 10.4V)$<br>$V_{FB} = 0V \text{ to } 0.15V (V_{OUT} \text{ in the Range } 0V \text{ to } 1.27V)$ | 7.05<br>1.38      | 7.5<br>1.88 | 7.95<br>2.37 | A<br>A |
| C <sub>MAX12</sub>              | Maximal Load Capacitance             | Successful Power-Up Mode                                                                                                                                         |                   | 900         |              | μF     |
| C <sub>MIN12</sub>              | Minimal Load Capacitance             | Unsuccessful Power-Up Mode                                                                                                                                       |                   | 1800        |              | μF     |

dc1052af



### **OPERATING PRINCIPLES**

The LTC4218 is suited for low voltage power control in applications for hot board insertion or removal with electronic circuit breaker function, foldback current limit and load current monitoring. The LTC4218 has a rich set of features to support Hot Swap applications, including:

- 2% accurate undervoltage and overvoltage protection
- Adjustable 5% accurate current limit

- Adjustable inrush current control
- Load current monitoring
- Adjustable current limit timer before power is turned off
- Power good and fault signaling

### **QUICK START PROCEDURE**

Demonstration circuit 1052A is easy to set up to evaluate the performance of the LTC4218 and LTC4218-12. Refer to Figure 1 for the proper measurement equipment setup and follow the procedure below.

For the 24V circuit:

1. Place jumpers in the following positions:

JP1 FAULT Signal

JP2 AUX\_UV ON

- 2. With power off, connect the 24V power supply terminals to the  $24V_{IN}$  (E1) and GND (E4) turrets.
- Turn on the 24V supply and verify the output voltage between the V<sub>OUT</sub> (E2) and GND (E3) turrets. Green LEDs 24VIN (D2) and V<sub>OUT</sub> (D4) should light up.
- 4. Check the current limit by providing an electronic or resistive load. It should be in the range of 7.05A to 7.95A. During this measurement, verify the current monitor performance. The monitor signal related to the current limit level should be 2.0V ± 0.17V. The monitor signal has a 3.75A/V scale.
- 5. Use an oscilloscope to check the output voltage slew rate without a load connected. It should be in the range of 1680V/s to 2300V/s. Use an 1800μF capacitive load to confirm that during power-up, the timer period expires and a current limit fault is indicated by the FAULT red LED (D5). The PG red LED (D6) indicates that the output voltage is lower than the power good level.

For the 12V circuit:

6. Place jumpers in the following positions:

JP3 FAULT Signal
JP4 AUX UV ON

- 7. With power off, connect the 12V power supply terminals to the  $12V_{IN}$  (E9) and GND (E12) turrets.
- 8. Turn on the 12V supply and verify the output voltage at the  $V_{OUT}$  (E10) and GND (E11) turrets. Green LEDs 12V<sub>IN</sub> (D9) and  $V_{OUT}$  (D11) should light up.
- 9. Check the current limit by providing an electronic or resistive load. It should be in the range of 7.05A to 7.95A. During this measurement verify the current monitor performance. The monitor signal related to the current limit level should be 2.0V ± 0.17V. The monitor signal has a 3.75A/V scale.
- 10. Check the output voltage slew rate with an oscilloscope without a load connected. It should be in the range of 1680V/s to 2300V/s.
- 11. Use an 1800µF capacitive load to confirm that during power-up the timer period expires and a current limit fault is indicated by the FAULT red LED (D12) accompanied by the PG red LED (D13) to indicate that the output voltage is lower than the power good level.

LINEAR TECHNOLOGY

### **QUICK START PROCEDURE**

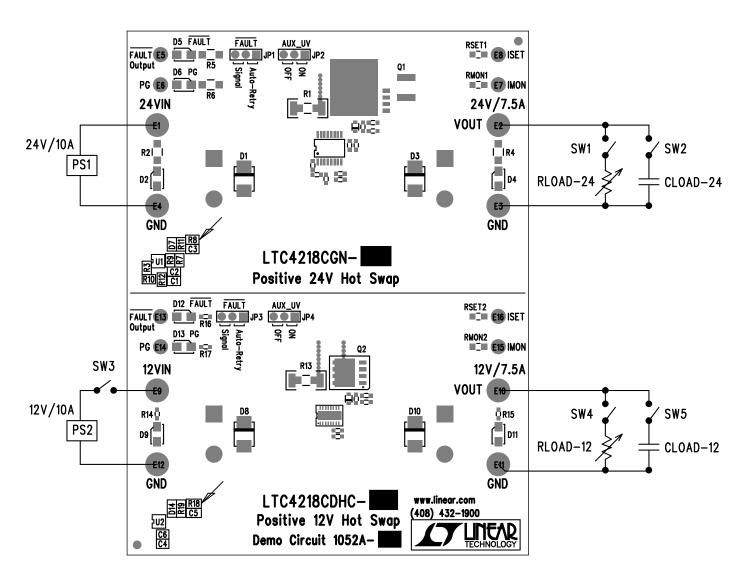
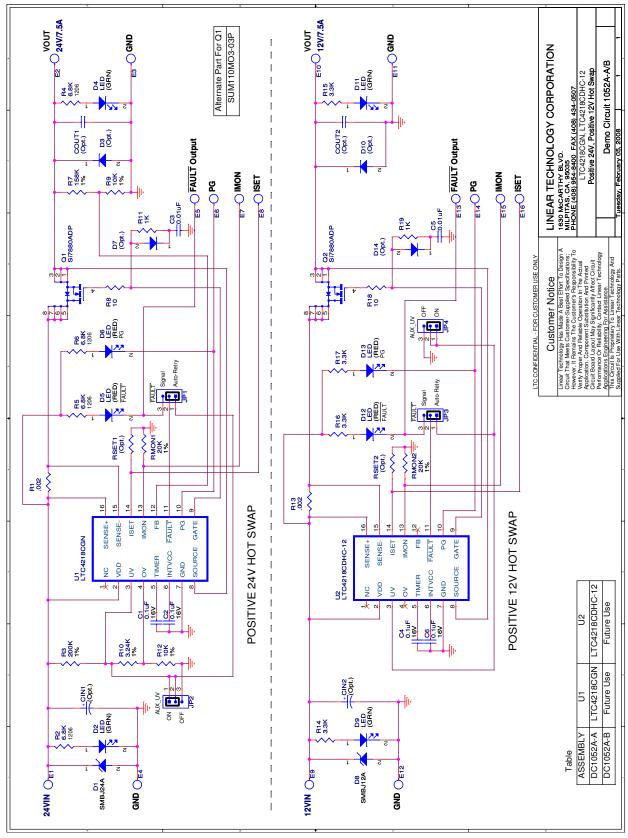



Figure 1. Proper Measurement Equipment Setup




# DEMO MANUAL DC1052A

# **PARTS LIST**

| ITEM | QTY | REFERENCE         | PART DESCRIPTION                         | MANUFACTURER/PART NUMBER |  |
|------|-----|-------------------|------------------------------------------|--------------------------|--|
| 1    | 4   | C1, C2, C4, C6    | CAP., CER X7R 0.1µF 16V 0603             | AVX 0603YC104KAT2A       |  |
| 2    | 2   | C3, C5            | CAP., CER X7R 0.01µF 50V 0603            | AVX 06035C103KAT2A       |  |
| 3    | 0   | COUT1, COUT2      | OPTIONAL                                 |                          |  |
| 4    | 0   | CIN1, CIN2        | OPTIONAL                                 |                          |  |
| 5    | 8   | E5-E8, E13-E16    | TURRET, TEST PIN, .061"                  | MILL-MAX 2308-2-00-44    |  |
| 6    | 8   | E1-E4, E9-E12     | TURRET, TEST PIN, .095"                  | MILL-MAX 2501-2          |  |
| 7    | 4   | JP1-JP4           | JUMPER, 0.079, 3 PIN                     | SAMTEC, TMM-103-02-L-S   |  |
| 8    | 4   | JP1-JP4           | SHUNT,                                   | SAMTEC, 2SN-BK-G         |  |
| 9    | 4   | D5, D6, D12, D13  | LED, SMT RED                             | PANASONIC, LN1251C       |  |
| 10   | 4   | D2, D4, D9, D11   | LED, SMT GREEN                           | PANASONIC, LN1351C       |  |
| 11   | 1   | D1                | DIODE, 600W TRANSIENT VOLTAGE SUPPRESSOR | DIODES INC., SMBJ24A     |  |
| 12   | 1   | D8                | DIODE, 600W TRANSIENT VOLTAGE SUPPRESSOR | DIODES INC., SMBJ12A     |  |
| 13   | 0   | D3, D10, D17, D14 | OPTIONAL                                 | SMA                      |  |
| 14   | 2   | Q1, Q2            | MOSFET N-CHANNEL 30V, POWER PAK-SO-8     | VISHAY, Si7880ADP        |  |
| 15   | 2   | R1, R13           | RES., CHIP, 0.002Ω 1/4W 1% 1206          | VISHAY, WSL12062L000FEA  |  |
| 16   | 2   | R8, R18           | RES., CHIP, 10Ω 1/16W 5% 0603            | VISHAY, CRCW060310R0JNEA |  |
| 17   | 2   | R11, R19          | RES., CHIP, 1k 1/16W 5% 0603             | VISHAY, CRCW06031K00JNEA |  |
| 18   | 1   | R10               | RES., CHIP, 3.24k 1/16W 1% 0603          | Vishay, CRCW06033K24FKEA |  |
| 19   | 4   | R14-R17           | RES., CHIP, 3.30k 1/16W 5% 0603          | VISHAY, CRCW06033K30JNEA |  |
| 20   | 4   | R2, R4, R5, R6    | RES., CHIP, 6.80k 1/4W 5% 1206           | VISHAY, CRCW12066K80JNEA |  |
| 21   | 2   | R9, R12           | RES., CHIP, 10k 1/16W 1% 0603            | VISHAY, CRCW060310K0FKEA |  |
| 22   | 2   | RMON1, RMON2      | RES., CHIP, 20k 1/16W 5% 0805            | VISHAY, CRCW080520K0JNEA |  |
| 23   | 1   | R7                | RES., CHIP, 158k 1/16W 1% 0603           | VISHAY, CRCW0603158KFKEA |  |
| 24   | 1   | R3                | RES., CHIP, 200k 1/16W 1% 0603           | VISHAY, CRCW0603200KFKEA |  |
| 25   | 0   | RSET1, RSET2      | OPTIONAL                                 |                          |  |
| 26   | 1   | U1                | IC., HOT SWAP CONTROLLER                 | LINEAR, LTC4218CGN       |  |
| 27   | 1   | U2                | IC., HOT SWAP CONTROLLER                 | LINEAR, LTC4218CDHC-12   |  |

### **SCHEMATIC DIAGRAM**



dc1052af



### DEMO MANUAL DC 1052A

#### DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

**Please read the DEMO BOARD manual prior to handling the product**. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation



### **ПОСТАВКА** ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

многоканальный

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

# Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

#### http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

#### Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru\_6 moschip.ru 4 moschip.ru 9