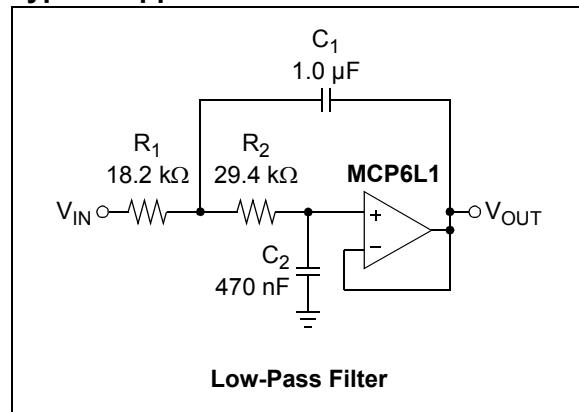


2.8 MHz, 200 μ A Op Amps

Features

- Supply Voltage: 2.7V to 6.0V
- Rail-to-Rail Output
- Input Range Includes Ground
- Available in SOT-23-5 Package
- Gain Bandwidth Product: 2.8 MHz (typical)
- Supply Current: $I_Q = 200 \mu$ A/Amplifier (typical)
- Extended Temperature Range: -40°C to +125°C

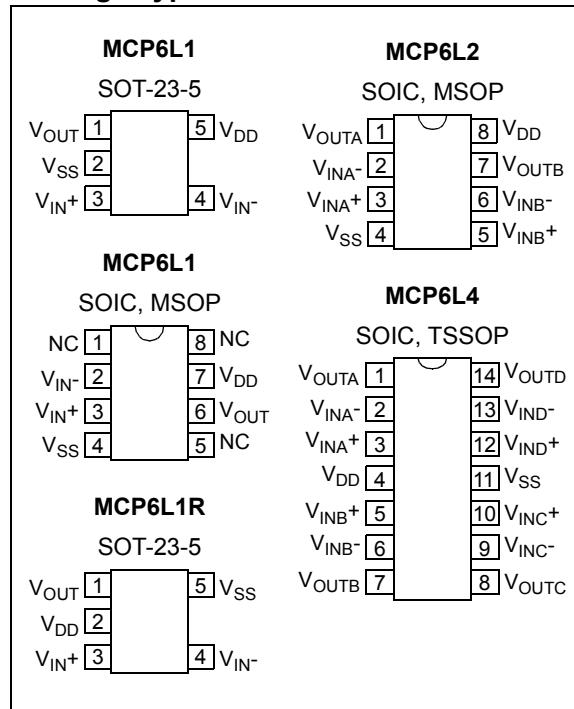

Typical Applications

- Portable Equipment
- Photodiode Amplifier
- Analog Filters
- Data Acquisition
- Notebooks and PDAs
- Battery-Powered Systems

Design Aids

- SPICE Macro Model
- FilterLab® Software
- Microchip Advanced Part Selector (MAPS)
- Analog Demonstration and Evaluation Boards
- Application Notes

Typical Application



Description

The Microchip Technology Inc. MCP6L1/1R/2/4 family of operational amplifiers (op amps) supports general-purpose applications. Battery powered circuits benefit from their low quiescent current, A/D converters from their wide bandwidth and anti-aliasing filters from their low input bias current.

This family has a 2.8 MHz Gain Bandwidth Product (GBWP) with a low 200 μ A per amplifier quiescent current. These op amps operate on supply voltages between 2.7V and 6.0V, with rail-to-rail output swing. They are available in the extended temperature range.

Package Types

MCP6L1/1R/2/4

NOTES:

1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Ratings †

$V_{DD} - V_{SS}$	7.0V
Current at Input Pins	± 2 mA
Analog Inputs (V_{IN+}, V_{IN-}) ‡‡	$V_{SS} - 1.0V$ to $V_{DD} + 1.0V$
All Inputs and Outputs	$V_{SS} - 0.3V$ to $V_{DD} + 0.3V$
Difference Input voltage	$ V_{DD} - V_{SS} $
Output Short Circuit Current	Continuous
Current at Output and Supply Pins	± 30 mA
Storage Temperature	-65°C to +150°C
Max. Junction Temperature	+150°C
ESD Protection on All Pins (HBM, MM)	≥ 3 kV, 200V

† **Notice:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operational listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

‡‡ See **Section 4.1.2 "Input Voltage and Current Limits".**

1.2 Specifications

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, $T_A = +25^\circ\text{C}$, $V_{DD} = 5.0\text{V}$, $V_{SS} = \text{GND}$, $V_{CM} = V_{SS}$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, and $R_L = 10\text{k}\Omega$ to V_L (refer to [Figure 1-1](#)).

Parameters	Sym	Min (Note 1)	Typ	Max (Note 1)	Units	Conditions
Input Offset						
Input Offset Voltage	V_{OS}	-3	± 1	+3	mV	
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta T_A$	—	± 2.5	—	$\mu\text{V}/^\circ\text{C}$	$T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$
Power Supply Rejection Ratio	PSRR	—	90	—	dB	
Input Current and Impedance						
Input Bias Current	I_B	—	1	—	pA	
Across Temperature	I_B	—	20	—	pA	$T_A = +85^\circ\text{C}$
Across Temperature	I_B	—	500	—	pA	$T_A = +125^\circ\text{C}$
Input Offset Current	I_{OS}	—	± 1	—	pA	
Common-Mode Input Impedance	Z_{CM}	—	$10^{13} 5$	—	ΩpF	
Differential Input Impedance	Z_{DIFF}	—	$10^{13} 2$	—	ΩpF	
Common-Mode						
Common-Mode Input Voltage Range	V_{CMR}	-0.3	—	3.7	V	
Common-Mode Rejection Ratio	CMRR	—	90	—	dB	$V_{CM} = -0.3\text{V}$ to 3.7V
Open-Loop Gain						
DC Open-Loop Gain (large signal)	A_{OL}	—	105	—	dB	$V_{OUT} = 0.2\text{V}$ to 4.8V
Output						
Maximum Output Voltage Swing	V_{OL}	—	—	0.030	V	$G = +2, 0.5\text{V}$ Input Overdrive
	V_{OH}	4.960	—	—	V	$G = +2, 0.5\text{V}$ Input Overdrive
Output Short Circuit Current	I_{SC}	—	± 20	—	mA	
Power Supply						
Supply Voltage	V_{DD}	2.7	—	6.0	V	
Quiescent Current per Amplifier	I_Q	70	200	330	μA	$I_O = 0$

Note 1: For design guidance only; not tested.

MCP6L1/1R/2/4

TABLE 1-2: AC ELECTRICAL SPECIFICATIONS

Parameters	Sym	Min	Typ	Max	Units	Conditions
AC Response						
Gain Bandwidth Product	GBWP	—	2.8	—	MHz	
Phase Margin	PM	—	50	—	° (degree)	G = +1
Slew Rate	SR	—	2.3	—	V/μs	
Noise						
Input Noise Voltage	E _{ni}	—	7	—	μV _{P-P}	f = 0.1 Hz to 10 Hz
Input Noise Voltage Density	e _{ni}	—	21	—	nV/√Hz	f = 10 kHz
Input Noise Current Density	i _{ni}	—	0.6	—	fA/√Hz	f = 1 kHz

TABLE 1-3: TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, all limits are specified for: V _{DD} = +2.7V to +6.0V, V _{SS} = GND.						
Parameters	Sym	Min	Typ	Max	Units	Conditions
Temperature Ranges						
Specified Temperature Range	T _A	-40	—	+125	°C	
Operating Temperature Range	T _A	-40	—	+125	°C	(Note 1)
Storage Temperature Range	T _A	-65	—	+150	°C	
Thermal Package Resistances						
Thermal Resistance, 5L-SOT-23	θ _{JA}	—	220.7	—	°C/W	
Thermal Resistance, 8L-MSOP	θ _{JA}	—	211	—	°C/W	
Thermal Resistance, 8L-SOIC (150 mil)	θ _{JA}	—	149.5	—	°C/W	
Thermal Resistance, 14L-SOIC	θ _{JA}	—	95.3	—	°C/W	
Thermal Resistance, 14L-TSSOP	θ _{JA}	—	100	—	°C/W	

Note 1: Operation must not cause T_J to exceed Maximum Junction Temperature specification (150°C).

1.3 Test Circuit

The circuit used for most DC and AC tests is shown in Figure 1-1. This circuit can independently set V_{CM} and V_{OUT}; see Equation 1-1. Note that V_{CM} is not the circuit's common-mode voltage ((V_P + V_M)/2) and that V_{OST} includes V_{OS}, plus the effects (on the input offset error, V_{OST}) of temperature, CMRR, PSRR and A_{OL}.

EQUATION 1-1:

$$\begin{aligned}
 G_{DM} &= R_F/R_G \\
 V_{CM} &= (V_P + V_{DD}/2)/2 \\
 V_{OST} &= V_{IN-} - V_{IN+} \\
 V_{OUT} &= (V_{DD}/2) + (V_P - V_M) + V_{OST}(1 + G_{DM})
 \end{aligned}$$

Where:

$$\begin{aligned}
 G_{DM} &= \text{Differential-Mode Gain} & (\text{V/V}) \\
 V_{CM} &= \text{Op Amp's Common-Mode Input Voltage} & (\text{V}) \\
 V_{OST} &= \text{Op Amp's Total Input Offset Voltage} & (\text{mV})
 \end{aligned}$$

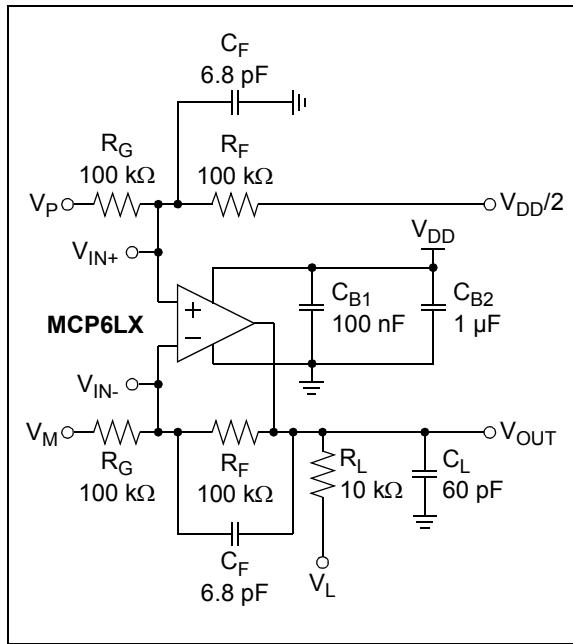
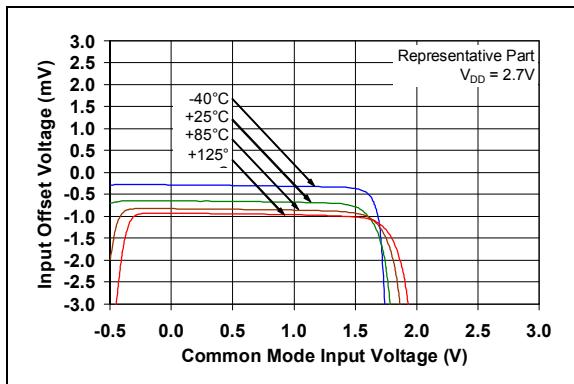
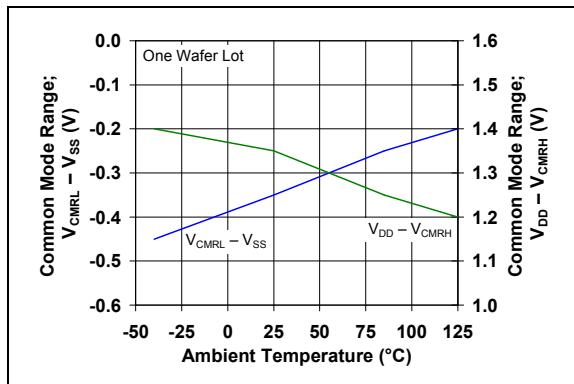
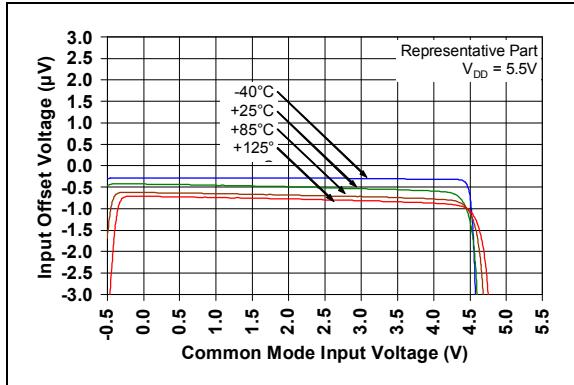
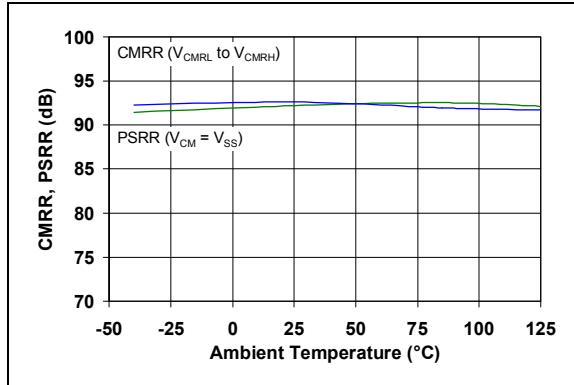



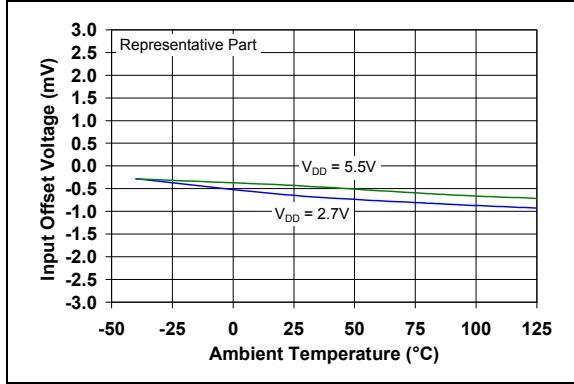
FIGURE 1-1: AC and DC Test Circuit for Most Specifications.


2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.


Note: Unless otherwise indicated, $T_A = +25^\circ\text{C}$, $V_{DD} = 5.0\text{V}$, $V_{SS} = \text{GND}$, $V_{CM} = V_{SS}$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10\text{k}\Omega$ to V_L and $C_L = 60\text{ pF}$.


FIGURE 2-1: Input Offset Voltage vs. Common-Mode Input Voltage at $V_{DD} = 2.7\text{V}$.


FIGURE 2-4: Input Common-Mode Range Voltage vs. Ambient Temperature.

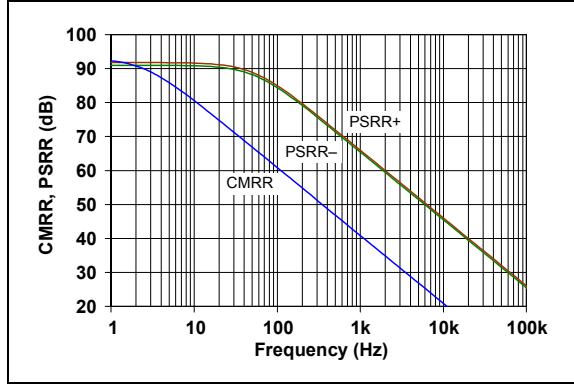
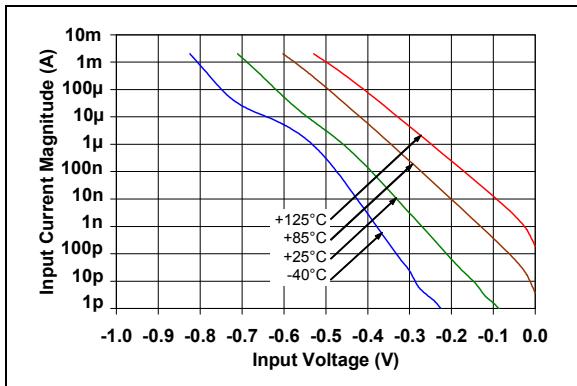
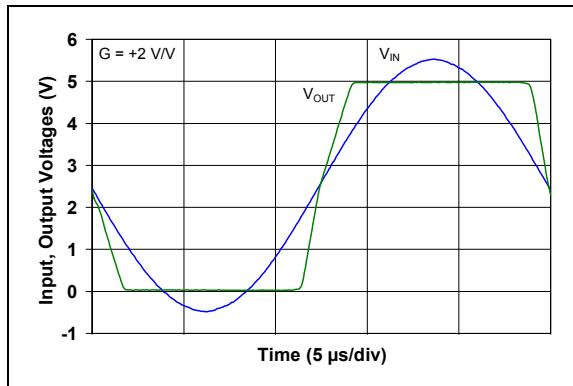
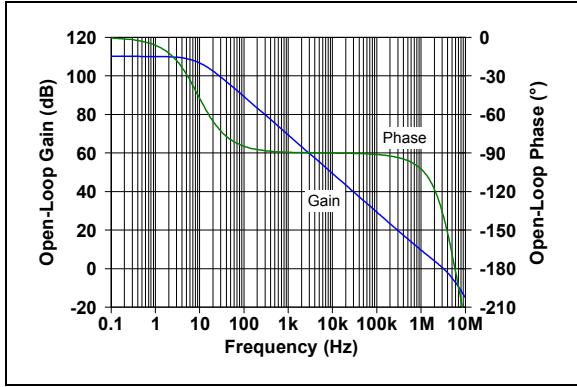

FIGURE 2-2: Input Offset Voltage vs. Common-Mode Input Voltage at $V_{DD} = 5.5\text{V}$.

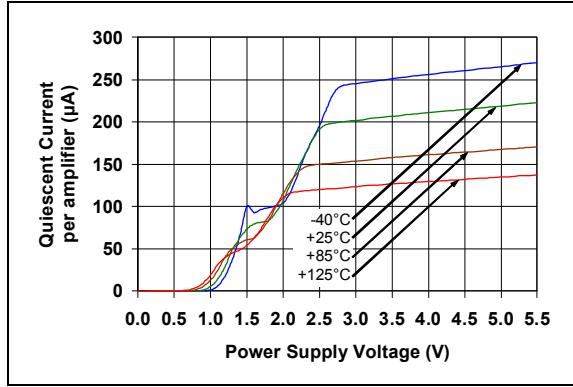
FIGURE 2-5: CMRR, PSRR vs. Ambient Temperature.

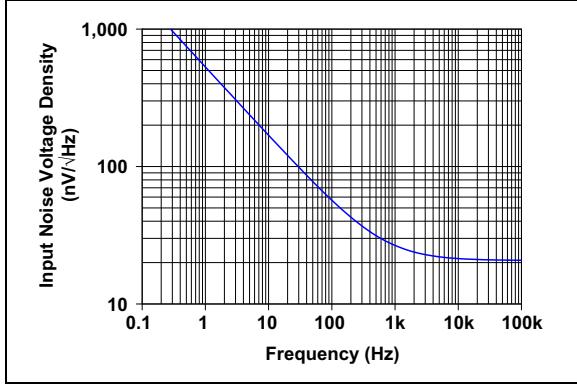

FIGURE 2-3: Input Offset Voltage vs. Ambient Temperature.


FIGURE 2-6: CMRR, PSRR vs. Frequency.

MCP6L1/1R/2/4


Note: Unless otherwise indicated, $T_A = +25^\circ\text{C}$, $V_{DD} = +5.0\text{V}$, $V_{SS} = \text{GND}$, $V_{CM} = V_{SS}$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10\text{ k}\Omega$ to V_L and $C_L = 60\text{ pF}$.


FIGURE 2-7: Measured Input Current vs. Input Voltage (below V_{SS}).


FIGURE 2-10: The MCP6L1/1R/2/4 Show No Phase Reversal.

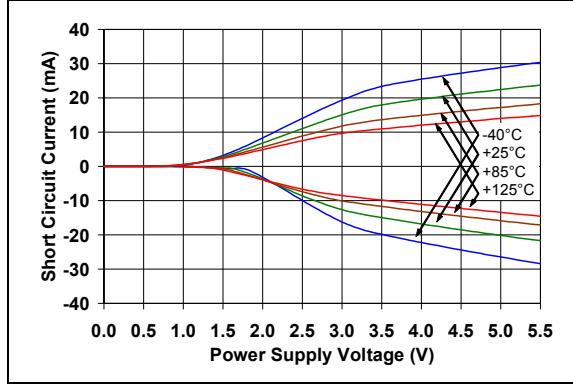

FIGURE 2-8: Open-Loop Gain, Phase vs. Frequency.

FIGURE 2-11: Quiescent Current vs. Power Supply Voltage.

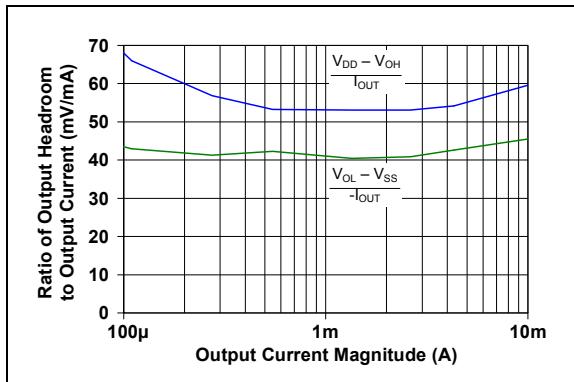


FIGURE 2-9: Input Noise Voltage Density vs. Frequency.

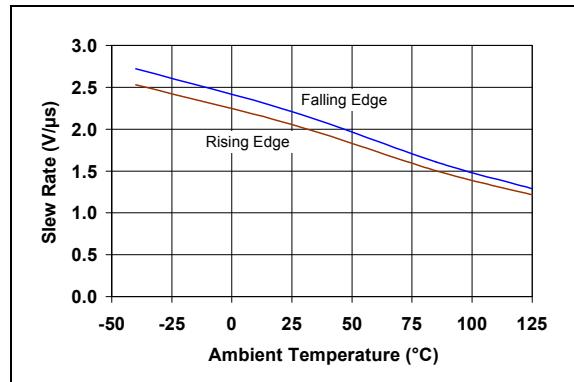
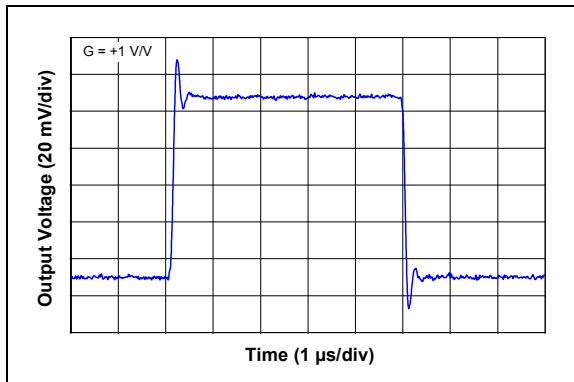
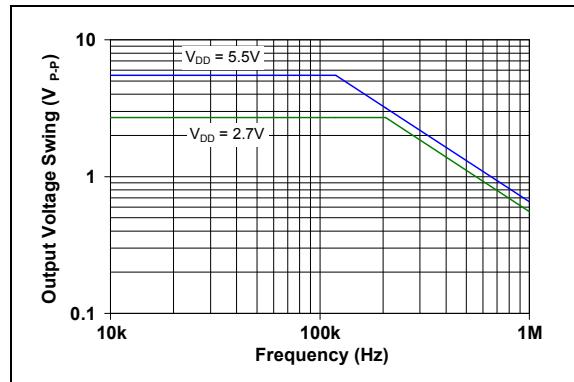


FIGURE 2-12: Output Short Circuit Current vs. Power Supply Voltage.


Note: Unless otherwise indicated, $T_A = +25^\circ\text{C}$, $V_{DD} = +5.0\text{V}$, $V_{SS} = \text{GND}$, $V_{CM} = V_{SS}$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10\text{k}\Omega$ to V_L and $C_L = 60\text{ pF}$.


FIGURE 2-13: Ratio of Output Voltage Headroom to Output Current vs. Output Current.

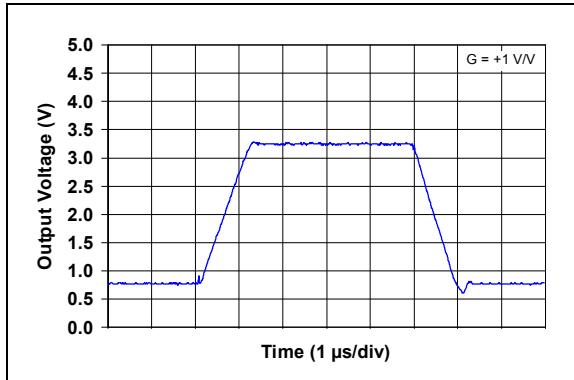

FIGURE 2-16: Slew Rate vs. Ambient Temperature.

FIGURE 2-14: Small Signal, Non-Inverting Pulse Response.

FIGURE 2-17: Output Voltage Swing vs. Frequency.

FIGURE 2-15: Large Signal, Non-Inverting Pulse Response.

MCP6L1/1R/2/4

NOTES:

3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in [Table 3-1](#).

TABLE 3-1: PIN FUNCTION TABLE

MCP6L1		MCP6L1R	MCP6L2	MCP6L4	Symbol	Description
SOT-23-5	SOIC-8, MSOP-8	SOT-23-5	SOIC-8, MSOP-8	SOIC-14, TSSOP-14		
1	6	1	1	1	V_{OUT} , V_{OUTA}	Output (op amp A)
4	2	4	2	2	V_{IN^-} , V_{INA^-}	Inverting Input (op amp A)
3	3	3	3	3	V_{IN^+} , V_{INA^+}	Non-Inverting Input (op amp A)
5	7	2	8	4	V_{DD}	Positive Power Supply
—	—	—	5	5	V_{INB^+}	Non-Inverting Input (op amp B)
—	—	—	6	6	V_{INB^-}	Inverting Input (op amp B)
—	—	—	7	7	V_{OUTB}	Output (op amp B)
—	—	—	—	8	V_{OUTC}	Output (op amp C)
—	—	—	—	9	V_{INC^-}	Inverting Input (op amp C)
—	—	—	—	10	V_{INC^+}	Non-Inverting Input (op amp C)
2	4	5	4	11	V_{SS}	Negative Power Supply
—	—	—	—	12	V_{IND^+}	Non-Inverting Input (op amp D)
—	—	—	—	13	V_{IND^-}	Inverting Input (op amp D)
—	—	—	—	14	V_{OUTD}	Output (op amp D)
—	1, 5, 8	—	—	—	NC	No Internal Connection

3.1 Analog Outputs

The analog output pins (V_{OUT}) are low-impedance voltage sources.

3.2 Analog Inputs

The non-inverting and inverting inputs (V_{IN^+} , V_{IN^-} , ...) are high-impedance CMOS inputs with low bias currents.

3.3 Power Supply Pins

The positive power supply (V_{DD}) is 2.7V to 6.0V higher than the negative power supply (V_{SS}). For normal operation, the other pins are between V_{SS} and V_{DD} .

Typically, these parts are used in a single (positive) supply configuration. In this case, V_{SS} is connected to ground and V_{DD} is connected to the supply. V_{DD} will need bypass capacitors.

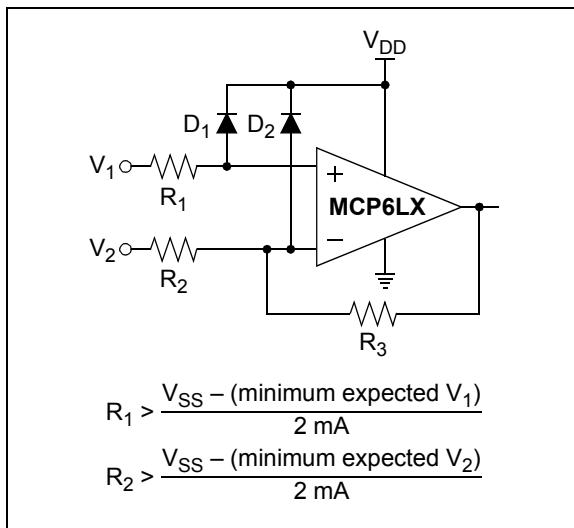
MCP6L1/1R/2/4

NOTES:

4.0 APPLICATION INFORMATION

The MCP6L1/1R/2/4 family of op amps is manufactured using Microchip's state of the art CMOS process. They are unity gain stable and suitable for a wide range of general purpose applications.

4.1 Inputs

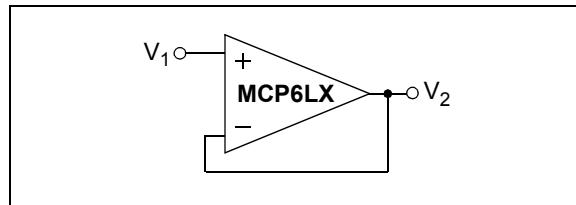

4.1.1 PHASE REVERSAL

The MCP6L1/1R/2/4 op amps are designed to prevent phase inversion when the input pins exceed the supply voltages. [Figure 2-10](#) shows an input voltage exceeding both supplies without any phase reversal.

4.1.2 INPUT VOLTAGE AND CURRENT LIMITS

In order to prevent damage and/or improper operation of these amplifiers, the circuit they are in must limit the currents (and voltages) at the input pins (see [Section 1.1 "Absolute Maximum Ratings †"](#)).

[Figure 4-1](#) shows the recommended approach to protecting these inputs. The internal ESD diodes prevent the input pins (V_{IN+} and V_{IN-}) from going too far below ground, and the resistors, R_1 and R_2 , limit the possible current drawn out of the input pins. Diodes, D_1 and D_2 , prevent the input pins (V_{IN+} and V_{IN-}) from going too far above V_{DD} , and dump any currents onto V_{DD} .


FIGURE 4-1: Protecting the Analog Inputs.

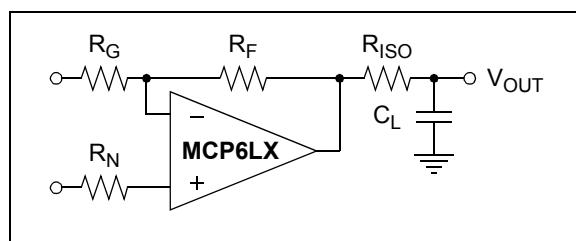
A significant amount of current can flow out of the inputs (through the ESD diodes) when the common-mode voltage (V_{CM}) is below ground (V_{SS}); see [Figure 2-7](#). Applications that are high-impedance may need to limit the usable voltage range.

4.1.3 NORMAL OPERATION

The Common-Mode Input Voltage Range (V_{CMR}) includes ground in single-supply systems (V_{SS}), but does not include V_{DD} . This means that the amplifier input behaves linearly as long as the Common-Mode Input Voltage (V_{CM}) is kept within the V_{CMR} limits (typically $V_{SS} - 0.3\text{V}$ to $V_{DD} - 1.3\text{V}$ at $+25^\circ\text{C}$).

[Figure 4-3](#) shows a unity gain buffer. Since V_{OUT} is the same voltage as the inverting input, V_{OUT} must be kept below $V_{DD} - 1.2\text{V}$ (typically) for correct operation.

FIGURE 4-2: Unity Gain Buffer has a Limited V_{OUT} Range.


4.2 Rail-to-Rail Output

The output voltage range of the MCP6L1/1R/2/4 op amps is $V_{DD} - 35\text{ mV}$ (minimum) and $V_{SS} + 35\text{ mV}$ (maximum) when $R_L = 10\text{ k}\Omega$ is connected to $V_{DD}/2$ and $V_{DD} = 5.0\text{V}$. Refer to [Figure 2-13](#) for more information.

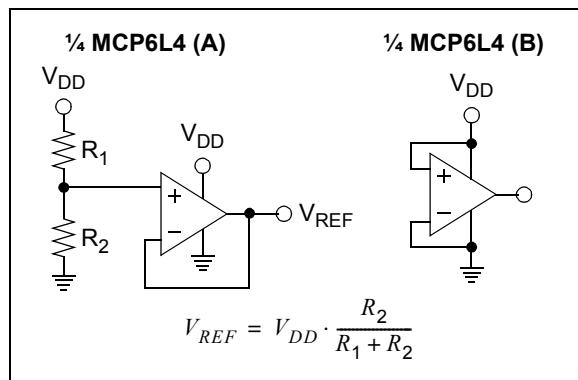
4.3 Capacitive Loads

Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop's phase margin decreases and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response.

When driving large capacitive loads with these op amps (e.g., $> 100\text{ pF}$ when $G = +1$), a small series resistor at the output (R_{ISO} in [Figure 4-3](#)) improves the feedback loop's stability by making the output load resistive at higher frequencies; the bandwidth will usually be decreased.

FIGURE 4-3: Output Resistor, R_{ISO} , Stabilizes Large Capacitive Loads.

Bench measurements are helpful in choosing R_{ISO} . Adjust R_{ISO} so that a small signal step response (see [Figure 2-14](#)) has reasonable overshoot (e.g., 4%).


MCP6L1/1R/2/4

4.4 Supply Bypass

With this family of operational amplifiers, the power supply pin (V_{DD} for single supply) should have a local bypass capacitor (i.e., 0.01 μ F to 0.1 μ F) within 2 mm for good high-frequency performance. It also needs a bulk capacitor (i.e., 1 μ F or larger) within 100 mm to provide large, slow currents. This bulk capacitor can be shared with other nearby analog parts.

4.5 Unused Op Amps

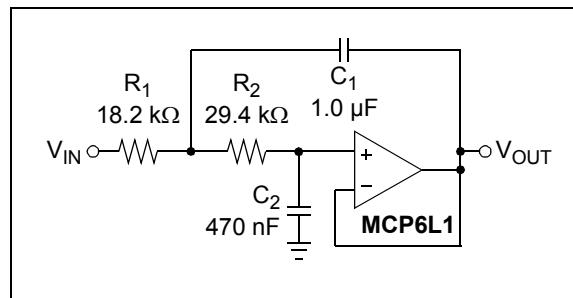
An unused op amp in a quad package (e.g., MCP6L4) should be configured, as shown in [Figure 4-4](#). These circuits prevent the output from toggling and causing crosstalk. Circuit A sets the op amp at its minimum noise gain. The resistor divider produces any desired reference voltage within the output voltage range of the op amp; the op amp buffers that reference voltage. Circuit B uses the minimum number of components and operates as a comparator, but it may draw more current.

FIGURE 4-4: Unused Op Amps.

4.6 PCB Surface Leakage

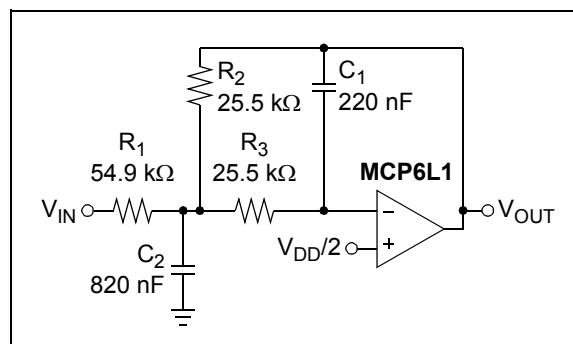
In applications where low input bias current is critical, the PCB (Printed Circuit Board) surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity conditions, a typical resistance between nearby traces is $10^{12} \Omega$. A 5 V difference would cause 5 pA of current to flow; this is greater than this family's bias current at $+25^\circ\text{C}$ (1 pA, typical).

The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. [Figure 4-5](#) shows an example of this type of layout.


FIGURE 4-5: Example Guard Ring Layout.

1. Inverting Amplifiers ([Figure 4-5](#)) and Transimpedance Gain Amplifiers (convert current to voltage, such as photo detectors).
 - a) Connect the guard ring to the non-inverting input pin (V_{IN+}); this biases the guard ring to the same reference voltage as the op amp's input (e.g., $V_{DD}/2$ or ground).
 - b) Connect the inverting pin (V_{IN-}) to the input with a wire that does not touch the PCB surface.
2. Non-Inverting Gain and Unity Gain Buffer.
 - a) Connect the guard ring to the inverting input pin (V_{IN-}); this biases the guard ring to the common-mode input voltage.
 - b) Connect the non-inverting pin (V_{IN+}) to the input with a wire that does not touch the PCB surface.

4.7 Application Circuits


4.7.1 ACTIVE LOW-PASS FILTER

[Figure 4-6](#) shows a second-order Butterworth filter, with a 10 Hz cutoff frequency and a gain of +1 V/V, using a Sallen Key topology. Microchip's FilterLab® software designed the filter, then the capacitors were reduced in value (using the same program).

FIGURE 4-6: Sallen Key Topology.

[Figure 4-7](#) shows a filter with the same requirements, except the gain is -1 V/V, in a Multiple Feedback Topology. It was designed in a similar fashion using FilterLab.

FIGURE 4-7: Multiple Feedback Topology.

5.0 DESIGN AIDS

Microchip provides the basic design aids needed for the MCP6L1/1R/2/4 family of op amps.

5.1 SPICE Macro Model

The latest SPICE macro model for the MCP6L1/1R/2/4 op amp is available on the Microchip web site at www.microchip.com. The model was written and tested in official Orcad (Cadence) owned PSPICE. For other simulators, translation may be required.

The model covers a wide aspect of the op amp's electrical specifications. Not only does the model cover voltage, current and resistance of the op amp, but it also covers the temperature and noise effects on the behavior of the op amp. The model has not been verified outside of the specification range listed in the op amp data sheet. The model behaviors under these conditions cannot be ensured to match the actual op amp performance.

Moreover, the model is intended to be an initial design tool. Bench testing is a very important part of any design and cannot be replaced with simulations. Also, simulation results using this macro model need to be validated by comparing them to the data sheet specifications and characteristic curves.

5.2 FilterLab® Software

Microchip's FilterLab software is an innovative software tool that simplifies analog active filter (using op amps) design. Available at no cost from the Microchip web site at www.microchip.com/filterlab, the Filter-Lab design tool provides full schematic diagrams of the filter circuit with component values. It also outputs the filter circuit in SPICE format, which can be used with the macro model to simulate actual filter performance.

5.3 Microchip Advanced Part Selector (MAPS)

MAPS is a software tool that helps efficiently identify Microchip devices that fit a particular design requirement. Available at no cost from the Microchip web site at www.microchip.com/maps, the MAPS is an overall selection tool for Microchip's product portfolio that includes Analog, Memory, MCUs and DSCs. Using this tool, a customer can define a filter to sort features for a parametric search of devices and export side-by-side technical comparison reports. Helpful links are also provided for data sheets, purchasing and sampling of Microchip parts.

5.4 Analog Demonstration and Evaluation Boards

Microchip offers a broad spectrum of analog demonstration and evaluation boards that are designed to help customers achieve faster time to market. For a complete listing of these boards and their corresponding user's guides and technical information, visit the Microchip web site at:

www.microchip.com/analog tools.

Some boards that are especially useful are:

- MCP6XXX Amplifier Evaluation Board 1
- MCP6XXX Amplifier Evaluation Board 2
- MCP6XXX Amplifier Evaluation Board 3
- MCP6XXX Amplifier Evaluation Board 4
- Active Filter Demo Board Kit
- P/N VSUPEV2: 5/6-Pin SOT-23 Evaluation Board
- P/N SOIC8EV: 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board
- P/N SOIC14EV: 14-Pin SOIC/TSSOP/DIP Evaluation Board

5.5 Application Notes

The following Microchip Application Notes are available on the Microchip web site at:

www.microchip.com/appnotes and are recommended as supplemental reference resources.

ADN003: "Select the Right Operational Amplifier for your Filtering Circuits", DS21821

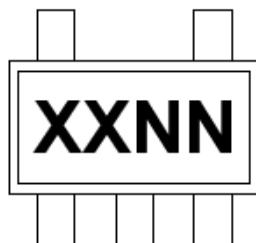
AN722: "Operational Amplifier Topologies and DC Specifications", DS00722

AN723: "Operational Amplifier AC Specifications and Applications", DS00723

AN884: "Driving Capacitive Loads With Op Amps", DS00884

AN990: "Analog Sensor Conditioning Circuits – An Overview", DS00990

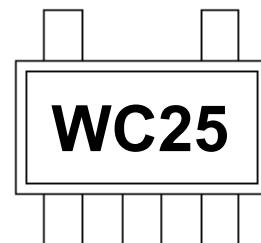
MCP6L1/1R/2/4

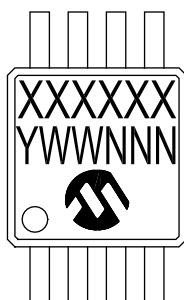


NOTES:

6.0 PACKAGING INFORMATION

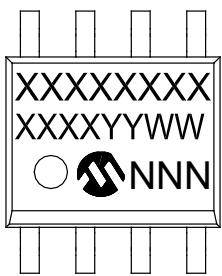
6.1 Package Marking Information


5-Lead SOT-23 (**MCP6L1, MCP6L1R**)


Device	Code
MCP6L1	WCNN
MCP6L1R	WDNN

Note: Applies to 5-Lead SOT-23.

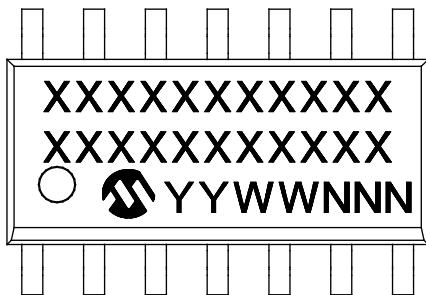
Example:


8-Lead MSOP (**MCP6L1, MCP6L2**)

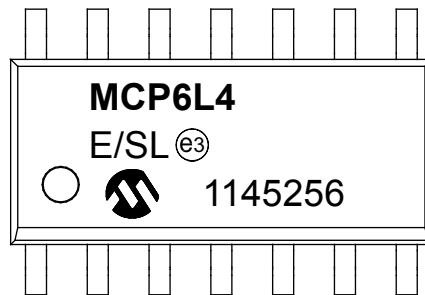
Example:

8-Lead SOIC (150 mil) (**MCP6L1, MCP6L2**)

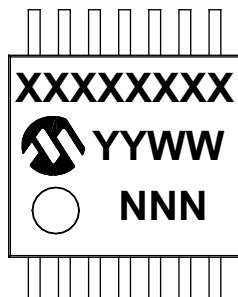
Example:


Legend:	XX...X	Customer-specific information
	Y	Year code (last digit of calendar year)
	YY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
	(e3)	Pb-free JEDEC designator for Matte Tin (Sn)
*		This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.


MCP6L1/1R/2/4

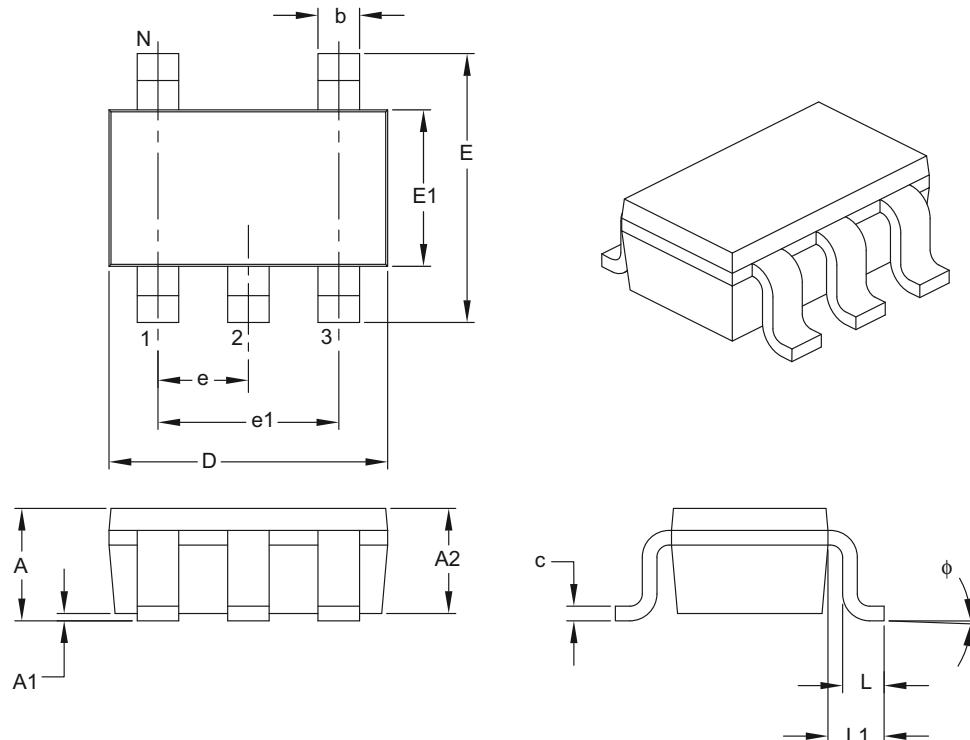
Package Marking Information (Continued)


14-Lead SOIC (150 mil) (MCP6L4)

Example:

14-Lead TSSOP (MCP6L4)

Example:



Legend:	XX...X	Customer-specific information
	Y	Year code (last digit of calendar year)
	YY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
	(e3)	Pb-free JEDEC designator for Matte Tin (Sn)
*		This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

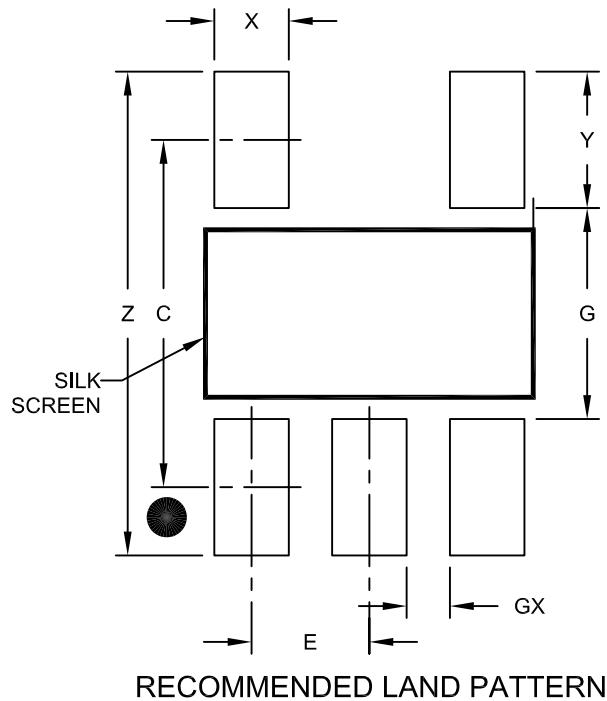
5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		5	
Lead Pitch	e		0.95 BSC	
Outside Lead Pitch	e1		1.90 BSC	
Overall Height	A	0.90	—	1.45
Molded Package Thickness	A2	0.89	—	1.30
Standoff	A1	0.00	—	0.15
Overall Width	E	2.20	—	3.20
Molded Package Width	E1	1.30	—	1.80
Overall Length	D	2.70	—	3.10
Foot Length	L	0.10	—	0.60
Footprint	L1	0.35	—	0.80
Foot Angle	phi	0°	—	30°
Lead Thickness	c	0.08	—	0.26
Lead Width	b	0.20	—	0.51

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-091B

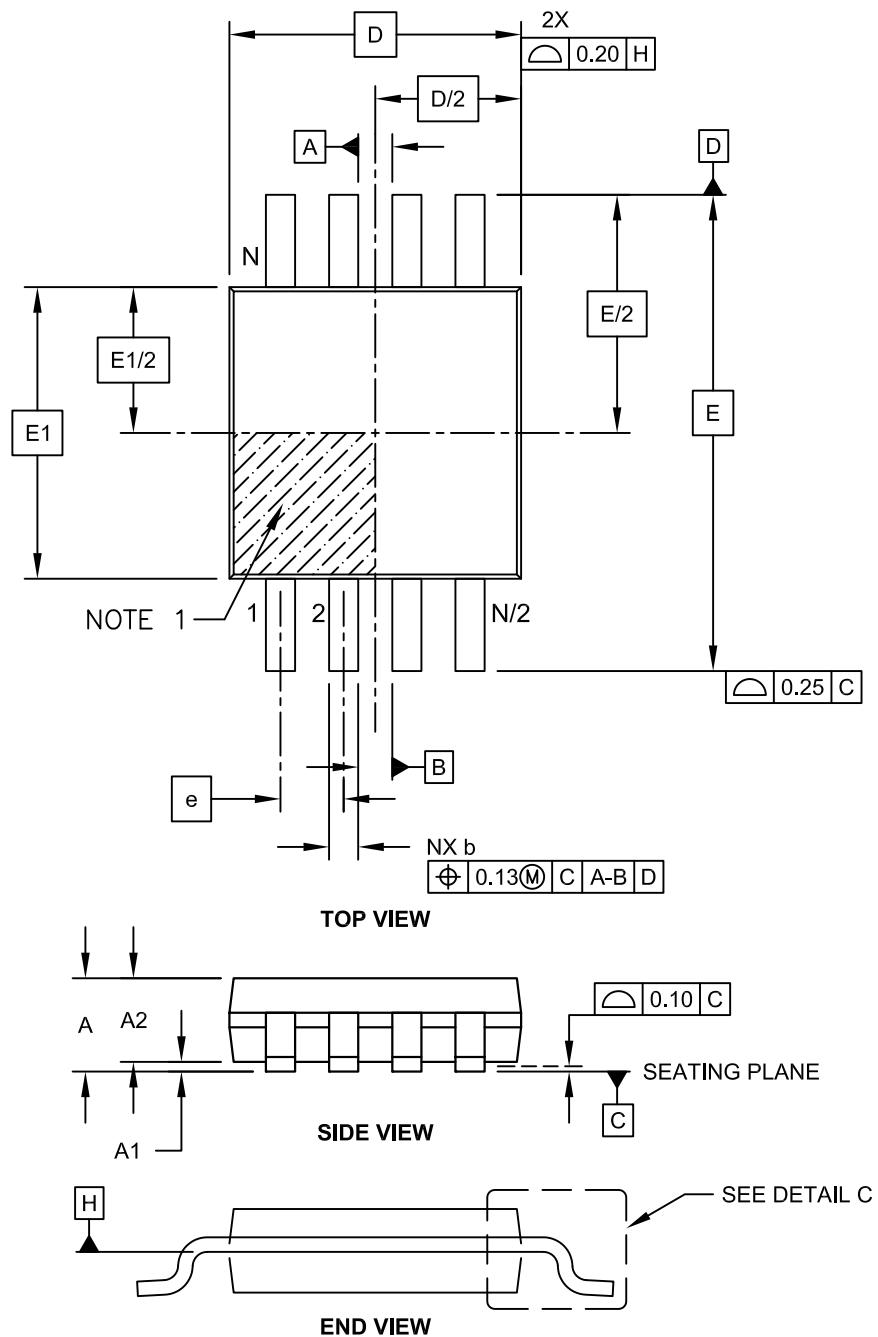
MCP6L1/1R/2/4

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.95	BSC	
Contact Pad Spacing	C		2.80	
Contact Pad Width (X5)	X			0.60
Contact Pad Length (X5)	Y			1.10
Distance Between Pads	G	1.70		
Distance Between Pads	GX	0.35		
Overall Width	Z			3.90

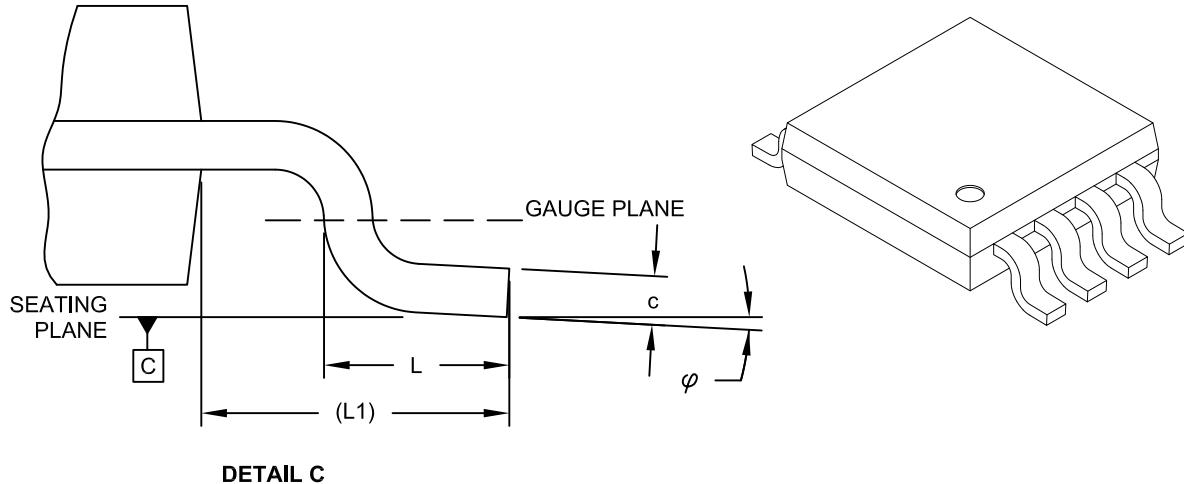
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091A

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

MCP6L1/1R/2/4

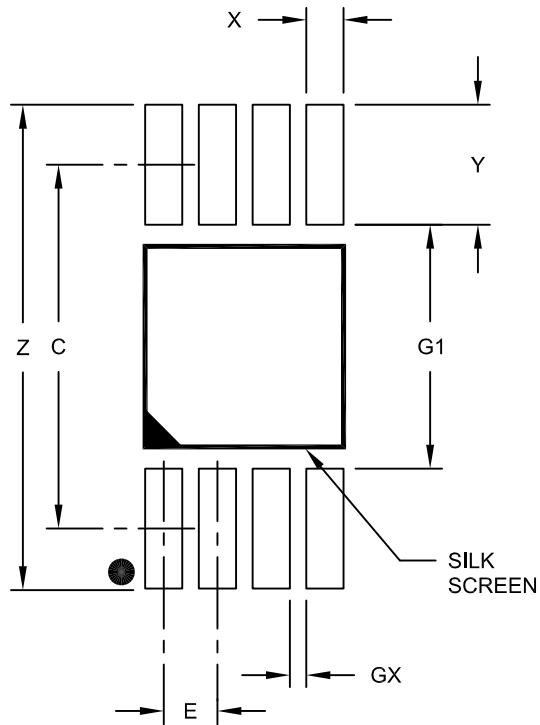
8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		8	
Pitch	e		0.65 BSC	
Overall Height	A	-	-	1.10
Molded Package Thickness	A2	0.75	0.85	0.95
Standoff	A1	0.00	-	0.15
Overall Width	E		4.90 BSC	
Molded Package Width	E1		3.00 BSC	
Overall Length	D		3.00 BSC	
Foot Length	L	0.40	0.60	0.80
Footprint	L1		0.95 REF	
Foot Angle	φ	0°	-	8°
Lead Thickness	c	0.08	-	0.23
Lead Width	b	0.22	-	0.40

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111C Sheet 2 of 2

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

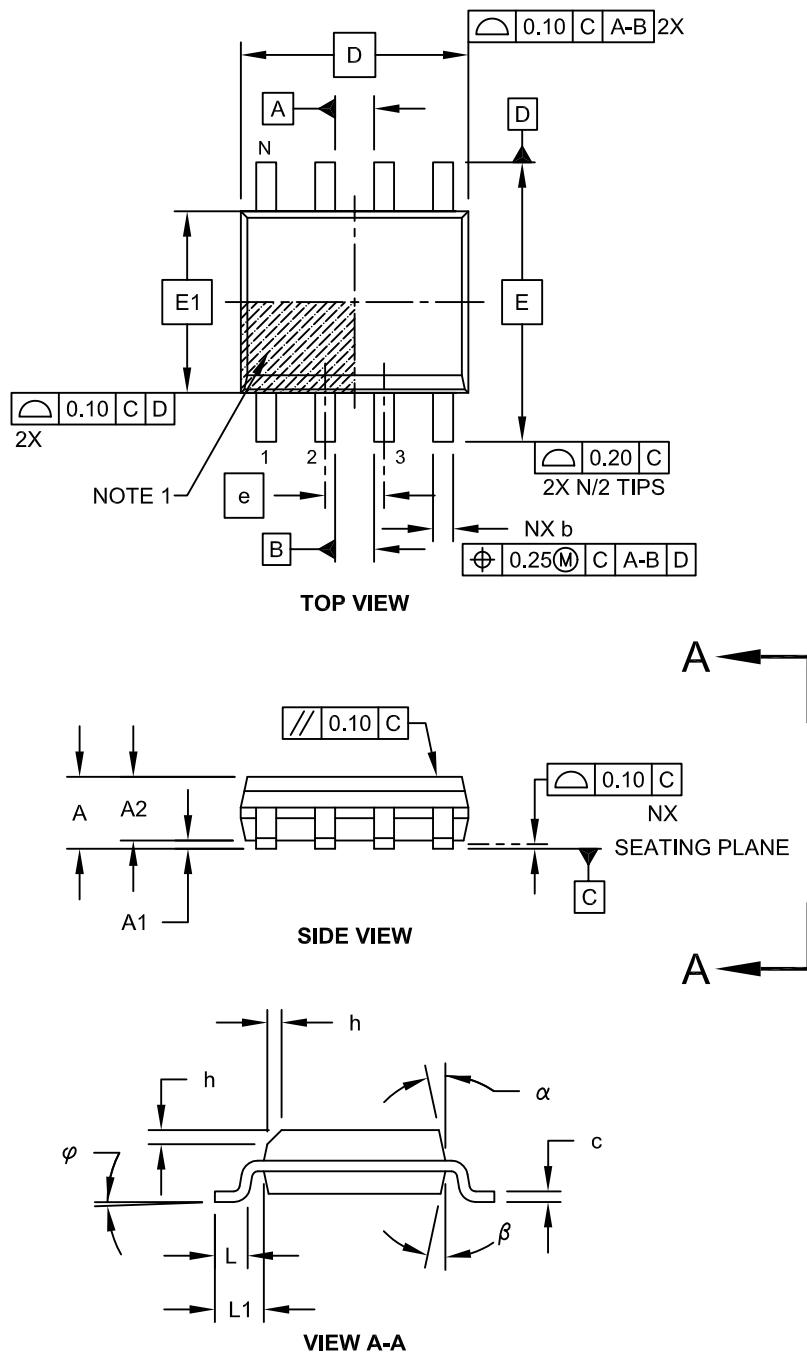
Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch		E		0.65 BSC
Contact Pad Spacing	C		4.40	
Overall Width	Z			5.85
Contact Pad Width (X8)	X1			0.45
Contact Pad Length (X8)	Y1			1.45
Distance Between Pads	G1	2.95		
Distance Between Pads	GX	0.20		

Notes:

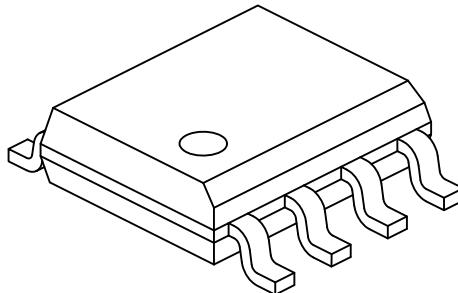
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2111A

MCP6L1/1R/2/4

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Microchip Technology Drawing No. C04-057C Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Dimension	Units	MILLIMETERS		
		MIN	NOM	MAX
Number of Pins	N	8		
Pitch	e	1.27	BSC	
Overall Height	A	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff	§	A1	0.10	-
Overall Width	E	6.00	BSC	
Molded Package Width	E1	3.90	BSC	
Overall Length	D	4.90	BSC	
Chamfer (Optional)	h	0.25	-	0.50
Foot Length	L	0.40	-	1.27
Footprint	L1	1.04	REF	
Foot Angle	φ	0°	-	8°
Lead Thickness	c	0.17	-	0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

MCP6L1/1R/2/4

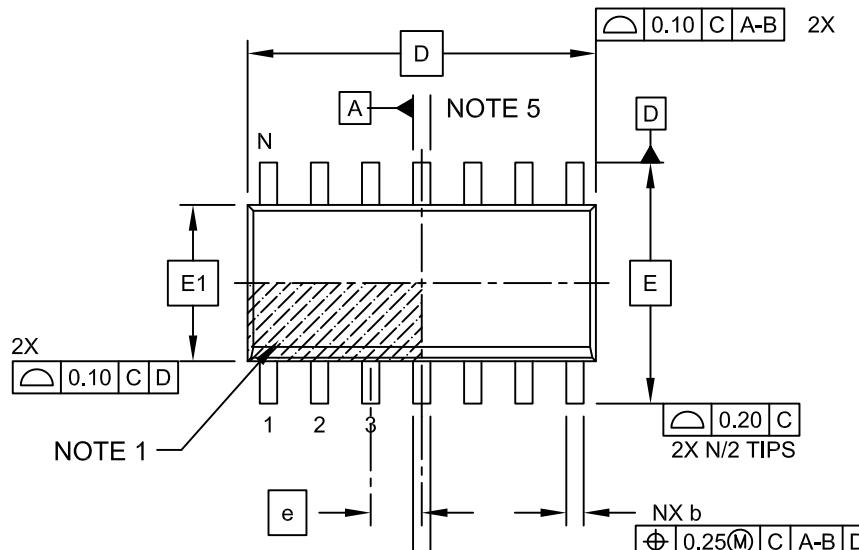
8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

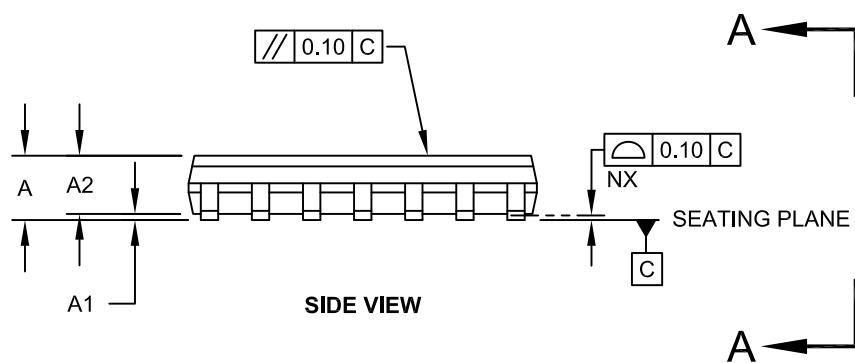
RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	C		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

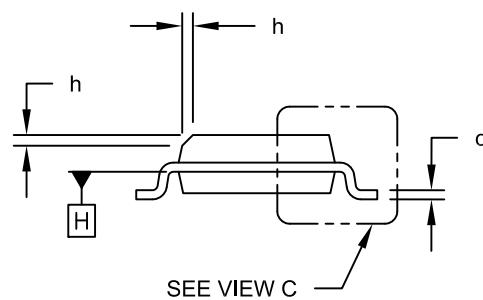
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

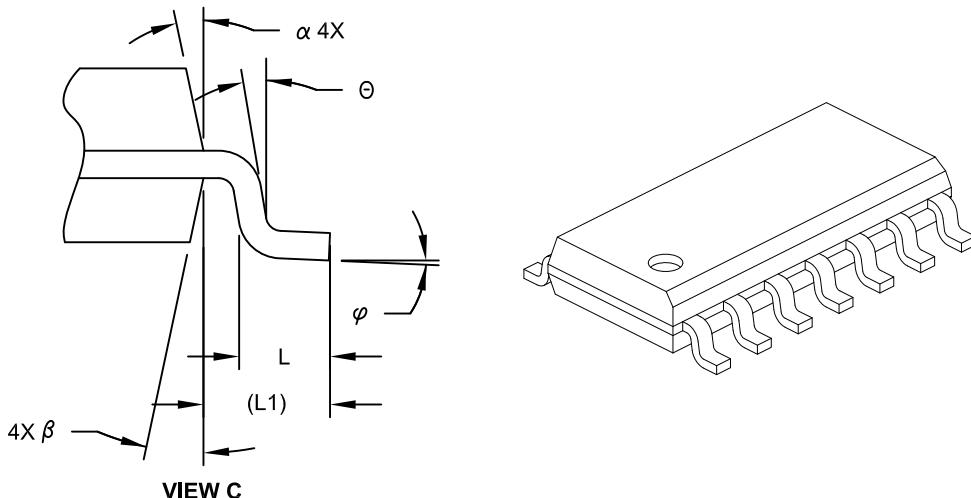

Microchip Technology Drawing No. C04-2057A

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

TOP VIEW

SIDE VIEW


VIEW A-A

Microchip Technology Drawing No. C04-065C Sheet 1 of 2

MCP6L1/1R/2/4

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

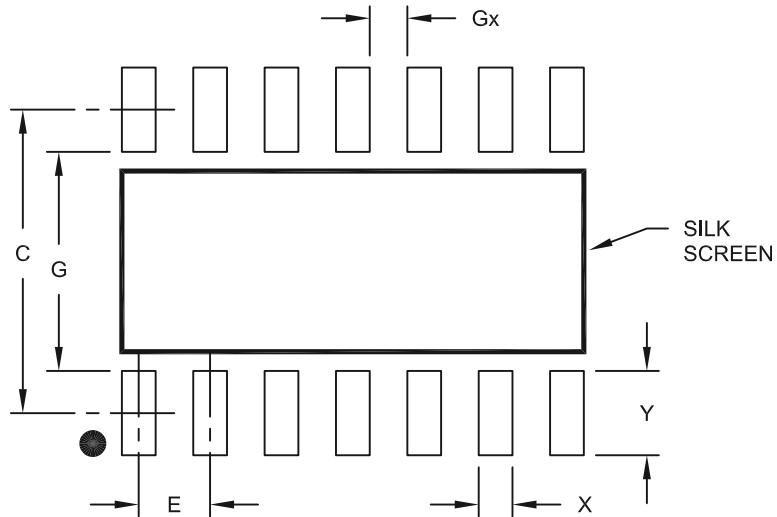
Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Dimension Limits		MILLIMETERS		
		MIN	NOM	MAX
Number of Pins	N		14	
Pitch	e		1.27 BSC	
Overall Height	A	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	-	0.25
Overall Width	E		6.00 BSC	
Molded Package Width	E1		3.90 BSC	
Overall Length	D		8.65 BSC	
Chamfer (Optional)	h	0.25	-	0.50
Foot Length	L	0.40	-	1.27
Footprint	L1		1.04 REF	
Lead Angle	θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	c	0.10	-	0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

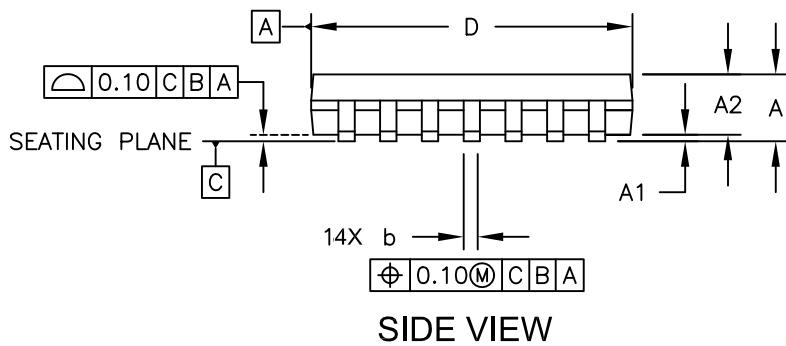
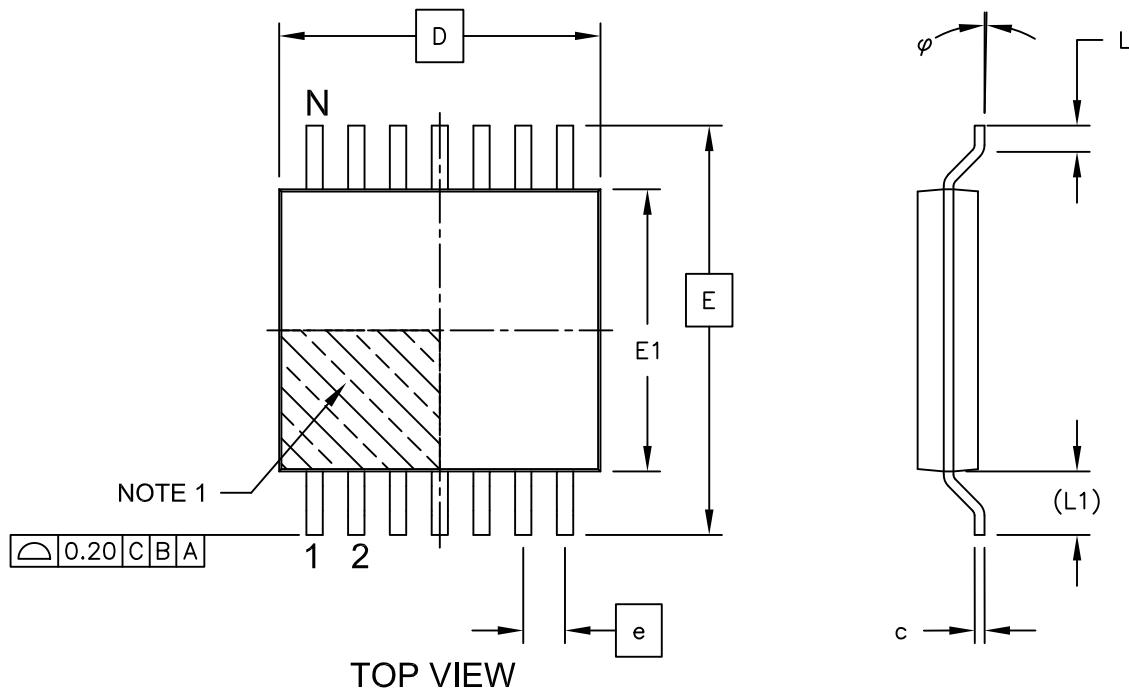
Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	C		5.40	
Contact Pad Width	X			0.60
Contact Pad Length	Y			1.50
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	3.90		

Notes:

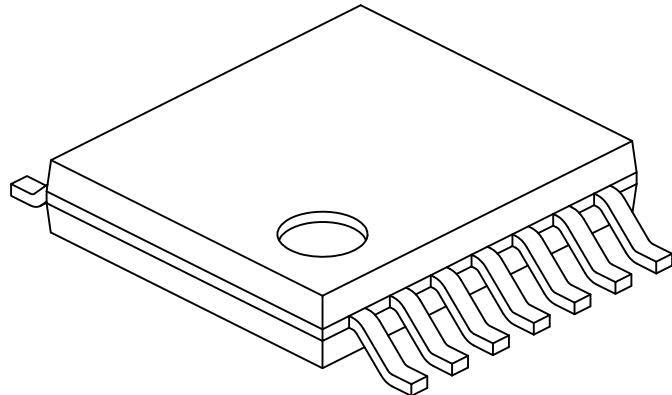
1. Dimensioning and tolerancing per ASME Y14.5M



BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065A

MCP6L1/1R/2/4

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Microchip Technology Drawing C04-087C Sheet 1 of 2

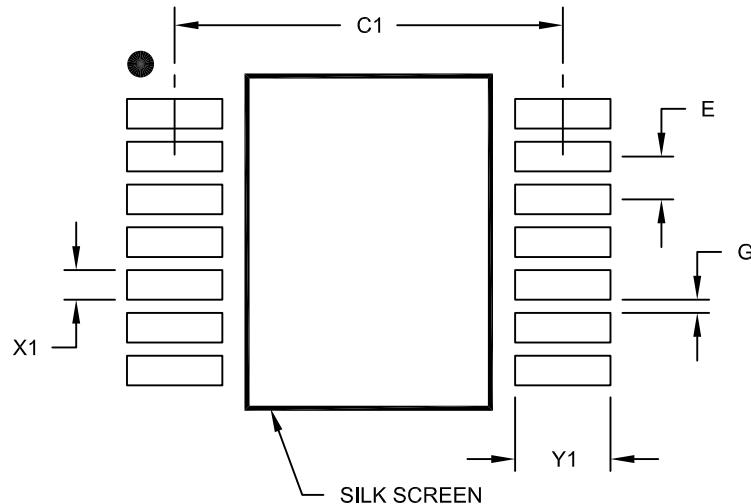
14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins		N		14
Pitch		e		0.65 BSC
Overall Height		A		-
Molded Package Thickness		A2	0.80	1.00
Standoff		A1	0.05	-
Overall Width		E		6.40 BSC
Molded Package Width		E1	4.30	4.40
Molded Package Length		D	4.90	5.00
Foot Length		L	0.45	0.60
Footprint		(L1)	1.00 REF	
Foot Angle		φ	0°	-
Lead Thickness		c	0.09	-
Lead Width		b	0.19	-
				0.30

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

MCP6L1/1R/2/4

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch		0.65 BSC		
Contact Pad Spacing	C1		5.90	
Contact Pad Width (X14)	X1			0.45
Contact Pad Length (X14)	Y1			1.45
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2087A

APPENDIX A: REVISION HISTORY

Revision C (January 2012)

The following is the list of modifications:

1. Corrected CMRR value condition in [Table 1-1](#).
2. Updated packages temperature values in [Table 1-3](#).
3. Corrected values in first paragraph of [Section 4.1.3 “Normal Operation”](#).

Revision B (September 2011)

The following is the list of modifications:

1. Updated [Section 3.0 “Pin Descriptions”](#).
2. Updated the value for the Current at Output and Supply Pins parameter in [Section 1.1 “Absolute Maximum Ratings †”](#).
3. Added [Section 5.1 “SPICE Macro Model”](#).

Revision A (March 2009)

- Original Release of this Document.

MCP6L1/1R/2/4

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<u>PART NO.</u>	<u>X</u>	<u>/XX</u>	Examples:
Device	Temperature Range	Package	
Device:			a) MCP6L1T-E/OT: Tape and Reel, Extended Temperature, 5LD SOT-23 package
			b) MCP6L1T-E/MS: Tape and Reel, Extended Temperature, 8LD MSOP package.
			c) MCP6L1T-E/SN: Tape and Reel, Extended Temperature, 8LD SOIC package.
			a) MCP6L1RT-E/OT: Tape and Reel, Extended Temperature, 5LD SOT-23 package.
			a) MCP6L2T-E/MS: Tape and Reel, Extended Temperature, 8LD MSOP package.
			b) MCP6L2T-E/SN: Tape and Reel, Extended Temperature, 8LD SOIC package.
			a) MCP6L4T-E/SL: Tape and Reel, Extended Temperature, 14LD SOIC package.
			b) MCP6L4T-E/ST: Tape and Reel, Extended Temperature, 14LD TSSOP package.
Device:	MCP6L1T:	Single Op Amp (Tape and Reel) (SOT-23, MSOP, SOIC)	
	MCP6L1RT:	Single Op Amp (Tape and Reel) (SOT-23)	
	MCP6L2T:	Dual Op Amp (Tape and Reel) (SOIC, MSOP)	
	MCP6L4T:	Quad Op Amp (Tape and Reel) (SOIC, TSSOP)	
Temperature Range:	E	= -40°C to +125°C	
Package:	OT	= Plastic Small Outline Transistor (SOT-23), 5-lead	
	MS	= Plastic MSOP, 8-lead	
	SN	= Plastic SOIC, (3.99 mm body), 8-lead	
	SL	= Plastic SOIC (3.99 mm body), 14-lead	
	ST	= Plastic TSSOP (4.4mm body), 14-lead	

MCP6L1/1R/2/4

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. **MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.** Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rFLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-61341-923-6

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMS, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

**QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
= ISO/TS 16949:2009 =**

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7200

Fax: 480-792-7277

Technical Support:

[http://www.microchip.com/
support](http://www.microchip.com/support)

Web Address:

www.microchip.com**Atlanta**

Duluth, GA

Tel: 678-957-9614

Fax: 678-957-1455

Boston

Westborough, MA

Tel: 774-760-0087

Fax: 774-760-0088

Chicago

Itasca, IL

Tel: 630-285-0071

Fax: 630-285-0075

Cleveland

Independence, OH

Tel: 216-447-0464

Fax: 216-447-0643

Dallas

Addison, TX

Tel: 972-818-7423

Fax: 972-818-2924

Detroit

Farmington Hills, MI

Tel: 248-538-2250

Fax: 248-538-2260

Indianapolis

Noblesville, IN

Tel: 317-773-8323

Fax: 317-773-5453

Los Angeles

Mission Viejo, CA

Tel: 949-462-9523

Fax: 949-462-9608

Santa Clara

Santa Clara, CA

Tel: 408-961-6444

Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor

Tower 6, The Gateway

Harbour City, Kowloon

Hong Kong

Tel: 852-2401-1200

Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000

Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511

Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588

Fax: 86-23-8980-9500

China - Hangzhou

Tel: 86-571-2819-3187

Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2401-1200

Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460

Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355

Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533

Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829

Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660

Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300

Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252

Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138

Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040

Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444

Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631

Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512

Fax: 91-20-2566-1513

Japan - Osaka

Tel: 81-66-152-7160

Fax: 81-66-152-9310

Japan - Yokohama

Tel: 81-45-471-6166

Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301

Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200

Fax: 82-2-558-5932 or

82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857

Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870

Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065

Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870

Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366

Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-536-4818

Fax: 886-7-330-9305

Taiwan - Taipei

Tel: 886-2-2500-6610

Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351

Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611

Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

UK - Wokingham

Tel: 44-118-921-5869

Fax: 44-118-921-5820

Данный компонент на территории Российской Федерации**Вы можете приобрести в компании MosChip.**

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

<http://moschip.ru/get-element>

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибуторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ Р В 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru
moschip.ru_4

moschip.ru_6
moschip.ru_9