

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

November 1992 Revised April 2005

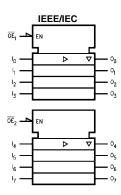
74VHC244 Octal Buffer/Line Driver with 3-STATE Outputs

General Description

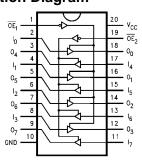
The VHC244 is an advanced high speed CMOS octal bus buffer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. The VHC244 is a non-inverting 3-STATE buffer having two active-LOW output enables. These devices are designed to be used as 3-STATE memory address drivers, clock drivers, and bus oriented transmitter/receivers.

An input protection circuit ensures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Features


- High Speed: t_{PD} = 3.9ns (typ) at V_{CC} = 5V
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Power down protection is provided on all inputs
- Low noise: V_{OLP} = 0.6V (typ)
- Low power dissipation: $I_{CC} = 4 \mu A \text{ (max)} @ T_A = 25 ^{\circ}C$
- Pin and function compatible with 74HC244

Ordering Code:


Order Number	Package Number	Package Description
74VHC244M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74VHC244SJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHC244MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHC244N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output Enable Inputs
I ₀ –I ₇	Inputs
O ₀ –O ₇	3-STATE Outputs

Truth Tables

Inp	uts	Outputs				
OE ₁	I _n	(Pins 12, 14, 16, 18)				
L	L	L				
L	Н	Н				
Н	Х	Z				

Inp	uts	Outputs					
OE ₂	l _n	(Pins 3, 5, 7, 9)					
L	L	L					
L	Н	Н					
Н	Х	Z					

H = HIGH Voltage Level
L = LOW Voltage Level
I = Immaterial
Z = High Impedance

Absolute Maximum Ratings(Note 1)

Input Diode Current (I_{IK}) -20 mAOutput Diode Current (I_{OK}) $\pm 20 \text{ mA}$ DC Output Current (I_{OUT}) $\pm 25 \text{ mA}$

DC V $_{\rm CC}$ /GND Current (I $_{\rm CC}$) ± 75 mA Storage Temperature (T $_{\rm STG}$) -65°C to +150°C

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 2)

Input Rise and Fall Time (t_r, t_f)

$$\begin{split} & \text{V}_{\text{CC}} = 3.3 \text{V} \pm 0.3 \text{V} & \text{0 ns/V} \sim 100 \text{ ns/V} \\ & \text{V}_{\text{CC}} = 5.0 \text{V} \pm 0.5 \text{V} & \text{0 ns/V} \sim 20 \text{ ns/V} \end{split}$$

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications

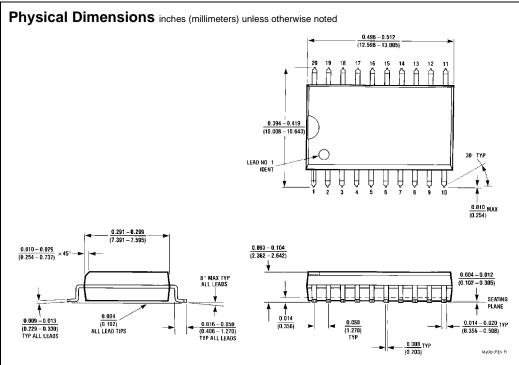
Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

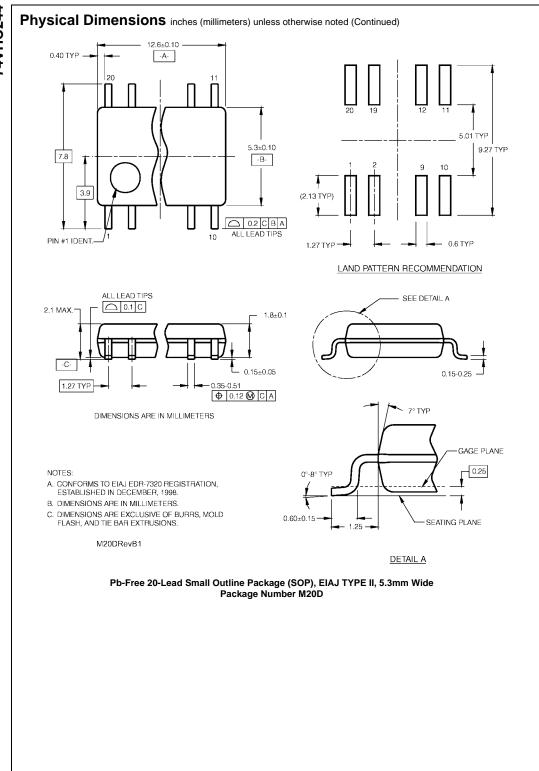
Symbol	Parameter	V _{CC}	CC T _A = 25°C			T _A = -40°	C to +85°C	Units	Conditions	
Symbol		(V)	Min	Тур	Max	Min	Max	Units	Conditions	
V _{IH}	HIGH Level	2.0	1.5			1.5		V		
	Input Voltage	3.0 - 5.5	0.7 V _{CC}			0.7 V _{CC}		V		
V _{IL}	LOW Level	2.0			0.5		0.5	V		
	Input Voltage	3.0 - 5.5			$0.3 V_{\rm CC}$		$0.3 V_{\rm CC}$	V		
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH}$ $I_{OH} = -50 \mu A$	
	Output Voltage	3.0	2.9	3.0		2.9		V	or V _{IL}	
		4.5	4.4	4.5		4.4				
		3.0	2.58			2.48		V	$I_{OH} = -4 \text{ mA}$	
		4.5	3.94			3.80		V	$I_{OH} = -8 \text{ mA}$	
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH}$ $I_{OL} = 50 \mu A$	
	Output Voltage	3.0		0.0	0.1		0.1	V	or V _{IL}	
		4.5		0.0	0.1		0.1			
		3.0			0.36		0.44	V	$I_{OL} = 4 \text{ mA}$	
		4.5			0.36		0.44	V	$I_{OL} = 8 \text{ mA}$	
I _{OZ}	3-STATE Output	5.5			±0.25		±2.5	μΑ	$V_{IN} = V_{IH}$ or V_{IL}	
	Off-State Current								$V_{OUT} = V_{CC}$ or GND	
I _{IN}	Input Leakage Current	nput Leakage Current 0 - 5.5			±0.1		±1.0	μΑ	V _{IN} = 5.5V or GND	
I _{CC}	Quiescent Supply Current				4.0		40.0	μА	V _{IN} = V _{CC} or GND	

Noise Characteristics

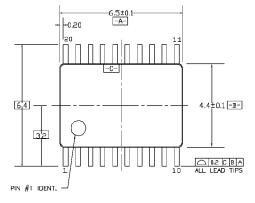
Symbol	Parameter	v _{cc}	T _A =	25°C	Units	Conditions		
	i arameter	(V)	Тур	Limits	Oille	Conditions		
V _{OLP}	Quiet Output Maximum	5.0	0.6	0.9	V	C _L = 50 pF		
(Note 3)	Dynamic V _{OL}							
V _{OLV}	Quiet Output Minimum	5.0	-0.6	-0.9	V	C _L = 50 pF		
(Note 3)	Dynamic V _{OL}							
V _{IHD}	Minimum HIGH Level	5.0		3.5	V	C _L = 50 pF		
(Note 3)	Dynamic Input Voltage							
V _{ILD}	Maximum HIGH Level	5.0		1.5	V	C _L = 50 pF		
(Note 3)	Dynamic Input Voltage							

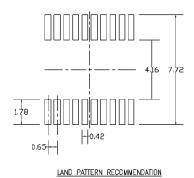

Note 3: Parameter guaranteed by design.

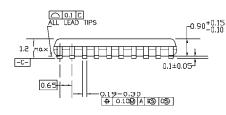
AC Electrical Characteristics


Symbol	Parameter	V _{CC} T _A = 25°C			T _A = -40°C to +85°C			Conditions		
		(V)	Min Typ Max		Max	Min	Max	Units	Conditions	
t _{PLH}	Propagation Delay	3.3 ± 0.3		5.8	8.4	1.0	10.0	ns		$C_L = 15 pF$
t _{PHL}	Time			8.3	11.9	1.0	13.5	115		$C_L = 50 \text{ pF}$
		5.0 ± 0.5		3.9	5.5	1.0	6.5	ns	İ	C _L = 15 pF
				5.4	7.5	1.0	8.5	115		$C_L = 50 pF$
t _{PZL}	3-STATE Output	3.3 ± 0.3		6.6	10.6	1.0	12.5	ns		$C_L = 15 pF$
t _{PZH}	Enable Time			9.1	14.1	1.0	16.0			$C_L = 50 \text{ pF}$
		5.0 ± 0.5		4.7	7.3	1.0	8.5	no	KL = 1 K22	$C_L = 15 pF$
		3.0 ± 0.5		6.2	9.3	1.0	10.5	ns		$C_L = 50 \text{ pF}$
t _{PLZ}	3-STATE Output	3.3 ± 0.3		10.3	14.0	1.0	16.0	ns	$R_L = 1 \text{ k}\Omega$	C _L = 50 pF
t_{PHZ}	Disable Time	5.0 ± 0.5		6.7	9.2	1.0	10.5	115		$C_L = 50 pF$
toslh	Output to Output	3.3 ± 0.3			1.5		1.5	ns	(Note 4)	$C_L = 50 \text{ pF}$
toshl	Skew	5.0 ± 0.5			1.0		1.0	115		$C_L = 50 \text{ pF}$
C _{IN}	Input Capacitance			4	10		10	pF	V _{CC} = Ope	n
C _{OUT}	Output Capacitance			6				pF	V _{CC} = 5.0\	/
C _{PD}	Power Dissipation Capacitance			19				pF	(Note 5)	

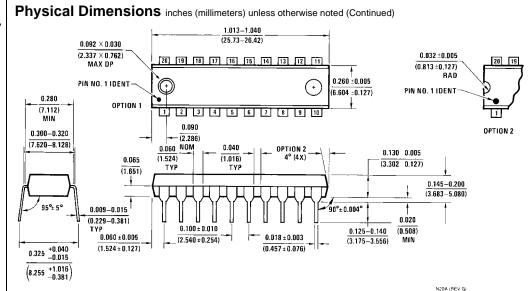
 $\textbf{Note 4:} \ \mathsf{Parameter guaranteed by design.} \ t_{\mathsf{OSLH}} = |t_{\mathsf{PLHmax}} - t_{\mathsf{PLHmin}}|; \ t_{\mathsf{OSHL}} = |t_{\mathsf{PHLmax}} - t_{\mathsf{PHLmin}}|.$


Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (OPR.) = C_{PD} * V_{CC} * f_{IN} + I_{CO} /8 (per bit).




20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)


NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

R0.09min GAGE PLANE - 8°7 -0.6±0.1-0.09min DETAIL A

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

74VHC244M 74VHC244SJX 74VHC244MX 74VHC244SJ 74VHC244MTCX 74VHC244MTC 74VHC244N

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9