DISCRETE SEMICONDUCTORS

DATA SHEET

PMBF4391; PMBF4392; PMBF4393

N-channel FETs

Product specification

April 1995

N-channel FETs

PMBF4391; PMBF4392; PMBF4393

DESCRIPTION

Symmetrical silicon n-channel depletion type junction field-effect transistors on a plastic microminiature envelope intended for application in thick and thin-film circuits. The transistors are intended for low-power chopper or switching applications in industry.

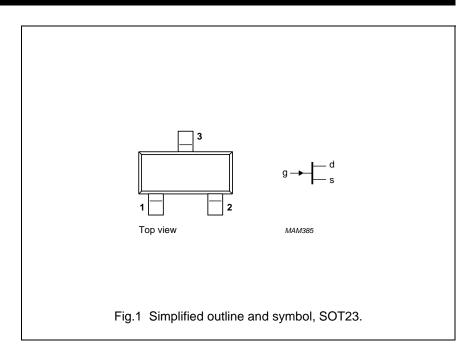
PINNING

1 = drain

2 = source

3 = gate

Note


1. Drain and source are interchangeable.

Marking code

PMBF4391 = p6J

PMBF4392 = p6K

PMBF4393 = p6G

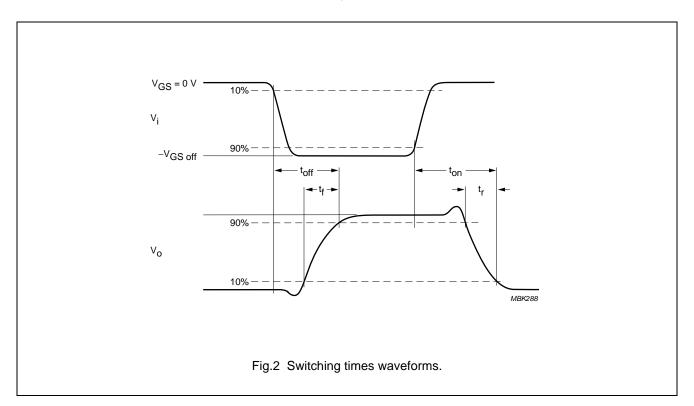
QUICK REFERENCE DATA

		PMBF4391		PMBF4392	PMBF4393	
Drain-source voltage	\pmV_{DS}	max.	40	40	40	V
Drain current						
$V_{DS} = 20 \text{ V}; V_{GS} = 0$	I_{DSS}	>	50	25	5	mΑ
Gate-source cut-off voltage						
V 20 V: I 1 pA	V	>	4	2	0.5	V
$V_{DS} = 20 \text{ V}; I_D = 1 \text{ nA}$	$-V_{(P)GS}$	<	10	5	3	V
Drain-source resistance (on) at f = 1 kHz						
$I_D = 0; V_{GS} = 0$	$R_{ds \ on}$	<	30	60	100	Ω
Feedback capacitance at f = 1 MHz						
$-V_{GS} = 12 \text{ V}; V_{DS} = 0$	C_{rs}	<	3.5	3.5	3.5	pF
Turn-off time						
$V_{DD} = 10 \text{ V}; V_{GS} = 0$						
$I_D = 12 \text{ mA}; -V_{GSM} = 12 \text{ V}$	t_{off}	<	20	_	_	ns
$I_D = 6 \text{ mA}; -V_{GSM} = 7 \text{ V}$	$t_{\rm off}$	<	_	35	_	ns
$I_D = 3 \text{ mA}; -V_{GSM} = 5 \text{ V}$	$t_{\rm off}$	<	_	_	50	ns

N-channel FETs

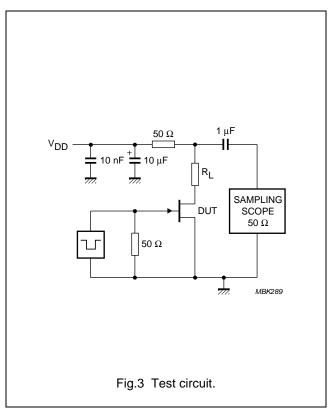
PMBF4391; PMBF4392; PMBF4393

RATINGS								
	ccordance with the Absolute Max	kimum Svstem (IEC 13	34)				
Drain-source volta				√ _{DS}	max.	40	V	
Drain-gate voltage			V _{DGO}		max.	40		
Gate-source voltage				'GSO	max.	40		
Gate current (DC)			I _G	330	max.		mA	
Total power dissipation up to $T_{amb} = 40 ^{\circ}\text{C}^{(1)}$			P _{tot}		max.		mW	
Storage temperatu						to + 150		
Junction temperatu				ıy	max.	150		
THERMAL RESIST	ANCE							
From junction to a	mbient ⁽¹⁾		Rt	h j-a	=	430	K/W	
CHARACTERISTIC								
$T_j = 25 ^{\circ}\text{C} \text{ unless of}$								
Gate-source voltag								
$I_G = 1 \text{ mA}; V_{DS} =$			V_{GSon}	<		1	V	
Gate-source cut-of								
$V_{DS} = 0 \text{ V}; -V_{GS} = 20 \text{ V}$				-I _{GSS}	<		0.1	nA
$V_{DS} = 0 \text{ V}; -V_{GS} = 20 \text{ V}; T_{amb} = 150 ^{\circ}\text{C}$				$-I_{GSS}$	< I	1	0.2	μΑ
			PME	3F4391	PMBF43	92	PMRF	F4393
			1 1411	JI 400 I	1 10101 40	32		
Drain current		I _{DSS}	>	50	1 11151 40	25	5	mA
Drain current V _{DS} = 20 V; V _{GS}	= 0	I _{DSS}			1 11151 40			
		I _{DSS}	>	50	T INDI 40	25	5	mA
$V_{DS} = 20 \text{ V}; V_{GS}$	down voltage	I _{DSS} -V _{(BR)GSS}	>	50	T MIST 40	25	5	mA
$V_{DS} = 20 \text{ V}; V_{GS}$ Gate-source break	down voltage = 0		> <	50 150	1 11151 40	25 75	5 30 40 0.5	mA mA
V_{DS} = 20 V; V_{GS} Gate-source break $-I_G$ = 1 μ A; V_{DS}	down voltage = 0 f voltage	−V _(BR) GSS	> <	50 150	T IIISI 40	25 75 40	5 30 40	mA mA
V_{DS} = 20 V; V_{GS} Gate-source break $-I_G$ = 1 μ A; V_{DS} Gate-source cut-of	down voltage = 0 f voltage 20 V	−V _(BR) GSS	> < < > >	50 150 40 4	T IIISI 40	25 75 40 2	5 30 40 0.5	mA mA
V_{DS} = 20 V; V_{GS} Gate-source break $-I_G$ = 1 μ A; V_{DS} Gate-source cut-of I_D = 1 nA; V_{DS} =	down voltage = 0 f voltage 20 V ge (on)	−V _(BR) GSS	> < < > >	50 150 40 4	T III ST 40	25 75 40 2	5 30 40 0.5	mA mA
V_{DS} = 20 V; V_{GS} Gate-source break $-I_G$ = 1 μ A; V_{DS} Gate-source cut-of I_D = 1 n A; V_{DS} = Drain-source voltage	down voltage = 0 f voltage 20 V ge (on) = 0	−V _{(BR)GSS} −V _{(P)GS}	> <	50 150 40 4 10	T III ST 40	25 75 40 2	5 30 40 0.5	mA mA V V
V_{DS} = 20 V; V_{GS} Gate-source break $-I_G$ = 1 μ A; V_{DS} Gate-source cut-of I_D = 1 n A; V_{DS} = Drain-source voltat I_D = 12 m A; V_{GS}	down voltage = 0 f voltage 20 V ge (on) = 0	$-V_{(BR)GSS}$ $-V_{(P)GS}$ V_{DSon}	> < < > < < < < < < < < < < < < < < < <	50 150 40 4 10	T III ST 40	25 75 40 2 5	5 30 40 0.5 3	mA mA
V_{DS} = 20 V; V_{GS} Gate-source break $-I_G$ = 1 μ A; V_{DS} Gate-source cut-of I_D = 1 nA; V_{DS} = Drain-source voltage I_D = 12 mA; V_{GS} = I_D = 6 mA; V_{GS} =	down voltage = 0 f voltage 20 V ge (on) = 0 = 0	-V _(BR) GSS -V _(P) GS V _{DSon} V _{DSon}	> < < > < < < < < < < < < < < < < < < <	50 150 40 4 10	T III ST 40	25 75 40 2 5	5 30 40 0.5 3	mA mA V V V
V_{DS} = 20 V; V_{GS} Gate-source break $-I_G$ = 1 μ A; V_{DS} Gate-source cut-of I_D = 1 nA; V_{DS} = Drain-source voltage I_D = 12 mA; V_{GS} = I_D = 6 mA; V_{GS} = I_D = 3 mA; V_{GS} = Drain-source resist	down voltage = 0 f voltage 20 V ge (on) = 0 = 0	-V _(BR) GSS -V _(P) GS V _{DSon} V _{DSon}	> < < > < < < < < < < < < < < < < < < <	50 150 40 4 10		25 75 40 2 5	5 30 40 0.5 3	mA mA V V V
V_{DS} = 20 V; V_{GS} Gate-source break $-I_G$ = 1 μ A; V_{DS} Gate-source cut-of I_D = 1 nA; V_{DS} = Drain-source voltage I_D = 12 mA; V_{GS} = I_D = 6 mA; V_{GS} = I_D = 3 mA; V_{GS} = Drain-source resist	down voltage = 0 f voltage 20 V ge (on) = 0 = 0 = 0 tance (on) = 1 kHz; T _{amb} = 25 °C	-V _{(BR)GSS} -V _{(P)GS} V _{DSon} V _{DSon} V _{DSon}	> < < > < < < < < < < < < < < < < < < <	50 150 40 4 10 0.4		25 75 40 2 5	5 30 40 0.5 3	mA mA
V_{DS} = 20 V; V_{GS} Gate-source break $-I_G$ = 1 μ A; V_{DS} Gate-source cut-of I_D = 1 n A; V_{DS} = Drain-source voltat I_D = 12 m A; V_{GS} = I_D = 6 m A; V_{GS} = I_D = 3 m A; V_{GS} = Drain-source resis: I_D = 0; V_{GS} = 0;	down voltage = 0 f voltage 20 V ge (on) = 0 = 0 = 0 tance (on) = 1 kHz; T _{amb} = 25 °C	-V _{(BR)GSS} -V _{(P)GS} V _{DSon} V _{DSon} V _{DSon}	> < < > < < < < < < < < < < < < < < < <	50 150 40 4 10 0.4		25 75 40 2 5	5 30 40 0.5 3	mA mA
V_{DS} = 20 V; V_{GS} Gate-source break $-I_G$ = 1 μ A; V_{DS} Gate-source cut-of I_D = 1 nA; V_{DS} = Drain-source voltat I_D = 12 mA; V_{GS} = I_D = 6 mA; V_{GS} = I_D = 3 mA; V_{GS} = Drain-source resis: I_D = 0; V_{GS} = 0; V_{CS}	down voltage = 0 f voltage 20 V ge (on) = 0 = 0 = 0 tance (on) = 1 kHz; T _{amb} = 25 °C	-V _{(BR)GSS} -V _{(P)GS} V _{DSon} V _{DSon} V _{DSon} r _{ds on}	> <	50 150 40 4 10 0.4 -		25 75 40 2 5	5 30 40 0.5 3	mA mA V V V V
$V_{DS} = 20 \text{ V}; V_{GS}$ $Gate\text{-source break}$ $-I_G = 1 \mu\text{A}; V_{DS}$ $Gate\text{-source cut-of}$ $I_D = 1 \text{ nA}; V_{DS} = 1 \text{ Drain-source voltan}$ $I_D = 12 \text{ mA}; V_{GS} = 1 In mathematical mathem$	down voltage = 0 f voltage 20 V ge (on) = 0 = 0 = 0 tance (on) = 1 kHz; T _{amb} = 25 °C ot V _{DS} = 20 V	-V _{(BR)GSS} -V _{(P)GS} V _{DSon} V _{DSon} V _{DSon} r _{ds on}	>	50 150 40 4 10 0.4 -		25 75 40 2 5 - 0.4 -	5 30 40 0.5 3 - - 0.4 100	mA mA V V V V V
$V_{DS} = 20 \text{ V; } V_{GS}$ $Gate\text{-source break}$ $-I_G = 1 \mu\text{A; } V_{DS}$ $Gate\text{-source cut-of}$ $I_D = 1 \text{ nA; } V_{DS} = 1000 \text{ mA; } V_{GS} = 10000 \text{ mA; } V_{GS} = 1000 \text{ mA; } V_{GS} = 1$	down voltage = 0 f voltage 20 V ge (on) = 0 = 0 = 0 tance (on) = 1 kHz; T _{amb} = 25 °C	-V _(BR) GSS -V _(P) GS V _{DSon} V _{DSon} V _{DSon} r _{ds on} I _{DSX} I _{DSX}	>	50 150 40 4 10 0.4 - 30 0.1 -		25 75 40 2 5 - 0.4 -	5 30 40 0.5 3	mA mA V V V V V V
$V_{DS} = 20 \text{ V}; V_{GS}$ $Gate\text{-source break}$ $-I_G = 1 \mu\text{A}; V_{DS}$ $Gate\text{-source cut-of}$ $I_D = 1 \text{ nA}; V_{DS} = 1 \text{ Drain-source voltan}$ $I_D = 12 \text{ mA}; V_{GS} = 1 In mathematical mathem$	down voltage = 0 f voltage 20 V ge (on) = 0 = 0 = 0 tance (on) = 1 kHz; T _{amb} = 25 °C ot V _{DS} = 20 V	-V _{(BR)GSS} -V _{(P)GS} V _{DSon} V _{DSon} V _{DSon} I _{DSX} I _{DSX} I _{DSX}	>	50 150 40 4 10 0.4 - 30 0.1 -		25 75 40 2 5 - 0.4 -	5 30 40 0.5 3 - - 0.4 100 - - 0.1	mA mA V V V V V V T Ω


N-channel FETs

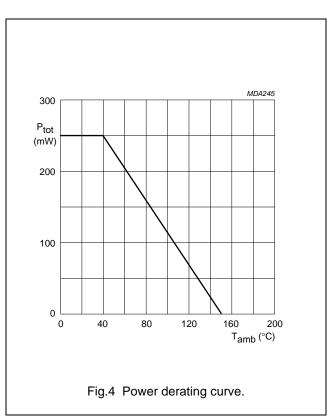
PMBF4391; PMBF4392; PMBF4393

y-parameters (common source)						
V_{DS} = 20 V; V_{GS} = 0; f = 1 MHz; T_{amb} = 25 °C			F4391	PMBF4392	PMBF4393	
Input capacitance	C_{is}	<	14	14	14	pF
Feedback capacitance						
$-V_{GS} = 12 \text{ V}$; $V_{DS} = 0$	C_{rs}	<	3.5	_	_	pF
$-V_{GS} = 7 \text{ V}$; $V_{DS} = 0$	C_{rs}	<	_	3.5	_	pF
$-V_{GS} = 5 \text{ V}$; $V_{DS} = 0$	C_{rs}	<	_	_	3.5	pF
Switching times						
$V_{DD} = 10 \text{ V}$; $V_{DS} = 0$						
Conditions I _D and -V _{GSoff}	I_D	=	12	6	3	mA
	$-V_{GS\ off}$	=	12	7	5	V
	R_L	=	750	1550	3150	Ω
Rise time	t _r	<	5	5	5	ns
Turn on time	t _{on}	<	15	15	15	ns
Fall time	t_f	<	15	20	30	ns
Turn off time	t_{off}	<	20	35	50	ns


Note

1. Mounted on a ceramic substrate of 8 mm \times 10 mm \times 0,7 mm.

N-channel FETs


PMBF4391; PMBF4392; PMBF4393

Pulse generator:

 $\begin{array}{lllll} t_r & < & 0.5 & ns \\ t_f & < & 0.5 & ns \\ t_p & = & 100 & \mu s \\ \delta & = & 0.01 & \\ \\ Oscilloscope: & & \end{array}$

 $R_i = 50 \Omega$

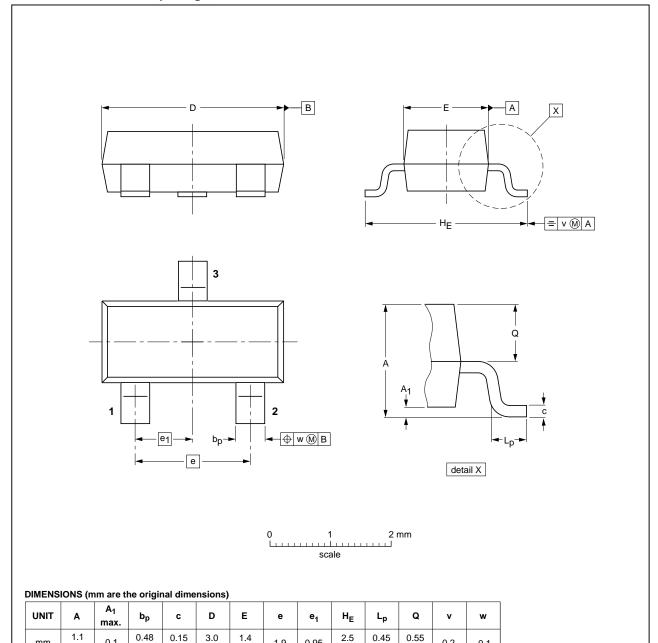
N-channel FETs

PMBF4391; PMBF4392;

PMBF4393

PACKAGE OUTLINE

mm


0.1

0.38

0.9

Plastic surface-mounted package; 3 leads

SOT23

OUTLINE	REFERENCES			EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	1330E DATE
SOT23		TO-236AB				-04-11-04 06-03-16

0.2

0.1

0.95

1.9

April 1995 6

N-channel FETs

PMBF4391; PMBF4392;

PMBF4393

DATA SHEET STATUS

DOCUMENT STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾	DEFINITION
Objective data sheet	Development	This document contains data from the objective specification for product development.
Preliminary data sheet	Qualification	This document contains data from the preliminary specification.
Product data sheet	Production	This document contains the product specification.

Notes

- 1. Please consult the most recently issued document before initiating or completing a design.
- The product status of device(s) described in this document may have changed since this document was published
 and may differ in case of multiple devices. The latest product status information is available on the Internet at
 URL http://www.nxp.com.

DEFINITIONS

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

DISCLAIMERS

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

N-channel FETs

PMBF4391; PMBF4392; PMBF4393

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

NXP Semiconductors

provides High Performance Mixed Signal and Standard Product solutions that leverage its leading RF, Analog, Power Management, Interface, Security and Digital Processing expertise

Customer notification

This data sheet was changed to reflect the new company name NXP Semiconductors, including new legal definitions and disclaimers. No changes were made to the technical content, except for package outline drawings which were updated to the latest version.

Contact information

For additional information please visit: http://www.nxp.com
For sales offices addresses send e-mail to: salesaddresses@nxp.com

© NXP B.V. 2010

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands R77/02/9 Date of release: April 1995

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

PMBF4391,215 PMBF4392,215 PMBF4393,215 PMBF4391 T/R PMBF4392 T/R

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru_4 moschip.ru_9