

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

FSUSB22 — Low-Power, 2-Port, High-Speed USB 2.0 (480Mbps) Switch

Description

FSUSB22 is a low-power, high-bandwidth switch

specially designed for applications switching high-speed

USB 2.0 signals in handset and consumer applications; such as cell phone, digital camera, and notebook with

hubs or controllers of limited USB I/O. The wide

bandwidth (750MHz) allows signals to pass with minimum edge and phase distortion. Superior channel-

to-channel crosstalk results in minimal interference. It is

compatible with the USB2.0 Hi-Speed standard.

Features

- -40dB Off Isolation at 250MHz
- -40dB Non-adjacent Channel Crosstalk at 250MHz
- On Resistance: 4.5Ω Typical (Ron)
- -3dB Bandwidth: 750MHz
- Low-Power Consumption: 1µA Maximum
- Control Input: TTL Compatible
- Bi-directional Operation
- USB High-Speed and Full-Speed Signaling Capability

Applications

 Cell Phones, PDAs, Digital Cameras, Notebook Computers

••••••••••••••••••••••••••••••••••••••			
Part Number	ber Derating Range Package		Packing Method
FSUSB22BQX	-40 to +85°C	16-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 3.5mm	Tape and Reel
FSUSB22QSC	-40 to +85°C	16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150-inch Wide	Tube
FSUSB22QSCX	-40 to +85°C	16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150-inch Wide	Tape and Reel
FSUSB22MTC	-40 to +85°C	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	Tube
FSUSB22MTCX	-40 to +85°C	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	Tape and Reel

Ordering Information

All packages are lead free per JEDEC: J-STD-020B standard.

(15 /OE

 $4B_2$

(14 4B₁

(13

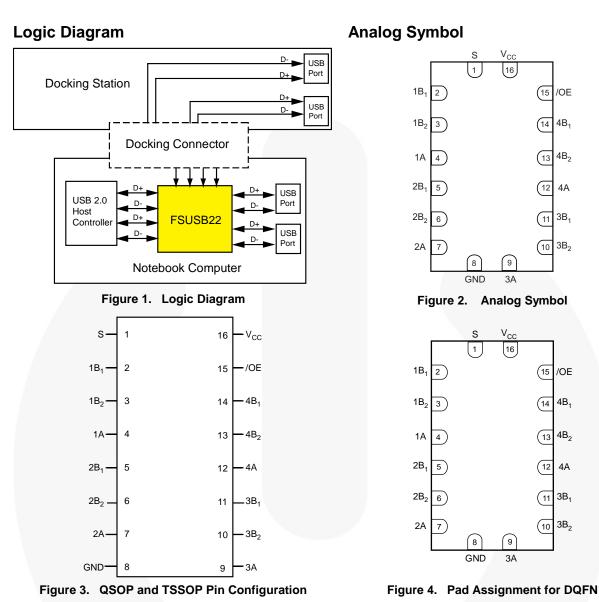
(12 4A

(11 3B₁

(10 3B₂

(15 /OE

(14 4B₁


(13 $4B_2$

(12

4A

3B₁ (11

(10 3B₂

Pin Descriptions

Descriptions		
Pin #	Pin Names	Description
1	S	Select Input
2,3,5,6,10,11,13,14	1B ₁ ,1B ₂ , 2B ₁ ,2B ₂ ,3B ₂ ,3B ₁ ,4B ₂ ,4B ₁	Bus B
8	GND	Ground
4,7,9,12	1A,2A,3A,4A	Bus A
15	/OE	Bus Switch Enable
16	V _{cc}	Supply Voltage

Truth Table

S	OE	Function
Don't Care	HIGH	Disconnect
LOW	LOW	A=B ₁
HIGH	LOW	A=B ₂

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	4.6	V
Vs	DC Switch Voltage	-0.5	V _{CC} + 0.05	V
V _{IN}	DC Input Voltage ⁽¹⁾	-0.5	4.6	V
I _{IK}	DC Input Diode Current, V _{IN} <0V		-50	mA
IOUT	DC Output Sink Current		128	mA
I _{CC} / I _{GND}	DC V _{CC} / GND Current		±100	mA
T _{STG}	Storage Temperature Range	-65	+150	°C
ESD	Human Body Model, JESD22-A114		4	kV

Note:

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
V _{cc}	Power Supply Operating		3.0	3.6	V
V _{IN}	Input Voltage		0	Vcc	V
V _{OUT}	Output Voltage		0	Vcc	V
+ +	Input Disc and Fall Time	Switch Control Input ⁽²⁾	0	5	ns/V
t _r , t _f	Input Rise and Fall Time	Switch I/O	0	DC	115/ V
T _A	Operating Temperature, Fi	Operating Temperature, Free Air		+85	°C

Note:

2. Unused control inputs must be held HIGH or LOW. They may not float.

FSUSB22 — Low-Power, 2-Port, High-Speed USB 2.0 (480Mbps) Switch

DC Electrical Characteristics

Typical values are at $V_{CC} = 3.0V$ and $T_A = 25^{\circ}C$.

Symbol	Deremeter	Conditions	V 00	T _A =-40 to +85°C			Unite
Symbol	Parameter	Conditions	Conditions V _{cc} (V)		Тур.	Max.	Units
Vik	Clamp Diode Voltage	I _{IN} = -18mA	3.0			-1.2	V
V _{IH}	High-Level Input Voltage		3.0 to 3.6	2.0			V
VIL	Low-Level Input Voltage		3.0 to 3.6			0.8	V
I _{IN}	Input Leakage Current	$0 \leq V_{IN} \leq 3.6V$	3.6			±1.0	μA
I _{OFF}	Off-state Leakage Current	$0 \leq A, \ B \leq V_{CC}$	3.6			±1.0	μA
P	Switch On Resistance ⁽³⁾	$V_{IN} = 0.8V$, $I_{ON} = 8mA$	3.0		5	7	
R _{ON}	Switch On Resistance	$V_{IN} = 3.0V, I_{ON} = 8mA$	3.0		4.5	6.5	Ω
ΔR_{ON}	Delta R _{ON}		3.0		0.3		Ω
R _{FLAT(ON)}	On Resistance Flatness ⁽⁴⁾	I _{OUT} = 8mA	3.0		1		Ω
Icc	Quiescent Supply Current		3.6			1	μA

Notes:

3. Measured by the voltage drop between the A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the A or B pins.

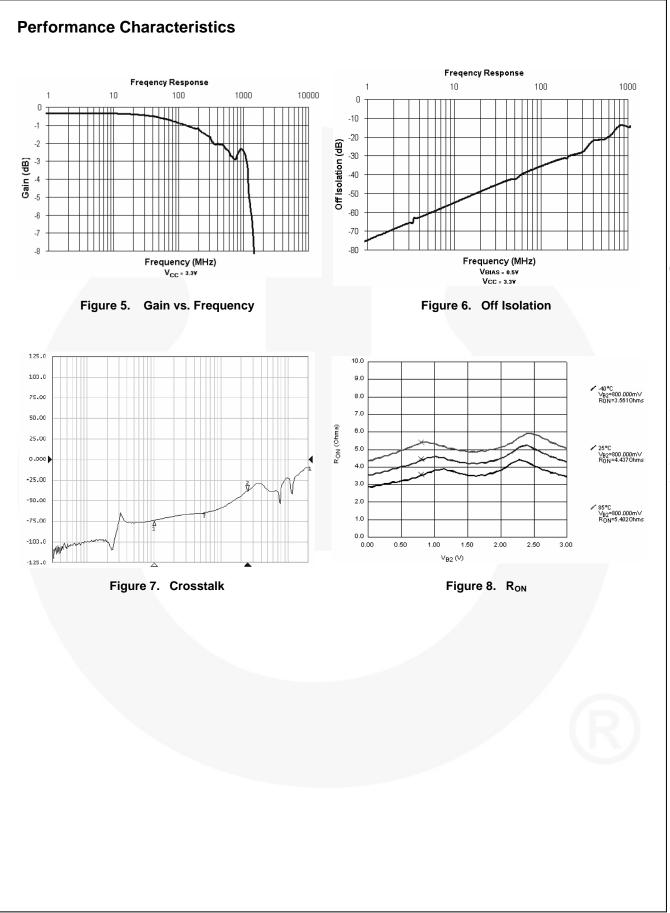
4. Flatness is defines as the difference between the maximum and the minimum value on resistance over the specified range of conditions.

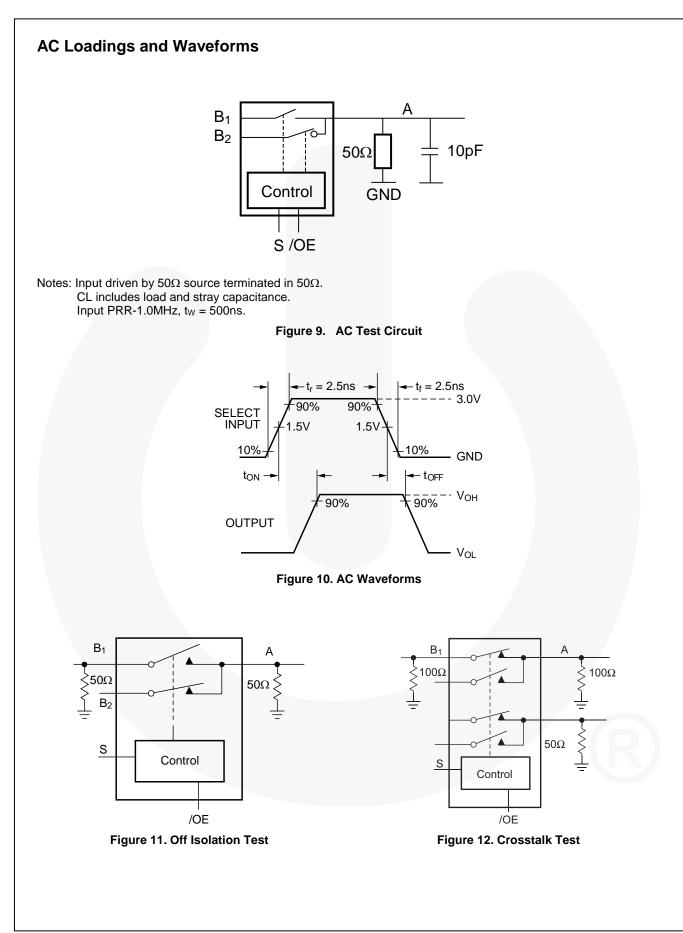
AC Electrical Characteristics

Typical values are at V_{CC} = 3.0V and T_A = 25°C.

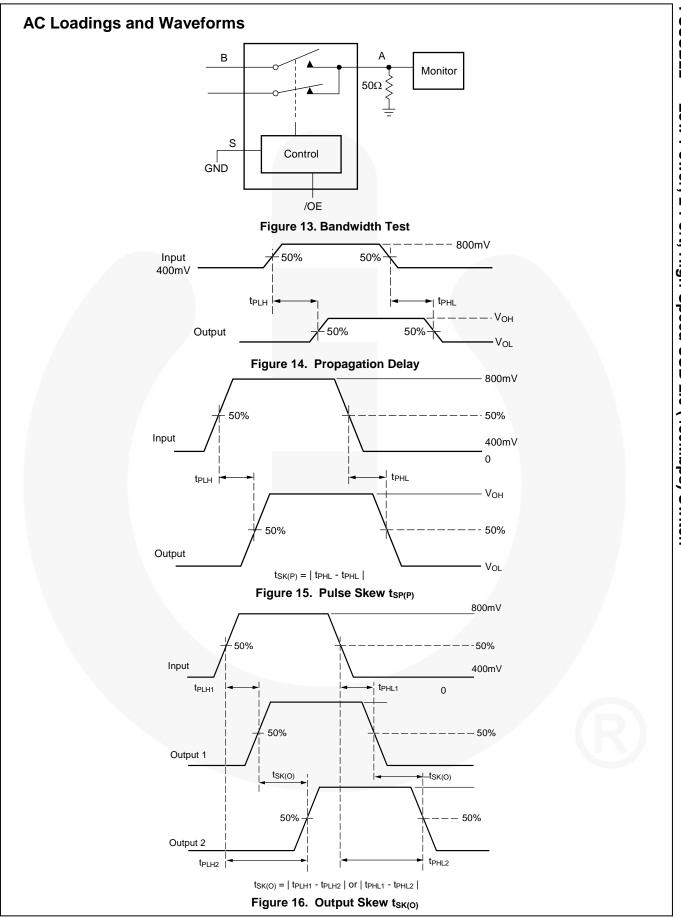
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units	Figure
t _{ON}	Turn-on Time S-to-Bus B		3.0 to 3.6		4.5	6.0	ns	Figure 9 Figure 10
toff	Turn-off Time S-to-Bus B		3.0 to 3.6		2.5	4.0	ns	Figure 9 Figure 10
t _{PD}	Propagation Delay	C _L = 10pF	3.0 to 3.6		0.25		ns	Figure 14
O _{IRR}	Non-Adjacent Off Isolation	f = 250MHz, $R_L = 50\Omega$	3.0 to 3.6		-30		dB	Figure 11
X _{TALK}	Non-Adjacent Channel Crosstalk	f = 250MHz, R∟ = 50Ω	3.0 to 3.6		-38		dB	Figure 12
BW	-3dB Bandwidth	R _L = 50Ω	3.0 to 3.6		750		MHz	Figure 13

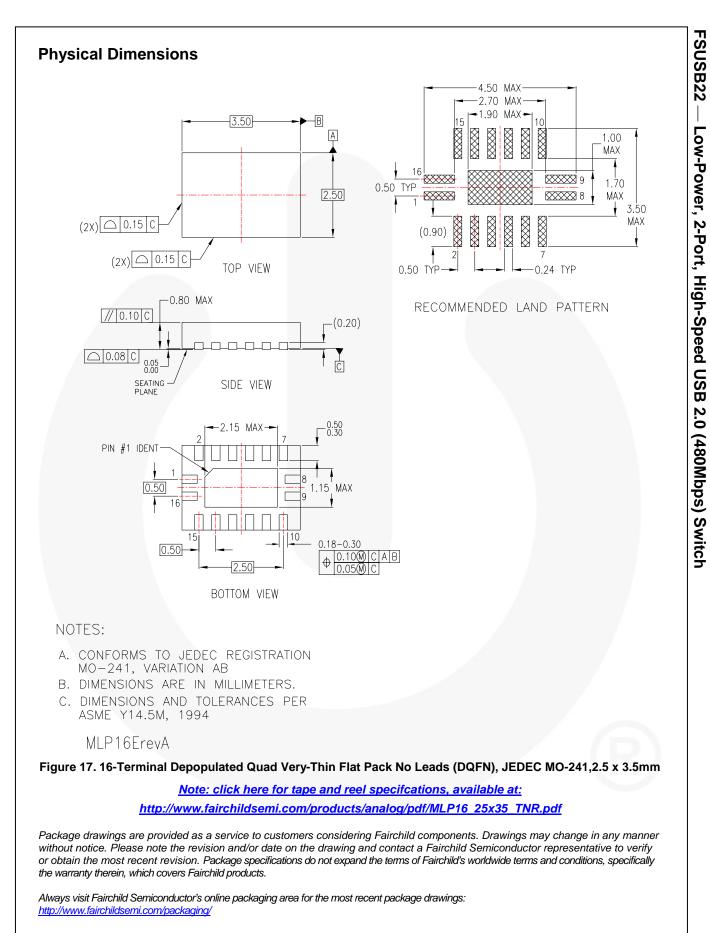
USB Related AC Electrical Characteristics

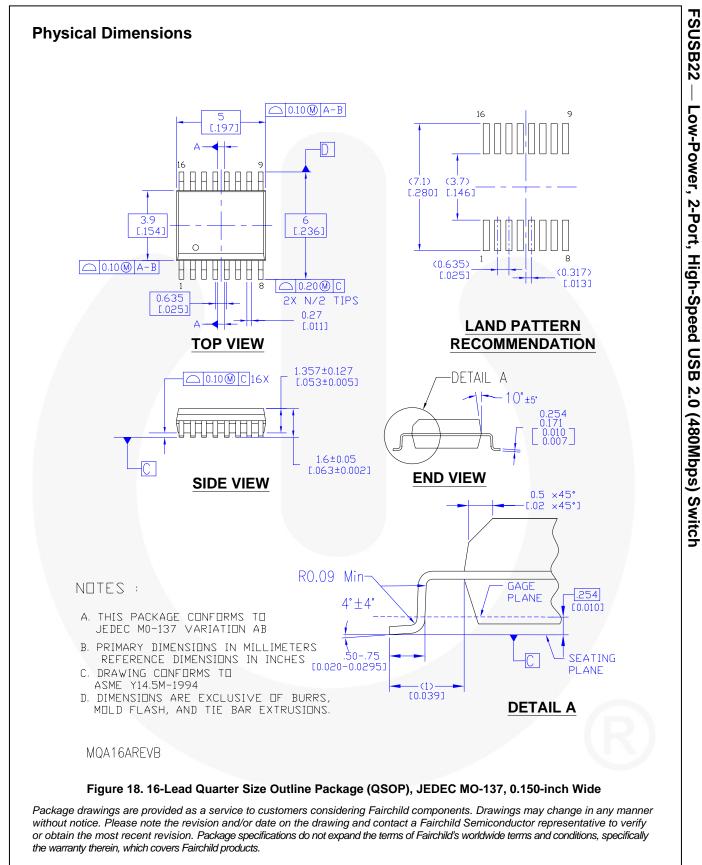

Typical values are at $V_{CC} = 3.0V$ and $T_A = 25^{\circ}C$.

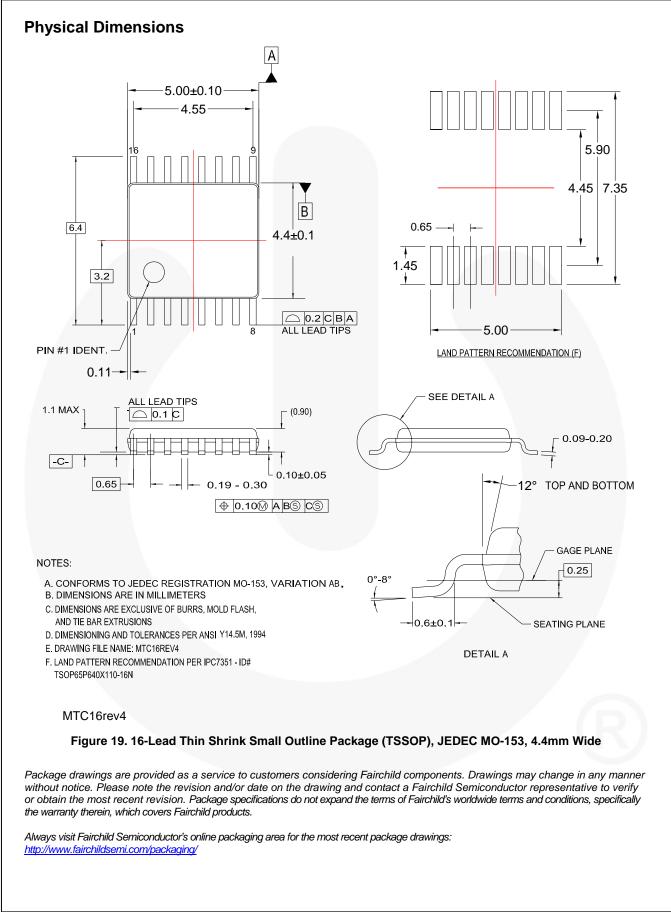

Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units	Figure
t _{SK(O)}	Channel-to Channels Skew	$C_L = 10 pF$	3.0 to 3.6		0.051		pF	Figure 14 Figure 16
t _{SK(P)}	Skew of Opposite Transition of the Same Output	C _L = 10pF	3.0 to 3.6		0.020		pF	Figure 14 Figure 16
TJ	Total Jitter	$\begin{array}{l} R_L = 50\Omega,\\ C_L = 10pF\\ t_R = t_F = 750ps\\ at \ 480MPs \end{array}$	3.0 to 3.6		0.210			

Capacitance


Typical values are at $V_{CC} = 3.0V$ and $T_A = 25^{\circ}C$.


Symbol	Parameter	Conditions	Тур.	Unists
C _{IN}	Control Pin Input Capacitance	$V_{CC} = 0V$	2.5	pF
Con	A/B On Capacitance	$V_{CC} = 3.3V, /OE = 0V$	12	pF
C _{OFF}	Port B Off Capacitance	V_{CC} and /OE = 3.3V	4.5	pF




FSUSB22 — Low-Power, 2-Port, High-Speed USB 2.0 (480Mbps) Switch

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>

SEMICONDUCTOR

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEX[®] Build it Now[™] CorePLUS[™] CROSSVOLT[™] CTL[™] Current Transfer Logic[™] EcoSPARK[®] EfficentMax[™] EZSWITCH[™] *

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series ™ FACT[®] FAST[®] FastvCore[™] FlashWriter[®]* F-PFS™ FRFET® Global Power Resourcesm Green FPS™ Green FPS™e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC[®] OPTOPLANAR®

FPS™

PDP SPM™ Power-SPM™ PowerTrench® Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW at a time™ Sm artMax ™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ SYSTEM ® GENERAL

The Power Franchise[®] TinyBoost[™] TinyBuck[™] TinyLogic[®] TINYOPTO[™] TinyPower[™] TinyPVVM[™] TinyWire[™] µSerDes[™]

UniFET™ VCX™ VisualMax™

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

PRODUCT STATUS DEFINITIONS

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: <u>FSUSB22MTCX</u> FSUSB22BQX FSUSB22QSCX

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.З, офис 1107

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж: moschip.ru moschip.ru_4

moschip.ru_6 moschip.ru_9