life.augmented

38 V , 1.5 A synchronous step-down switching regulator with $30 \mu \mathrm{~A}$ quiescent current
 Datasheet - production data

Features

- 1.5 A DC output current
- 4 V to 38 V operating input voltage
- Low consumption mode or low noise mode
- $30 \mu \mathrm{~A}_{\mathrm{Q}}$ at light-load (LCM V $\mathrm{OUT}=3.3 \mathrm{~V}$)
- $8 \mu \mathrm{Al}_{\mathrm{Q}-\mathrm{SH} \text { TDWN }}$
- Adjustable $\mathrm{f}_{\mathrm{SW}}(250 \mathrm{kHz}-2 \mathrm{MHz})$
- Output voltage adjustable from 0.85 V to V_{IN}
- Embedded output voltage supervisor
- Synchronization
- Adjustable soft-start time
- Internal current limiting
- Overvoltage protection
- Output voltage sequencing
- Peak current mode architecture
- $R_{D S O N H S}=180 \mathrm{~m} \Omega, R_{D S O N L S}=150 \mathrm{~m} \Omega$
- Thermal shutdown

Applications

- Designed for 12 V and 24 V buses
- Programmable logic controllers (PLCs)
- Decentralized intelligent nodes
- Sensors and low noise applications (LNM)

Description

The L6986F is a step-down monolithic switching regulator able to deliver up to $1.5 \mathrm{~A} D C$. The output voltage adjustability ranges from 0.85 V to VIN. Thanks to the P-channel MOSFET high-side power element, the device features 100\% duty cycle operation. The wide input voltage range meet the 5 V , 12 V and 24 V power supplies. The "Low Consumption Mode" (LCM) is designed for applications active during idle mode, so it maximizes the efficiency at light-load with controlled output voltage ripple. The "Low Noise Mode" (LNM) makes the switching frequency constant and minimizes the output voltage ripple overload current range, meeting the low noise application specification. The output voltage supervisor manages the reset phase for any digital load ($\mu \mathrm{C}, \mathrm{FPGA}$). The RST open collector output can also implement output voltage sequencing during the power-up phase. The synchronous rectification, designed for high efficiency at medium - heavy load, and the high switching frequency capability make the size of the application compact. Pulse by pulse current sensing on both power elements implements an effective constant current protection.

Contents

1 Application schematic 4
2 Pin settings 5
2.1 Pin connection 5
2.2 Pin description 5
2.3 Maximum ratings 6
2.4 Thermal data 7
2.5 ESD protection 7
3 Electrical characteristics 8
4 Functional description 12
4.1 Power supply and voltage reference 13
Switchover feature 13
4.2 Voltages monitor 13
4.3 Soft-start and inhibit 14
4.3.1 Ratiometric startup 20
4.3.2 Output voltage sequencing 22
4.4 Error amplifier 22
4.5 Light-load operation 23
4.5.1 Low noise mode (LNM) 23
4.5.2 Low consumption mode (LCM) 23
4.6 Switchover feature 29
4.6.1 LCM 29
4.6.2 LNM 29
4.7 Overcurrent protection 29
OCP and switchover feature 31
4.8 Overvoltage protection 33
4.9 Thermal shutdown 34
5 Closing the loop 35
$5.1 \quad \mathrm{G}_{\mathrm{CO}}(\mathrm{s})$ control to output transfer function 35
5.2 Error amplifier compensation network 37
5.3 Voltage divider 38
5.4 Total loop gain 39
5.5 Compensation network design 41
6 Application notes 43
6.1 Output voltage adjustment 43
6.2 Switching frequency 43
6.3 MLF pin 43
6.4 Voltage supervisor 44
6.5 Synchronization (LNM) 45
6.6 Design of the power components 50
6.6.1 Input capacitor selection 50
6.6.2 Inductor selection 51
6.6.3 Output capacitor selection 52
7 Application board 54
8 Efficiency curves 58
$9 \quad$ Package information 61
9.1 HTSSOP16 package information 61
10 Order codes 63
11 Revision history 63
4π

1 Application schematic

Figure 1. Application schematic

2 Pin settings

2.1 Pin connection

Figure 2. Pin connection (top view)

2.2 Pin description

Table 1. Pin description

No.	Pin	Description
1	RST	The RST open collector output is driven low when the output voltage is out of regulation. The RST is released after an adjustable time DELAY once the output voltage is over the active delay threshold.
2	VCC	Connect a ceramic capacitor (\geq 470 nF) to filter internal voltage reference. This pin supplies the embedded analog circuitry.
3	SS/INH	An open collector stage can disable the device clamping this pin to GND (INH mode). An internal current generator (4 μ A typ.) charges the external capacitor to implement the soft-start.
4	SYNCH/ ISKP	The pin features Master / Slave synchronization in LNM (see Section 4.5.1 on page 23) and skip current level selection in LCM (see Section 4.5.2 on page 23).
5	FSW	A pull up resistor (E24 series only) to VCC or pull down to GND selects the switching frequency. Pinstrapping is active only before the soft-start phase to minimize the IC consumption.
6	MLF	A pull up resistor (E24 series only) to VCC or pull down to GND selects the low noise mode/low consumption mode and the active RST threshold. Pinstrapping is active only before the soft-start phase to minimize the IC consumption.
7	COMP	Output of the error amplifier. The designed compensation network is connected at this pin.
8	DELAY	An external capacitor connected at this pin sets the time DELAY to assert the rising edge of the RST o.c. after the output voltage is over the reset threshold. If this pin is left floating, RST is like a Power Good.
9	FB	Inverting input of the error amplifier
10	SGND	Signal GND 11
PGND	Power GND	

Table 1. Pin description (continued)

No.	Pin	Description
12	PGND	Power GND
13	LX	Switching node
14	LX	Switching node
15	VIN	DC input voltage
16	V $_{\text {BIAS }}$	Typically connected to the regulated output voltage. An external voltage reference can be used to supply part of the analog circuitry to increase the efficiency at light-load. Connect to GND if not used.
-	E. p.	Exposed pad must be connected to SGND, PGND

2.3 Maximum ratings

Stressing the device above the rating listed in Table 2: Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 2. Absolute maximum ratings

Symbol	Description	Min.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	See Table 1	-0.3	40	V
DELAY		-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
PGND		SGND - 0.3	SGND + 0.3	V
SGND				V
V_{CC}		-0.3	$\left(V_{\text {IN }}+0.3\right)$ or (max. 4)	V
SS / $\overline{\mathrm{INH}}$		-0.3	$\mathrm{V}_{\text {IN }}+0.3$	V
MLF		-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
COMP		-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
VOUT		-0.3	10	V
FSW		-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
SYNCH		-0.3	$\mathrm{V}_{\text {IN }}+0.3$	V
$\mathrm{V}_{\text {BIAS }}$		-0.3	$\left(\mathrm{V}_{\mathrm{IN}}+0.3\right)$ or (max. 6)	V
RST		-0.3	$\mathrm{V}_{\text {IN }}+0.3$	V
LX		-0.3	$\mathrm{V}_{\text {IN }}+0.3$	V
T_{J}	Operating temperature range	-40	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range		-65 to 150	${ }^{\circ} \mathrm{C}$
TLEAD	Lead temperature (soldering 10 sec.$)$		260	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{HS}}, \mathrm{I}_{\text {LS }}$	High-side / low-side switch current		2	A

2.4 Thermal data

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R_{th} JA	Thermal resistance junction ambient (device soldered on the STMicroelectronics ${ }^{\circledR}$ demonstration board)	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$
R_{th} JC	Thermal resistance junction to exposed pad for board design (not suggested to estimate TJ from power losses).	5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

2.5 ESD protection

Table 4. ESD protection

Symbol	Test condition	Value	Unit
ESD	HBM	MM	2
	CDM	200	V
	CDM	500	V

3 Electrical characteristics

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ unless otherwise specified.
Table 5. Electrical characteristics

Symbol	Parameter	Test condition	Note	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Operating input voltage range			4		38	V
$\mathrm{V}_{\text {INH }}$	$\mathrm{V}_{\text {CC }}$ UVLO rising threshold			2.7		3.5	
$\mathrm{V}_{\text {INL }}$	$\mathrm{V}_{\text {CC }}$ UVLO falling threshold			2.4		3.5	
		Duty cycle < 20\%		2.3			A
$\mathrm{l}_{\text {PK }}$	Peak current limit	Duty cycle $=100 \%$ closed loop operation		1.8			
$\mathrm{I}_{V Y}$	Valley current limit			2.4			
$\mathrm{I}_{\text {SKIPH }}$	Programmable skip current limit	LCM, $\mathrm{V}_{\text {SYNCH }}=\mathrm{GND}$	(1)	0.2	0.4	0.6	
$\mathrm{I}_{\text {SKIPL }}$		LCM, $\mathrm{V}_{\text {SYNCH }}=\mathrm{VCC}$	(2)		0.2		
$\mathrm{l}_{\mathrm{VY} \text { _SNK }}$	Reverse current limit	LNM or $\mathrm{V}_{\text {OUT }}$ overvoltage		0.5	1	2	
$\mathrm{R}_{\text {DSON HS }}$	High-side RDSON	$\mathrm{I}_{\text {SW }}=1 \mathrm{~A}$			0.18	0.360	Ω
R DSON LS	Low-side RDSON	$\mathrm{I}_{\text {SW }}=1 \mathrm{~A}$			0.15	0.300	
$\mathrm{f}_{\text {SW }}$	Selected switching frequency	FSW pinstrapping before SS		See Table 6: $f_{S W}$ selection			
$\mathrm{I}_{\text {FSW }}$	FSW biasing current	SS ended			0	500	nA
LCM/LNM	Low noise mode / Low consumption mode selection	MLF pinstrapping before SS		See Table 7 on page 11			
$\mathrm{I}_{\text {MLF }}$	MLF biasing current	SS ended			0	500	nA
D	Duty cycle		${ }^{(2)}$	0		100	\%
Ton MIN	Minimum On time				80		ns
VCC regulator							
V_{Cc}	LDO output voltage	$\mathrm{V}_{\text {BIAS }}=\mathrm{GND}$ (no switchover)		2.9	3.3	3.6	V
		$\mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}$ (switchover)		2.9	3.3	3.6	
SWO	$\mathrm{V}_{\text {BIAS }}$ threshold$\left(3 \mathrm{~V}<\mathrm{V}_{\mathrm{BIAS}}<5.5 \mathrm{~V}\right)$	Switch internal supply from $\mathrm{V}_{\text {IN }}$ to $V_{\text {BIAS }}$		2.85		3.2	
		Switch internal supply from $\mathrm{V}_{\text {BIAS }}$ to $V_{I N}$		2.78		3.15	

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Note	Min.	Typ.	Max.	Unit
Power consumption							
ISHTDWN	Shutdown current from $\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {SS/INH }}=\mathrm{GND}$		4	8	15	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{QOPVIN}}$	Quiescent current from V_{IN}	$\begin{aligned} & \hline \text { LCM - SWO } \\ & \mathrm{V}_{\mathrm{REF}}<\mathrm{V}_{\mathrm{FB}}<\mathrm{V}_{\mathrm{OVP}}(\mathrm{SLEEP}) \\ & \mathrm{V}_{\mathrm{BIAS}}=3.3 \mathrm{~V} \end{aligned}$	(3)	4	10	15	$\mu \mathrm{A}$
		$\begin{aligned} & \text { LCM - NO SWO } \\ & \mathrm{V}_{\mathrm{REF}}<\mathrm{V}_{\mathrm{FB}}<\mathrm{V}_{\mathrm{OVP}}(\mathrm{SLEEP}) \\ & \mathrm{V}_{\mathrm{BIAS}}=\mathrm{GND} \end{aligned}$	(3)	35	70	120	
		$\begin{aligned} & \text { LNM - SWO } \\ & \mathrm{V}_{\mathrm{FB}}=\mathrm{GND}(\mathrm{NO} \text { SLEEP }) \\ & \mathrm{V}_{\mathrm{BIAS}}=3.3 \mathrm{~V} \end{aligned}$		0.5	1.5	5	mA
		$\begin{aligned} & \text { LNM - NO SWO } \\ & \mathrm{V}_{\mathrm{FB}}=\mathrm{GND}(\text { NO SLEEP }) \\ & \mathrm{V}_{\mathrm{BIAS}}=\mathrm{GND} \end{aligned}$		2	2.8	6	
$\mathrm{I}_{\mathrm{Q} \text { OPVBIAS }}$	Quiescent current from $\mathrm{V}_{\text {BIAS }}$	$\begin{aligned} & \text { LCM - SWO } \\ & \mathrm{V}_{\text {REF }}<\mathrm{V}_{\mathrm{FB}}<\mathrm{V}_{\mathrm{OVP}}(\mathrm{SLEEP}) \\ & \mathrm{V}_{\mathrm{BIAS}}=3.3 \mathrm{~V} \end{aligned}$	(3)	25	50	115	$\mu \mathrm{A}$
		$\begin{aligned} & \text { LNM - SWO } \\ & \mathrm{V}_{\mathrm{FB}}=\mathrm{GND}(\mathrm{NO} \text { SLEEP }) \\ & \mathrm{V}_{\mathrm{BIAS}}=3.3 \mathrm{~V} \end{aligned}$		0.5	1.2	5	mA
Soft-start							
$V_{\text {INH }}$	VSS threshold	SS rising		200	460	700	mV
$\mathrm{V}_{\text {INH HYST }}$	VSS hysteresis				100	140	
$\mathrm{ISSCH}^{\text {che }}$	$\mathrm{C}_{\text {SS }}$ charging current	$\begin{aligned} & V_{\text {SS }}<V_{\text {INH }} \text { OR } \\ & t<T_{\text {SS SETUP }} O R \\ & V_{\text {EA }+}>V_{\text {FB }} \end{aligned}$	(2)		1		$\mu \mathrm{A}$
		$\mathrm{t}>\mathrm{T}_{\text {SS SETUP }}$ AND $\mathrm{V}_{\mathrm{EA}+}<\mathrm{V}_{\mathrm{FB}}$	(2)		4		
$V_{\text {SS START }}$	Start of internal error amplifier ramp			0.995	1.1	1.150	V
$\mathrm{SS}_{\text {GAIN }}$	SS/INH to internal error amplifier gain				3		
Error amplifier							
$\mathrm{V}_{\text {OUT }}$	Voltage feedback			0.841	0.85	0.859	V
IVout	VOUT biasing current				50	500	nA
A_{V}	Error amplifier gain		(2)		100		dB
$\mathrm{I}_{\text {comp }}$	EA output current capability			± 6	± 12	± 25	$\mu \mathrm{A}$

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Note	Min.	Typ.	Max.	Unit
Inner current loop							
gcs	Current sense transconductance ($\mathrm{V}_{\text {COMP }}$ to inductor current gain)	$\mathrm{lpk}=1 \mathrm{~A}$	(2)		2.5		A/V
$\mathrm{V}_{\mathrm{PP}} \cdot \mathrm{g}_{\mathrm{CS}}$	Slope compensation		(4)	0.45	0.75	1	A
Overvoltage protection							
$V_{\text {OVP }}$	Overvoltage trip ($\mathrm{V}_{\text {OVP }} / \mathrm{V}_{\text {REF }}$)			1.15	1.2	1.25	
V ${ }_{\text {OVP HYST }}$	Overvoltage hysteresis			0.5	2	5	\%
Synchronization (fan out: 6 slave devices typ.)							
$\mathrm{f}_{\text {SYN MIN }}$	Synchronization frequency	LNM; $\mathrm{f}_{\text {SW }}=\mathrm{VCC}$		266.5			kHz
$\mathrm{V}_{\text {SYN TH }}$	SYNCH input threshold	LNM, SYNCH rising		0.70		1.2	V
$\mathrm{I}_{\text {SYN }}$	SYNCH pull-down current	LNM, $\mathrm{V}_{\text {SYN }}=1.2 \mathrm{~V}$			0.7		mA
V SYN OUT	High level output	LNM, 5 mA sinking load		1.40			V
	Low level output	LNM, 0.7 mA sourcing load				0.6	
Reset							
$\mathrm{V}_{\text {THR }}$	Selected RST threshold	MLF pinstrapping before SS		see Table 7			
$\mathrm{V}_{\text {THR HYST }}$	RST hysteresis		(2)		2		\%
$\mathrm{V}_{\mathrm{RST}}$	RST open collector output	$\begin{aligned} & \mathrm{V}_{I N}>\mathrm{V}_{I N H} \mathrm{AND} \\ & \mathrm{~V}_{\mathrm{FB}}<\mathrm{V}_{\mathrm{TH}} \\ & 4 \mathrm{~mA} \text { sinking load } \end{aligned}$				0.4	V
		$2<V_{\mathrm{IN}}<\mathrm{V}_{\mathrm{INH}}$ 4 mA sinking load				0.8	
Delay							
$V_{\text {THD }}$	RST open collector released as soon as $V_{\text {DELAY }}>\mathrm{V}_{\text {THD }}$	$\mathrm{V}_{\mathrm{FB}}>\mathrm{V}_{\text {THR }}$		1.19	1.234	1.258	V
$\mathrm{I}_{\mathrm{DCH}}$	$\mathrm{C}_{\text {DELAY }}$ charging current	$\mathrm{V}_{\mathrm{FB}}>\mathrm{V}_{\text {THR }}$		1	2	3	$\mu \mathrm{A}$
Thermal shutdown							
TSHDWN	Thermal shutdown temperature		(2)		165		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{HYS}}$	Thermal shutdown hysteresis		(2)		30		

1. Parameter tested in static condition during testing phase. Parameter value may change over dynamic application condition.
2. Not tested in production.
3. LCM enables SLEEP mode at light-load.
4. Measured at $\mathrm{f}_{\mathrm{sw}}=250 \mathrm{kHz}$.
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ unless otherwise specified.
Table 6. f_{SW} selection

Symbol	$\mathrm{R}_{\mathrm{Vcc}}$ (E24 series)	$\mathrm{R}_{\mathrm{GND}}$ (E24 series)	Tj	$\mathrm{f}_{\text {SW }} \mathrm{min}$.	$\mathrm{f}_{\text {SW }}$ typ.	$\mathrm{f}_{\text {SW }}$ max.	Unit
$\mathrm{f}_{\text {SW }}$	0Ω	NC		225	250	275	kHz
	$1.8 \mathrm{k} \Omega$	NC	(1)		285		
	$3.3 \mathrm{k} \Omega$	NC			330		
	$5.6 \mathrm{k} \Omega$	NC			380		
	$10 \mathrm{k} \Omega$	NC			435		
	NC	0Ω		450	500	550	
	$18 \mathrm{k} \Omega$	NC	(1)		575		
	$33 \mathrm{k} \Omega$	NC			660		
	$56 \mathrm{k} \Omega$	NC			755		
	NC	$1.8 \mathrm{k} \Omega$			870		
	NC	$3.3 \mathrm{k} \Omega$		900	1000	1100	
	NC	$5.6 \mathrm{k} \Omega$	(1)		1150		
	NC	$10 \mathrm{k} \Omega$			1310		
	NC	$18 \mathrm{k} \Omega$			$1500{ }^{(2)}$		
	NC	$33 \mathrm{k} \Omega$		1575	1750 ${ }^{(2)}$	1925	
	NC	$56 \mathrm{k} \Omega$		1800	2000 ${ }^{(2)}$	2200	

1. Not tested in production.
2. No synchronization as slave in LNM.
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ unless otherwise specified.
Table 7. LNM / LCM selection

Symbol	$\begin{gathered} \mathrm{R}_{\mathrm{Vcc}} \\ \text { (E24 1\%) } \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{GND}} \\ \text { (E24 1\%) } \end{gathered}$	Operating mode	$\mathrm{V}_{\mathrm{RST}} / \mathrm{V}_{\text {OUT }}$ (tgt. value)	$\begin{aligned} & \mathrm{V}_{\mathrm{RST}} \\ & \mathrm{~min} . \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{RST}} \\ & \text { typ. } \end{aligned}$	$\mathrm{V}_{\mathrm{RST}}$ max.	Unit
$\mathrm{V}_{\mathrm{RST}}$	0Ω	NC	LCM	93\%	0.779	0.791	0.802	V
	$8.2 \mathrm{k} \Omega$	NC		80\%	0.670	0.680	0.690	
	$18 \mathrm{k} \Omega$	NC		87\%	0.728	0.740	0.751	
	$39 \mathrm{k} \Omega$	NC		96\%	0.804	0.816	0.828	
	NC	0Ω	LNM	93\%	0.779	0.791	0.802	
	NC	$8.2 \mathrm{k} \Omega$		80\%	0.670	0.680	0.690	
	NC	$18 \mathrm{k} \Omega$		87\%	0.728	0.740	0.751	
	NC	$39 \mathrm{k} \Omega$		96\%	0.804	0.816	0.828	

4 Functional description

The L6986F device is based on a "peak current mode", constant frequency control. As a consequence, the intersection between the error amplifier output and the sensed inductor current generates the PWM control signal to drive the power switch.

The device features LNM (low noise mode) that is forced PWM control, or LCM (low consumption mode) to increase the efficiency at light-load.

The main internal blocks shown in the block diagram in Figure 3 are:

- Embedded power elements. Thanks to the P-channel MOSFET as high-side switch the device features low dropout operation
- A fully integrated sawtooth oscillator with adjustable frequency
- A transconductance error amplifier
- The high-side current sense amplifier to sense the inductor current
- A "Pulse Width Modulator" (PWM) comparator and the driving circuitry of the embedded power elements
- The soft-start blocks to ramp the error amplifier reference voltage and so decreases the inrush current at power-up. The SS/INH pin inhibits the device when driven low.
- The switchover capability of the internal regulator to supply a portion of the quiescent current when the $V_{\text {BIAS }}$ pin is connected to an external output voltage
- The synchronization circuitry to manage master / slave operation and the synchronization to an external clock
- The current limitation circuit to implement the constant current protection, sensing pulse by pulse high-side / low-side switch current. In case of heavy short-circuit the current protection is fold back to decrease the stress of the external components
- A circuit to implement the thermal protection function
- The OVP circuitry to discharge the output capacitor in case of overvoltage event
- MLF pin strapping sets the LNM/LCM mode and the thresholds of the RST comparator
- FSW pinstrapping sets the switching frequency
- The RST open collector output.

Figure 3. Internal block diagram

4.1 Power supply and voltage reference

The internal regulator block consists of a start-up circuit, the voltage pre-regulator that provides current to all the blocks and the bandgap voltage reference. The starter supplies the startup current when the input voltage goes high and the device is enabled (SS/INH pin over the inhibits threshold).
The pre-regulator block supplies the bandgap cell and the rest of the circuitry with a regulated voltage that has a very low supply voltage noise sensitivity.

Switchover feature

The switchover scheme of the pre-regulator block features to derive the main contribution of the supply current for the internal circuitry from an external voltage ($3 \mathrm{~V}<\mathrm{V}_{\text {BIAS }}<5.5 \mathrm{~V}$ is typically connected to the regulated output voltage). This helps to decrease the equivalent quiescent current seen at V_{IN}. (Please refer to Section 4.6: Switchover feature on page 29).

4.2 Voltages monitor

An internal block continuously senses the $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{BIAS}}$ and V_{BG}. If the monitored voltages are good, the regulator starts operating. There is also a hysteresis on the V_{CC} (UVLO).

Figure 4. Internal circuit

4.3 Soft-start and inhibit

The soft-start and inhibit features are multiplexed on the same pin. An internal current source charges the external soft-start capacitor to implement a voltage ramp on the SS/INH pin. The device is inhibited as long as the $\mathrm{SS} / \overline{\mathrm{INH}}$ pin voltage is lower than the $\mathrm{V}_{\text {INH }}$ threshold and the soft-start takes place when $\mathrm{SS} / \mathrm{INH}$ pin crosses $\mathrm{V}_{\text {SS START }}$. (See Figure 5: Soft-start phase).
The internal current generator sources a $1 \mu \mathrm{~A}$ typ. current when the voltage of the VCC pin crosses the UVLO threshold. The current increases to $4 \mu \mathrm{~A}$ typ. as soon as the SS/INH voltage is higher than the $\mathrm{V}_{\mathbb{N H}}$ threshold. This feature helps to decrease the current consumption in inhibit mode. An external open collector can be used to set the inhibit operation clamping the $\mathrm{SS} / \mathrm{INH}$ voltage below $\mathrm{V}_{\mathrm{INH}}$ threshold.
The startup feature minimizes the inrush current and decreases the stress of the power components during the power-up phase. The ramp implemented on the reference of the error amplifier has a gain three times higher $\left(\mathrm{SS}_{\mathrm{GAIN}}\right)$ than the external ramp present at SS/INH pin.

Figure 5. Soft-start phase

The C_{SS} is dimensioned accordingly with Equation 1:
Equation 1

$$
C_{S S}=S S_{G A I N} \cdot \frac{I_{S S C H} \bullet T_{S S}}{V_{F B}}=3 \cdot \frac{4 \mu \mathrm{~A} \bullet \mathrm{~T}_{\mathrm{SS}}}{0.85 \mathrm{~V}}
$$

where $T_{S S}$ is the soft-start time, $I_{S S}$ CH the charging current and $V_{F B}$ the reference of the error amplifier.
The soft-start block supports the precharged output capacitor.

Figure 6. Soft-start phase with precharged $\mathrm{C}_{\text {OUT }}$

During normal operation a new soft-start cycle takes place in case of:

- Thermal shutdown event
- UVLO event
- The device is driven in $\overline{\mathrm{NH}}$ mode

The soft-start capacitor is discharged with a 0.6 mA typ. current capability for 1 msec time max. For complete and proper capacitor discharge in case of fault condition, a maximum $C_{S S}=67 \mathrm{nF}$ value is suggested.

The application example in Figure 7 shows how to enable the L6986F and perform the softstart phase driven by an external voltage step.

Figure 7. Enable the device with external voltage step

The maximum capacitor value has to be limited to guarantee the device can discharge it in case of thermal shutdown and UVLO events (see Figure 9), so restart the switching activity ramping the error amplifier reference voltage.

Equation 2

$$
\mathrm{C}_{\mathrm{SS}}<\frac{-1 \mathrm{msec}}{\mathrm{R}_{\mathrm{SS}_{-} \mathrm{EQ}} \cdot \ln \left(1-\frac{\mathrm{V}_{\mathrm{SS}_{2} \mathrm{FINAL}}-0.9 \mathrm{~V}}{600 \mu \mathrm{~A}-\mathrm{R}_{\text {SS_EQ }}}\right)}
$$

where:

Equation 3

$$
R_{S_{-} E Q}=\frac{R_{U P} \cdot R_{\text {DWN }}}{R_{U P}+R_{\text {DWN }}} \quad V_{\text {SS_FINAL }}=\left(V_{S T E P}-V_{\text {DIODE }}\right) \cdot \frac{R_{D W N}}{R_{U P}+R_{D W N}}
$$

The optional diode prevents to disable the device if the external source drops to ground.
$R_{U P}$ value is selected in order to make the capacitor charge at first approximation independent from the internal current generator ($4 \mu \mathrm{~A}$ typ. current capability, see Table 5 on page 8), so:

Equation 4

$$
\frac{\mathrm{V}_{\text {STEP }}-\mathrm{V}_{\text {DIODE }}-\mathrm{V}_{\text {SS END }}}{\mathrm{R}_{\mathrm{UP}}} » \mathrm{I}_{\text {SS CHARGE }} \equiv 4 \mu \mathrm{~A}
$$

where:

Equation 5

$$
\mathrm{V}_{\mathrm{SS} \text { END }}=\mathrm{V}_{\mathrm{SS} \text { START }}+\frac{\mathrm{V}_{\mathrm{FB}}}{\mathrm{SS}_{\mathrm{GAIN}}}
$$

represents the SS/INH voltage correspondent to the end of the ramp on the error amplifier (see Figure 5); refer to Table 5 for V_{SS} START, V_{FB} and $\mathrm{SS}_{\mathrm{GAIN}}$ parameters.
As a consequence the voltage across the soft-start capacitor can be written as:

Equation 6

$$
v_{S S}(t)=V_{S_{S S F I N A L}} \cdot \frac{1}{1-e^{-\frac{t}{C_{S S} \cdot R_{S S _E Q}}}}
$$

$R_{\text {SS_DOWN }}$ is selected to guarantee the device stays in inhibit mode when the internal generator sources $1 \mu A$ typ. out of the SS/INH pin and $V_{\text {STEP }}$ is not present:

Equation 7

$$
\mathrm{R}_{\mathrm{DWN}} \cdot \mathrm{I}_{\mathrm{SS} \text { INHIBIT }} \equiv \mathrm{R}_{\mathrm{DWN}} \cdot 1 \mu \mathrm{~A} « \mathrm{~V}_{\text {INH }} \equiv 200 \mathrm{mV}
$$

so:

Equation 8

$$
\mathrm{R}_{\mathrm{DWN}}<100 \mathrm{k} \Omega
$$

$R_{\text {UP }}$ and $R_{\text {DWN }}$ are selected to guarantee:

Equation 9

$$
\mathrm{V}_{\text {SS_FINAL }} \cong 2 \mathrm{~V}>\mathrm{V}_{\text {SS_END }}
$$

The time to ramp the internal voltage reference can be calculated from Equation 10:

Equation 10

$$
T_{S S}=C_{S S} \cdot R_{S S _E Q} \cdot \ln \left(\frac{V_{S S _F I N A L}-V_{S S S T A R T}}{V_{S S _F I N A L}-V_{S S E N D}}\right)
$$

that is the equivalent soft-start time to ramp the output voltage.
Figure 8 shows the soft-start phase with the following component selection: $R_{U P}=180 \mathrm{k} \Omega$, $R_{D W N}=33 \mathrm{k} \Omega, C_{S S}=200 \mathrm{nF}$, the 1 N 4148 is a small signal diode and $V_{\text {STEP }}=13 \mathrm{~V}$.

Figure 8. External soft-start network $\mathbf{V}_{\text {STEP }}$ driven

The circuit in Figure 7 introduces a time delay between $\mathrm{V}_{\text {STEP }}$ and the switching activity that can be calculated as:

Equation 11

$$
T_{S S \text { DELAY }}=C_{S S} \cdot R_{S S _E Q} \cdot \ln \left(\frac{V_{S S _F I N A L}}{V_{S S _F I N A L}-V_{S S ~ S T A R T}}\right)
$$

Figure 9 shows how the device discharges the soft-start capacitor after an UVLO or thermal shutdown event in order to restart the switching activity ramping the error amplifier reference voltage.

Figure 9. External soft-start after UVLO or thermal shutdown

4.3.1 Ratiometric startup

The ratiometric startup is implemented sharing the same soft-start capacitor for a set of the L6986F devices.

Figure 10. Ratiometric startup

As a consequence all the internal current generators charge in parallel the external capacitor. The capacitor value is dimensioned accordingly with Equation 12:

Equation 12

$$
\mathrm{C}_{\mathrm{SS}}=\mathrm{n}_{\mathrm{L} 6986 \mathrm{~F}} \cdot \mathrm{SS}_{\mathrm{GAIN}} \cdot \frac{\mathrm{I}_{\mathrm{SSCH}} \cdot \mathrm{~T}_{\mathrm{SS}}}{\mathrm{~V}_{\mathrm{FB}}}=\mathrm{n}_{\mathrm{L6986F}} \cdot 3 \cdot \frac{4 \mu \mathrm{~A} \cdot \mathrm{~T}_{\mathrm{SS}}}{0.85 \mathrm{~V}}
$$

where $n_{\text {L6986F }}$ represents the number of devices connected in parallel.
For better tracking of the different output voltages the synchronization of the set of regulators is suggested

Figure 11. Ratiometric startup operation

4.3.2 Output voltage sequencing

The L6986F device implements sequencing connecting the RST pin of the master device to the SS/INH of the slave. The slave is inhibited as long as the master output voltage is outside regulation so implementing the sequencing (see Figure 12).

Figure 12. Output voltage sequencing

High flexibility is achieved thanks to the programmable RST thresholds (Table 7 on page 11) and programmable delay time. To minimize the component count the DELAY pin capacitor can be also omitted so the pin works as a normal Power Good.

4.4 Error amplifier

The voltage error amplifier is the core of the loop regulation. It is a transconductance operational amplifier whose non inverting input is connected to the internal voltage reference (0.85 V), while the inverting input (FB) is connected to the external divider or directly to the output voltage.

Table 8. Uncompensated error amplifier characteristics

Description	Values
Transconductance	$155 \mu \mathrm{~S}$
Low frequency gain	100 dB

The error amplifier output is compared with the inductor current sense information to perform PWM control. The error amplifier also determines the burst operation at light-load when the LCM is active.

4.5 Light-load operation

The MLF pinstrapping during the power-up phase determines the light-load operation (refer to Table 7 on page 11).

4.5.1 Low noise mode (LNM)

The low noise mode implements a forced PWM operation over the different loading conditions. The LNM features a constant switching frequency to minimize the noise in the final application and a constant voltage ripple at fixed V_{IN}. The regulator in steady loading condition never skip pulses and it operates in continuous conduction mode (CCM) over the different loading conditions thus making this operation mode ideal for noise sensitive applications.

Figure 13. Low noise mode operation

4.5.2 Low consumption mode (LCM)

The low consumption mode maximizes the efficiency at light-load. The regulator prevents the switching activity whenever the switch peak current request is lower than the $I_{\text {SKIP }}$ threshold. As a consequence the L6986F device works in bursts and it minimizes the quiescent current request in the meantime between the switching operation.

In LCM operation, the pin SYNCH/ISKIP level dynamically defines the $I_{\text {SKIP }}$ current threshold (see Table 5 on page 8) as shown in Table 9.

Table 9. ISKIP programmable current threshold

SYNCH / ISKIP (pin 4)	I $_{\text {SKIP }}$ current threshold
LOW	ISKIP $_{\mathrm{H}}=0.4 \mathrm{~A}$ typical
HIGH	ISKIP $_{\mathrm{L}}=0.2 \mathrm{~A}$ typical

The ISKIP programmability helps to optimize the performance in terms of the output voltage ripple or efficiency at the light-load, that are parameters which disagree each other by definition.

A lower skip current level minimizes the voltage ripple but increases the switching activity (time between bursts gets closer) since less energy per burst is transfered to the output voltage at the given load. On the other side, a higher skip level reduces the switching activity and improves the efficiency at the light-load but worsen the voltage ripple.
No difference in terms of the voltage ripple and conversion efficiency for the medium and high load current level, that is when the device operates in the discontinuous or continuous mode (DCM vs. CCM).

Figure 14 and Figure 15 report the efficiency measurements to highlight the ISKIP $_{\mathrm{H}}$ and ISKIP $_{\mathrm{L}}$ efficiency gap at the light-load also in comparison with the LNM operation (also called NOSKIP). The same efficiency at the medium / high load is confirmed at different ISKIP levels.

Figure 14. Light-load efficiency comparison at different $I_{\text {SKIP }}$ - linear scale

Figure 15. Light-load efficiency comparison at different $\mathrm{I}_{\text {SKIP }}$ - \log scale

Figure 16 and Figure 17 show the LCM operation at the different ISKIP level.
Figure 16 shows the $I S K I P ~_{H}=400 \mathrm{~mA}$ typ. and so 20 mV output voltage ripple.
Figure 17 shows the $I S K I P_{L}=200 \mathrm{~mA}$ typ. and so 10 mV output voltage ripple.
Figure 16. LCM operation with $\mathrm{ISKIP}_{\mathrm{H}}=\mathbf{4 0 0} \mathrm{mA}$ typ. at zero load

Figure 17. LCM operation with ISKIP $_{\mathrm{L}}=\mathbf{2 0 0} \mathbf{~ m A}$ typ. at zero load

In case the $\mathrm{V}_{\text {BIAS }}$ pin is connected to the regulated output voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$, the total current drawn from the input voltage can be calculated as Equation 14.

Given the energy stored in the inductor during a burst, the voltage ripple depends on the capacitor value:

Equation 13

$$
\mathrm{V}_{\text {OUT RIPPLE }}=\frac{\Delta \mathrm{Q}_{\mathrm{IL}}}{\mathrm{C}_{\mathrm{OUT}}}=\frac{\int_{0}^{\mathrm{T}_{\mathrm{BURST}}}\left(\mathrm{i}_{\mathrm{L}}(\mathrm{t}) \cdot \mathrm{dt}\right)}{\mathrm{C}_{\mathrm{OUT}}}
$$

Figure 18. LCM operation over loading condition (part 1)

Figure 19. LCM operation over loading condition (part 2 - DCM)

Figure 20. LCM operation over loading condition (part 3 - DCM)

Figure 21. LCM operation over loading condition (part 4 - DCM)

Figure 22. LCM operation over loading condition (part 5-CCM)

4.6 Switchover feature

The switchover maximizes the efficiency at the light-load that is crucial for LCM applications.

4.6.1 LCM

The LCM operation satisfies the high efficiency requirements of the battery powered applications. In order to minimize the regulator quiescent current request from the input voltage, the $\mathrm{V}_{\text {BIAS }}$ pin can be connected to an external voltage source in the range $3 \mathrm{~V}<\mathrm{V}_{\mathrm{BIAS}}<5.5 \mathrm{~V}$ (see Section 4.1: Power supply and voltage reference on page 13).
In case the $\mathrm{V}_{\text {BIAS }}$ pin is connected to the regulated output voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$, the total current drawn from the input voltage can be calculated as:

Equation 14

$$
\mathrm{I}_{\mathrm{QVIN}}=\mathrm{I}_{\mathrm{QOPVIN}}+\frac{1}{\eta_{\mathrm{L} 6986 \mathrm{~F}}} \cdot \frac{\mathrm{~V}_{\mathrm{BIAS}}}{V_{\mathrm{IN}}} \cdot \mathrm{I}_{\mathrm{QOPVBIAS}}
$$

where IQ OP $V_{I N}, I Q O P V_{B I A S}$ are defined in Table 5: Electrical characteristics on page 8 and $\eta_{L 6986 F}$ is the efficiency of the conversion in the working point.

4.6.2 LNM

Equation 14 is also valid when the device works in LNM and it can increase the efficiency at the medium load since the regulator always operates in the continuous conduction mode.

4.7 Overcurrent protection

The current protection circuitry features a constant current protection, so the device limits the maximum peak current (see Table 5) in overcurrent condition.

The L6986F device implements a pulse by pulse current sensing on both power elements (high-side and low-side switches) for effective current protection over the duty cycle range. The high-side current sensing is called "peak" the low-side sensing "valley".

The internal noise generated during the switching activity makes the current sensing circuitry ineffective for a minimum conduction time of the power element. This time is called "masking time" because the information from the analog circuitry is masked by the logic to prevent an erroneous detection of the overcurrent event. As a consequence, the peak current protection is disabled for a masking time after the high-side switch is turned on, the valley for a masking time after the low-side switch is turned on. In other words, the peak current protection can be ineffective at extremely low duty cycles, the valley current protection at extremely high duty cycles.
The L6986F device assures an effective overcurrent protection sensing the current flowing in both power elements. In case one of the two current sensing circuitry is ineffective because of the masking time, the device is protected sensing the current on the opposite switch. Thus, the combination of the "peak" and "valley" current limits assure the effectiveness of the overcurrent protection even in extreme duty cycle conditions.
The valley current threshold is designed higher than the peak to guarantee a proper operation. In case the current diverges because of the high-side masking time, the low-side power element is turned on until the switch current level drops below the valley current
sense threshold. The low-side operation is able to prevent the high-side turn on, so the device can skip pulses decreasing the swathing frequency.

Figure 23. Valley current sense operation in overcurrent condition

Figure 23 shows the switching frequency reduction during the valley current sense operation in case of an extremely low duty cycle ($\mathrm{V}_{\mathrm{IN}}=38 \mathrm{~V}, \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$ short-circuit condition).

In a worst case scenario (like Figure 23) of the overcurrent protection the switch current is limited to

Equation 15

$$
I_{\text {MAX }}=I_{\text {VALLEYTH }}+\frac{V_{\text {IN }}-V_{\text {OUT }}}{L} \cdot T_{\text {MASKHS }}
$$

where $I_{\text {VALLEY } T H}$ is the current threshold of the valley sensing circuitry (see Table 5 : Electrical characteristics on page 8) and $T_{\text {MASK }}$ HS is the masking time of the high-side switch 100 nsec. typ.).

In most of the overcurrent conditions the conduction time of the high-side switch is higher than the masking time and so the peak current protection limits the switch current.

Equation 16

$$
I_{\text {MAX }}=I_{\text {PEAK_TH }}
$$

Figure 24. Peak current sense operation in overcurrent condition

The DC current flowing in the load in overcurrent condition is:

Equation 17

$$
\mathrm{I}_{\mathrm{DCOC}}\left(\mathrm{~V}_{\mathrm{OUT}}\right)=\mathrm{I}_{\mathrm{MAX}}-\frac{\mathrm{I}_{\mathrm{RIPPLE}}\left(\mathrm{~V}_{\mathrm{OUT}}\right)}{2}=\mathrm{I}_{\mathrm{MAX}}-\left(\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}}{2 \bullet \mathrm{~L}} \cdot \mathrm{~T}_{\mathrm{ON}}\right)
$$

OCP and switchover feature

Output capacitor discharging the current flowing to ground during heavy short-circuit events is only limited by parasitic elements like the output capacitor ESR and short-circuit impedance.
Due to parasitic inductance of the short-circuit impedance, negative output voltage oscillations can be generated with huge discharging current levels (see Figure 25).

Figure 25. Output voltage oscillations during heavy short-circuit

Figure 26. Zoomed waveform

The $\mathrm{V}_{\text {BIAS }}$ pin absolute maximum ratings (see Table 2: Absolute maximum ratings on page 6) must be satisfied over the different dynamic conditions.

If the $\mathrm{V}_{\text {BIAS }}$ is connected to GND there are no issues (see Figure 25 and Figure 26).

A small resistor value (few ohms) in series with the $\mathrm{V}_{\text {BIAS }}$ can help to limit the pin negative voltage (see Figure 27) during heavy short-circuit events if it is connected to the regulated output voltage.

Figure 27. $\mathrm{V}_{\text {BIAS }}$ in heavy short-circuit event

4.8 Overvoltage protection

The overvoltage protection monitors the FB pin and enables the low-side MOSFET to discharge the output capacitor if the output voltage is 20% over the nominal value.
This is a second level protection and should never be triggered in normal operating conditions if the system is properly dimensioned. In other words, the selection of the external power components and the dynamic performance determined by the compensation network should guarantee an output voltage regulation within the overvoltage threshold even during the worst case scenario in term of load transitions.

The protection is reliable and also able to operate even during normal load transitions for a system whose dynamic performance is not in line with the load dynamic request. As a consequence the output voltage regulation would be affected.

Figure 28 shows the overvoltage operation during a negative steep load transient for a system designed with huge inductor value and small output capacitor. The inductor value limits the switch current slew rate and the extra charge flowing into the small capacitor value generates an overvoltage event. This can be considered as an example for a system with dynamic performance not in line with the load request.

The L6986F device implements a 1 A typ. negative current limitation to limit the maximum reversed switch current during the overvoltage operation.

Figure 28. Overvoltage operation

4.9 Thermal shutdown

The shutdown block disables the switching activity if the junction temperature is higher than a fixed internal threshold ($165{ }^{\circ} \mathrm{C}$ typical). The thermal sensing element is close to the power elements, ensuring fast and accurate temperature detection. A hysteresis of approximately $30^{\circ} \mathrm{C}$ prevents the device from turning ON and OFF continuously. When the thermal protection runs away a new soft-start cycle will take place.

5 Closing the loop

Figure 29. Block diagram of the loop

5.1 $\mathbf{G}_{\mathbf{c o}}(\mathbf{s})$ control to output transfer function

The accurate control to output transfer function for a buck peak current mode converter can be written as:

Equation 18

$$
\mathrm{G}_{\mathrm{CO}(\mathrm{~s})}=\mathrm{R}_{\mathrm{LOAD}} \bullet \mathrm{~g}_{\mathrm{CS}} \cdot \frac{1}{1+\frac{\mathrm{R}_{\mathrm{LOAD}} \bullet T_{S W}}{\mathrm{~L}} \cdot\left[\mathrm{~m}_{\mathrm{C}} \bullet(1-\mathrm{D})-0.5\right]} \cdot \frac{\left(1+\frac{\mathrm{s}}{\omega_{\mathrm{Z}}}\right)}{\left(1+\frac{\mathrm{s}}{\omega_{\mathrm{p}}}\right)} \bullet \mathrm{F}_{\mathrm{H}}(\mathrm{~s})
$$

where $R_{\text {LOAD }}$ represents the load resistance, $g_{C S}$ the equivalent sensing conductance of the current sense circuitry, ω_{p} the single pole introduced by the power stage and ω_{z} the zero given by the ESR of the output capacitor.
$\mathrm{F}_{\mathrm{H}}(\mathrm{s})$ accounts the sampling effect performed by the PWM comparator on the output of the error amplifier that introduces a double pole at one half of the switching frequency.

Equation 19

$$
\omega_{\mathrm{z}}=\frac{1}{\mathrm{ESR} \cdot \mathrm{C}_{\mathrm{OUT}}}
$$

Equation 20

$$
\omega_{\mathrm{p}}=\frac{1}{R_{\text {LOAD }} \bullet \mathrm{C}_{\text {OUT }}}+\frac{\mathrm{m}_{\mathrm{c}} \bullet(1-\mathrm{D})-0.5}{\mathrm{~L} \bullet \mathrm{C}_{\mathrm{OUT}} \bullet \mathrm{f}_{\mathrm{SW}}}
$$

where:

Equation 21

$$
\left(\begin{array}{l}
m_{\mathrm{C}}=1+\frac{S_{e}}{S_{\mathrm{n}}} \\
\mathrm{~S}_{\mathrm{e}}=\mathrm{V}_{\mathrm{PP}} \cdot g_{\mathrm{CS}} \cdot f_{\mathrm{SW}} \\
\mathrm{~S}_{\mathrm{n}}=\frac{\mathrm{V}_{\mathrm{IN}}-V_{\mathrm{OUT}}}{L}
\end{array}\right.
$$

S_{n} represents the on time slope of the sensed inductor current, S_{e} the on time slope of the external ramp ($V_{P P}$ peak-to-peak amplitude) that implements the slope compensation to avoid sub-harmonic oscillations at duty cycle over 50%.
S_{e} can be calculated from the parameter $\mathrm{V}_{\mathrm{PP}} \cdot \mathrm{g}_{\mathrm{CS}}$ given in Table 5 on page 8.
The sampling effect contribution $\mathrm{F}_{\mathrm{H}}(\mathrm{s})$ is:

Equation 22

$$
F_{H}(s)=\frac{1}{1+\frac{s}{\omega_{n} \bullet Q_{p}}+\frac{s^{2}}{\omega_{n}{ }^{2}}}
$$

where:

Equation 23

$$
\mathrm{Q}_{\mathrm{p}}=\frac{1}{\pi \bullet\left[\mathrm{~m}_{\mathrm{c}} \cdot(1-\mathrm{D})-0.5\right]}
$$

5.2 Error amplifier compensation network

The typical compensation network required to stabilize the system is shown in Figure 30.
Figure 30. Transconductance embedded error amplifier

R_{C} and C_{C} introduce a pole and a zero in the open loop gain. C_{P} does not significantly affect system stability but it is useful to reduce the noise at the output of the error amplifier.

The transfer function of the error amplifier and its compensation network is:

Equation 24

$$
A_{0}(s)=\frac{A_{V 0} \bullet\left(1+s \bullet R_{c} \bullet C_{c}\right)}{s^{2} \bullet R_{0} \bullet\left(C_{0}+C_{p}\right) \bullet R_{c} \bullet C_{c}+s \bullet\left(R_{0} \bullet C_{c}+R_{0} \bullet\left(C_{0}+C_{p}\right)+R_{c} \bullet C_{c}\right)+1}
$$

Where $A_{\text {vo }}=G_{m} \cdot R_{o}$
The poles of this transfer function are (if $\mathrm{C}_{\mathrm{C}} \gg \mathrm{C}_{0}+\mathrm{C}_{\mathrm{P}}$):
Equation 25

$$
\mathrm{f}_{\mathrm{PLF}}=\frac{1}{2 \bullet \pi \bullet \mathrm{R}_{0} \bullet \mathrm{C}_{\mathrm{c}}}
$$

Equation 26

$$
\mathrm{f}_{\mathrm{PHF}}=\frac{1}{2 \bullet \pi \bullet \mathrm{R}_{0} \bullet\left(\mathrm{C}_{0}+\mathrm{C}_{\mathrm{p}}\right)}
$$

whereas the zero is defined as:

Equation 27

$$
\mathrm{f}_{\mathrm{z}}=\frac{1}{2 \cdot \pi \cdot \mathrm{R}_{\mathrm{c}} \cdot \mathrm{C}_{\mathrm{c}}}
$$

5.3 Voltage divider

The contribution of the simple voltage divider is:

Equation 28

$$
G_{\text {DIV }}(s)=\frac{R_{2}}{R_{1}+R_{2}}
$$

A small signal capacitor in parallel to the upper resistor (see Figure 31) of the voltage divider implements a leading network ($\mathrm{f}_{\text {zero }}<\mathrm{f}_{\text {pole }}$), sometimes necessary to improve the system phase margin:

Figure 31. Leading network example

Laplace transformer of the leading network:
Equation 29

$$
G_{D I V}(s)=\frac{R_{2}}{R_{1}+R_{2}} \bullet \frac{\left(1+s+R_{1} \bullet C_{R 1}\right)}{\left(1+s \bullet \frac{R_{1} \bullet R_{2}}{R_{1}+R_{2}} \bullet C_{R 1}\right)}
$$

where:
Equation 30

$$
\begin{gathered}
\mathrm{f}_{\mathrm{z}}=\frac{1}{2 \bullet \pi \bullet \mathrm{R}_{1} \bullet \mathrm{C}_{\mathrm{R} 1}} \\
\mathrm{f}_{\mathrm{p}}=\frac{1}{2 \bullet \pi \bullet \frac{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \cdot \mathrm{C}_{\mathrm{R} 1}} \\
\mathrm{f}_{\mathrm{z}}<\mathrm{f}_{\mathrm{p}}
\end{gathered}
$$

5.4 Total loop gain

In summary, the open loop gain can be expressed as:

Equation 31

$$
G(s)=G_{\text {DIV }}(s) \cdot G_{C O}(s) \cdot A_{0}(s)
$$

Example 1

$$
\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{OUT}}=2.2 \Omega
$$

Selecting $\mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}, \mathrm{L}=6.8 \mu \mathrm{H}, \mathrm{C}_{\mathrm{OUT}}=20 \mu \mathrm{~F}$ and $\mathrm{ESR}=1 \mathrm{~m} \Omega, \mathrm{R}_{\mathrm{C}}=75 \mathrm{k} \Omega$, $\mathrm{C}_{\mathrm{C}}=220 \mathrm{pF}, \mathrm{C}_{\mathrm{P}}=2.2 \mathrm{pF}$ (please refer to Table 14 on page 54), the gain and phase bode diagrams are plotted respectively in Figure 32 and Figure 33.

Equation 32

$$
\begin{aligned}
& \mathrm{BW}=58 \mathrm{kHz} \\
& \text { phase margin }=67^{\circ}
\end{aligned}
$$

Figure 32. Module plot

Figure 33. Phase plot

The blue solid trace represents the transfer function including the sampling effect term (see Equation 22 on page 36), the dotted blue trace neglects the contribution.

5.5 Compensation network design

The maximum bandwidth of the system can be designed up to $\mathrm{f}_{\mathrm{SW}} / 6$ up to 150 kHz maximum to guarantee a valid small signal model.

Equation 33

$$
\mathrm{BW}=\min \left\{\frac{\mathrm{f}_{\mathrm{SW}}}{6} ; 150 \mathrm{kHz}\right\}
$$

Equation 34

$$
\mathrm{R}_{\mathrm{C}}=\frac{2 \cdot \pi \cdot \mathrm{BW} \cdot \mathrm{C}_{\mathrm{OUT}} \cdot \mathrm{~V}_{\mathrm{OUT}}}{0.85 \mathrm{~V} \cdot \mathrm{~g}_{\mathrm{CS}} \cdot \mathrm{~g}_{\mathrm{m} \text { TYP }}}
$$

where:
Equation 35

$$
\mathrm{f}_{\mathrm{POLE}}=\frac{\omega_{\mathrm{p}}}{2 \cdot \pi}
$$

ω_{p} is defined by Equation 20 on page 36, $g_{c S}$ represents the current sense transconductance (see Table 5: Electrical characteristics on page 8) and g_{m} TYP the error amplifier transconductance.

Equation 36

$$
\mathrm{C}_{\mathrm{C}}=\frac{5}{2 \cdot \pi \cdot \mathrm{R}_{\mathrm{C}} \cdot \mathrm{BW}}
$$

Example 2

Considering $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3.3 \mathrm{~V}, \mathrm{~L}=6.8 \mu \mathrm{H}, \mathrm{C}_{\mathrm{OUT}}=15 \mu \mathrm{~F}, \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$, $\mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~A}$. The maximum system bandwidth is 80 kHz . Assuming to design the compensation network to achieve a system bandwidth of 70 kHz :

Equation 37

$$
\mathrm{f}_{\mathrm{POLE}}=3.5 \mathrm{kHz}
$$

Equation 38

$$
\mathrm{R}_{\text {LOAD }}=\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{I}_{\mathrm{OUT}}}=3.3 \Omega
$$

so accordingly with Equation 34 and Equation 36:

Equation 39

$$
\mathrm{R}_{\mathrm{C}}=68 \mathrm{k} \Omega
$$

Equation 40

$$
C_{C}=165 p F \approx 180 \mathrm{pF}
$$

The gain and phase bode diagrams are plotted respectively in Figure 32 and Figure 33.

Figure 34. Magnitude plot for Example 2

Figure 35. Phase plot for Example 2

6 Application notes

6.1 Output voltage adjustment

The error amplifier reference voltage is 0.85 V typical.
The output voltage is adjusted accordingly with Equation 41 (see Figure 36):

Equation 41

$$
\mathrm{V}_{\text {OUT }}=0.85 \cdot\left(1+\frac{R_{1}}{R_{2}}\right)
$$

$\mathrm{C}_{\mathrm{r} 1}$ capacitor is sometimes useful to increase the small signal phase margin (please refer to Section 5.5: Compensation network design).

Figure 36. L6986F application circuit

6.2 Switching frequency

A resistor connected to the FSW pin features the selection of the switching frequency. The pinstrapping is performed at power-up, before the soft-start takes place. The FSW pin is pinstrapped and then driven floating in order to minimize the quiescent current from VIN.

Please refer toTable 6: $f_{S W}$ selection on page 11 to identify the pull-up / pull-down resistor value. $\mathrm{f}_{\mathrm{SW}}=250 \mathrm{kHz} / \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$ preferred codifications don't require any external resistor.

6.3 MLF pin

A resistor connected to the MLF pin features the selection of the between low noise mode / low consumption mode and the different RST thresholds. The pinstrapping is performed at power-up, before the soft-start takes place. The FSW pin is pinstrapped and then driven floating in order to minimize the quiescent current from VIN.

Please refer to Table 7 on page 11 to identify the pull-up / pull-down resistor value. (LNM, RST threshold 93\%) / (LCM, RST threshold 93\%) preferred codifications don't require any external resistor.

6.4 Voltage supervisor

The embedded voltage supervisor (composed of the RST and the DELAY pins) monitors the regulated output voltage and keeps the RST open collector output in low impedance as long as the $\mathrm{V}_{\mathrm{OUT}}$ is out of regulation. In order to ensure a proper reset of digital devices with a valid power supply, the device can delay the RST assertion with a programmable time.

Figure 37. Voltage supervisor operation

The comparator monitoring the FB voltage has four different programmable thresholds ($80 \%, 87 \%, 93 \%, 96 \%$ nominal output voltage) for high flexibility (see Section 6.3: MLF pin on page 43 and Table 7 on page 11).

When the RST comparator detects the output voltage is in regulation, a $2 \mu \mathrm{~A}$ internal current source starts to charge an external capacitor to implement a voltage ramp on the DELAY pin. The RST open collector is then released as soon as $\mathrm{V}_{\text {DELAY }}=1.234 \mathrm{~V}$ (see Figure 37).

The $\mathrm{C}_{\text {DELAY }}$ is dimensioned accordingly with Equation 42:

Equation 42

$$
C_{\text {DELAY }}=\frac{\mathrm{I}_{\mathrm{SSCH}} \bullet \mathrm{~T}_{\text {DELAY }}}{\mathrm{V}_{\text {DELAY }}}=\frac{2 \mu \mathrm{~A} \bullet \mathrm{~T}_{\text {DELAY }}}{1.234 \mathrm{~V}}
$$

The maximum suggested capacitor value is 270 nF .

6.5 Synchronization (LNM)

Beating frequency noise is an issue when multiple switching regulators populate the same application board. The L6986F synchronization circuitry features the same switching frequency for a set of regulators simply connecting their SYNCH pin together, so preventing beating noise. The master device provides the synchronization signal to the others since the SYNCH pin is I/O able to deliver or recognize a frequency signal.

For proper synchronization of multiple regulators, all of them have to be configured with the same switching frequency (see Table 6 on page 11), so the same resistor connected at the FSW pin.

In order to minimize the RMS current flowing through the input filter, the L6986F device provides a phase shift of 180° between the master and the SLAVES. If more than two devices are synchronized, all slaves will have a common 180° phase shift with respect to the master.

Considering two synchronized L6986F which regulates the same output voltage (i.e.: operating with the same duty cycle), the input filter RMS current is optimized and is calculated as:

Equation 43

$$
I_{\mathrm{RMS}}= \begin{cases}\frac{\mathrm{I}_{\mathrm{OUT}}}{2} \cdot \sqrt{2 \mathrm{D} \cdot(1-2 \mathrm{D})} & \text { if } D<0.5 \\ \frac{\mathrm{I}_{\mathrm{OUT}}}{2} \cdot \sqrt{(2 \mathrm{D}-1) \cdot(2-2 \mathrm{D})} & \text { if } D>0.5\end{cases}
$$

The graphical representation of the input RMS current of the input filter in the case of two devices with 0° phase shift (synchronized to an external signal) or 180° phase shift (synchronized connecting their SYNCH pins) regulating the same output voltage is provided in Figure 38. To dimension the proper input capacitor please refer to Section 6.6.1: Input capacitor selection on page 50.

Figure 38. Input RMS current

Figure 39 shows two regulators not synchronized.
Figure 39. Two regulators not synchronized

Figure 40 shows the same regulators working synchronized. The MASTER regulator (LX2 trace) delivers the synchronization signal (SYNCH1, SYNCH2 pins are connected together) to the SLAVE device (LX1). The SLAVE regulator works in phase with the synchronization signal which is out of phase with the MASTER switching operation.

Figure 40. Two regulators synchronized

Multiple L6986F can be synchronized to an external frequency signal fed to the SYNCH pin. In this case the regulator set is phased to the reference and all the devices will work with 0° phase shift.

The frequency range of the synchronization signal is $275 \mathrm{kHz}-1.4 \mathrm{MHz}$ and the minimum pulse width is 100 nsec (see Figure 41).

Figure 41. Synchronization pulse definition

Since the slope compensation contribution that is required to prevent subharmonic oscillations in peak current mode architecture depends on the switching frequency, it is important to select the same oscillator frequency for all regulators (all of them operate as SLAVE) as close as possible to the frequency of the reference signal (please refer to Table 6: $f_{S W}$ selection on page 11). As a consequence all the regulators have the same resistor value connected to the FSW pin, so the slope compensation is optimized accordingly with the frequency of the synchronization signal. The slope compensation contribution is latched at power-up and so fixed during the device operation.

The L6986F normally operates in MASTER mode, driving the SYNCH line at the selected oscillator frequency as shown in Figure 42 and Figure 39.
In SLAVE mode the L6986F sets the internal oscillator at 250 kHz typ. (see Table 6 on page 11 - first row) and drives the line accordingly.

Figure 42. L6986F synchronization driving capability

In order to safely guarantee that each regulator recognizes itself in SLAVE mode during the normal operation, the external master must drive the SYNCH pin with a clock signal
frequency higher than the maximum oscillator spread (refer to Table 6 on page 11) for at least 10 internal clock cycles.

For example: selecting $\mathrm{R}_{\mathrm{FSW}}=0 \Omega$ to GND
Table 10. Example of oscillator frequency selection from Table 6

Symbol	$\mathbf{R}_{\text {VCC }}$ (E24 series)	$\mathbf{R}_{\text {GND }}$ (E24 series)	$\mathbf{f}_{\mathbf{S W}}$ min.	$\mathbf{f}_{\mathbf{S w}}$ typ.	$\mathbf{f}_{\text {SW }}$ max.
f_{SW}	NC	0Ω	450	500	550

the device enters in slave mode after 10 pulses at frequency higher than 550 kHz and so it is able to synchronize to a clock signal in the range $275 \mathrm{kHz}-1.4 \mathrm{MHz}$ (see Figure 41).

Anyway it is suggested to limit the frequency range within $\pm 20 \%$ FSW resistor nominal frequency (see details in text below). If not spread spectrum is required, all the regulators synchronize to a frequency higher to the maximum oscillator spread (550 kHz in the example).

The device keeps operating in slave mode as far as the master is able to drive the SYNCH pin faster than 275 kHz (maximum oscillator spread for 250 kHz oscillator), otherwise it goes back into MASTER mode at the nominal oscillator frequency after successfully driving one pulse at 250 kHz (see Figure 43) in the SYNCH line.

Figure 43. Slave to master mode transition

The external master can force a latched SLAVE mode driving the SYNCH pin low at powerup, before the soft-start starts the switching activity. So the oscillator frequency is 250 kHz typ. fixed until a new UVLO event is triggered regardless FSW resistor value, that otherwise counts to design the slope compensation. The same considerations above are also valid.

The master driving capability must be able to provide the proper signal levels at the SYNCH pin (see Table 5 on page 8 -Synchronization section):

- Low level < V $\mathrm{V}_{\text {SN THL }}=0.7 \mathrm{~V}$ sinking 5 mA
- High level $>\mathrm{V}_{\mathrm{SYN}}$ THH $=1.2 \mathrm{~V}$ sourcing 0.7 mA

Figure 44. Master driving capability to synchronize the L6986F

As anticipated above, in SLAVE mode the internal oscillator operates at 250 kHz typ. but the slope compensation is dimensioned accordingly with FSW resistors so, even if the L6986F supports synchronization over the $275 \mathrm{kHz}-1.4 \mathrm{MHz}$ frequency range, it is important to limit the switching operation around a working point close to the selected frequency (FSW resistor).

As a consequence, to guarantee the full output current capability and to prevent the subharmonic oscillations the master must limit the driving frequency range within $\pm 20 \%$ of the selected frequency.

A wider frequency range may generate subharmonic oscillation for duty $>50 \%$ or limit the peak current capability (see I_{PK} parameter in Table 5) since the internal slope compensation signal may be saturated.
In order to guarantee the synchronization as a slave over distribution, temperature and the output load, the external clock frequency must be lower than 1.4 MHz.

6.6 Design of the power components

6.6.1 Input capacitor selection

The input capacitor voltage rating must be higher than the maximum input operating voltage of the application. During the switching activity a pulsed current flows into the input capacitor and so its RMS current capability must be selected accordingly with the application conditions. Internal losses of the input filter depends on the ESR value so usually low ESR capacitors (like multilayer ceramic capacitors) have higher RMS current capability. On the other hand, given the RMS current value, lower ESR input filter has lower losses and so contributes to higher conversion efficiency.

The maximum RMS input current flowing through the capacitor can be calculated as:

Equation 44

$$
\mathrm{I}_{\mathrm{RMS}}=\mathrm{I}_{\mathrm{OUT}} \cdot \sqrt{\left(1-\frac{\mathrm{D}}{\eta}\right) \cdot \frac{\mathrm{D}}{\eta}}
$$

Where $I_{O U T}$ is the maximum DC output current, D is the duty cycles, η is the efficiency. This function has a maximum at $D=0.5$ and, considering $\eta=1$, it is equal to $l_{\mathrm{OUT}} / 2$.

In a specific application the range of possible duty cycles has to be considered in order to find out the maximum RMS input current. The maximum and minimum duty cycles can be calculated as:

Equation 45

$$
\mathrm{D}_{\text {MAX }}=\frac{\mathrm{V}_{\text {OUT }}+\Delta \mathrm{V}_{\text {LOWSIDE }}}{\mathrm{V}_{\text {INMIN }}+\Delta \mathrm{V}_{\text {LOWSIDE }}-\Delta \mathrm{V}_{\text {HIGHSIDE }}}
$$

Equation 46

$$
\mathrm{D}_{\mathrm{MIN}}=\frac{\mathrm{V}_{\mathrm{OUT}}+\Delta \mathrm{V}_{\text {LOWSIDE }}}{\mathrm{V}_{\text {INMAX }}+\Delta \mathrm{V}_{\text {LOWSIDE }}-\Delta \mathrm{V}_{\text {HIGHSIDE }}}
$$

Where $\Delta V_{\text {HIGH_SIDE }}$ and $\Delta V_{\text {LOW_SIDE }}$ are the voltage drops across the embedded switches. The peak-to-peak voltage across the input filter can be calculated as:

Equation 47

$$
\mathrm{V}_{\mathrm{PP}}=\frac{\mathrm{I}_{\mathrm{OUT}}}{\mathrm{C}_{\mathrm{IN}} \bullet \mathrm{f}_{\mathrm{SW}}} \cdot\left(1-\frac{\mathrm{D}}{\eta}\right) \cdot \frac{\mathrm{D}}{\eta}+\mathrm{ESR} \cdot\left(\mathrm{I}_{\mathrm{OUT}}+\Delta \mathrm{I}_{\mathrm{L}}\right)
$$

In case of negligible ESR (MLCC capacitor) the equation of CIN as a function of the target VPP can be written as follows:

Equation 48

$$
C_{I N}=\frac{I_{\text {OUT }}}{V_{P P} \bullet f_{S W}} \cdot\left(1-\frac{D}{\eta}\right) \cdot \frac{D}{\eta}
$$

Considering $\eta=1$ this function has its maximum in $D=0.5$:

Equation 49

$$
\mathrm{C}_{\mathrm{INMIN}}=\frac{\mathrm{I}_{\mathrm{OUT}}}{4 \bullet \mathrm{~V}_{\mathrm{PPMAX}} \bullet \mathrm{f}_{\mathrm{SW}}}
$$

Typically C_{IN} is dimensioned to keep the maximum peak-peak voltage across the input filter in the order of $5 \% \mathrm{~V}_{\text {IN_MAX }}$.

Table 11. Input capacitors

Manufacturer	Series	Size	Cap value ($\mu \mathrm{F})$	Rated voltage (V)
TDK	C3225X7S1H106M	1210	10	50
	C3216X5R1H106M	1206		
Taiyo Yuden	UMK325BJ106MM-T	1210		

6.6.2 Inductor selection

The inductor current ripple flowing into the output capacitor determines the output voltage ripple (please refer to Section 6.6.3). Usually the inductor value is selected in order to keep the current ripple lower than $20 \%-40 \%$ of the output current over the input voltage range. The inductance value can be calculated by Equation 50:

Equation 50

$$
\Delta \mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~L}} \cdot \mathrm{~T}_{\mathrm{ON}}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~L}} \cdot \mathrm{~T}_{\mathrm{OFF}}
$$

Where $T_{\text {ON }}$ and $T_{\text {OFF }}$ are the on and off time of the internal power switch. The maximum current ripple, at fixed $\mathrm{V}_{\text {OUT }}$, is obtained at maximum $\mathrm{T}_{\text {OFF }}$ that is at minimum duty cycle (see Section 6.6.1: Input capacitor selection to calculate minimum duty). So fixing $\Delta I_{L}=20 \%$ to 40% of the maximum output current, the minimum inductance value can be calculated:

Equation 51

$$
\mathrm{L}_{\mathrm{MIN}}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\Delta \mathrm{I}_{\mathrm{LMAX}}} \cdot \frac{1-\mathrm{D}_{\mathrm{MIN}}}{\mathrm{~F}_{\mathrm{SW}}}
$$

where $f_{S W}$ is the switching frequency $1 /\left(\mathrm{T}_{\mathrm{ON}}+\mathrm{T}_{\mathrm{OFF}}\right)$.
For example for $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=2 \mathrm{~A}$ and $\mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$ the minimum inductance value to have $\Delta \mathrm{I}_{\mathrm{L}}=30 \%$ of $\mathrm{I}_{\mathrm{OUT}}$ is about $8.2 \mu \mathrm{H}$.

The peak current through the inductor is given by:

Equation 52

$$
\mathrm{I}_{\mathrm{L}, \mathrm{PK}}=\mathrm{I}_{\mathrm{OUT}}+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}
$$

So if the inductor value decreases, the peak current (that has to be lower than the current limit of the device) increases. The higher is the inductor value, the higher is the average output current that can be delivered, without reaching the current limit.

In Table 12 some inductor part numbers are listed.
Table 12. Inductors

Manufacturer	Series	Inductor value $(\mu \mathbf{H})$	Saturation current (A)
Coilcraft	XAL50xx	2.2 to 22	6.5 to 2.7
	XAL60xx	2.2 to 22	12.5 to 4

6.6.3 Output capacitor selection

The triangular shape current ripple (with zero average value) flowing into the output capacitor gives the output voltage ripple, that depends on the capacitor value and the equivalent resistive component (ESR). As a consequence the output capacitor has to be selected in order to have a voltage ripple compliant with the application requirements.

The voltage ripple equation can be calculated as:

Equation 53

$$
\Delta \mathrm{V}_{\mathrm{OUT}}=\mathrm{ESR} \bullet \Delta \mathrm{I}_{\mathrm{LMAX}}+\frac{\Delta \mathrm{I}_{\mathrm{LMAX}}}{8 \bullet \mathrm{C}_{\mathrm{OUT}} \bullet \mathrm{f}_{\mathrm{SW}}}
$$

Usually the resistive component of the ripple can be neglected if the selected output capacitor is a multi layer ceramic capacitor (MLCC).
The output capacitor is important also for loop stability: it determines the main pole and the zero due to its ESR. (see Section 5: Closing the loop on page 35 to consider its effect in the system stability).

For example with $\mathrm{V}_{\mathrm{OUT}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \Delta \mathrm{I}_{\mathrm{L}}=0.6 \mathrm{~A}, \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$ (resulting by the inductor value) and $\mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}$ MLCC:

Equation 54

$$
\frac{\Delta \mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{OUT}}} \cong \frac{1}{\mathrm{~V}_{\mathrm{OUT}}} \bullet \frac{\Delta \mathrm{I}_{\mathrm{LMAX}}}{\mathrm{C}_{\mathrm{OUT}} \bullet \mathrm{f}_{\mathrm{SW}}}=\left(\frac{1}{33} \bullet \frac{0,6}{8 \cdot 10 \mu \mathrm{~F} \cdot 500 \mathrm{kHz}}\right)=\frac{15 \mathrm{mV}}{3.3}=0.45 \%
$$

The output capacitor value has a key role to sustain the output voltage during a steep load transient. When the load transient slew rate exceeds the system bandwidth, the output capacitor provides the current to the load. In case the final application specifies high slew rate load transient, the system bandwidth must be maximized and the output capacitor has to sustain the output voltage for time response shorter than the loop response time.

In Table 13 some capacitor series are listed.
Table 13. Output capacitors

Manufacturer	Series	Cap value $(\mu$ F)	Rated voltage (V)	ESR (m Ω)
MURATA	GRM32	22 to 100	6.3 to 25	<5
	GRM31	10 to 47	6.3 to 25	<5
PANASONIC	ECJ	10 to 22	6.3	<5
	EEFCD	10 to 68	6.3	15 to 55
SANYO	TPA/B/C	100 to 470	4 to 16	40 to 80
TDK	C3225	22 to 100	6.3	<5

$7 \quad$ Application board

The reference evaluation board schematic is shown in Figure 45.
Figure 45. Evaluation board schematic

The additional input filter (C16, L3, C15, L2, C14) limits the conducted emission on the power supply.

Table 14. Bill of material

Reference	Part number	Description	Manufacturer
C1, C9, C10	CGA5L3X5R1H106K	$10 \mu \mathrm{~F}-1206-50 \mathrm{~V}-\mathrm{X} 5 \mathrm{R}-10 \%$	TDK
C 2	C2012X7S2A105K	$1 \mu \mathrm{~F}-0805-50 \mathrm{~V}-\mathrm{X} 7 \mathrm{~S}-10 \%$	TDK
C 3		$470 \mathrm{nF}-50 \mathrm{~V}-0603$	
C4		$2.2 \mathrm{pF}-50 \mathrm{~V}-0603$	
C5	$68 \mathrm{nF}-50 \mathrm{~V}-0603$		
C6		$10 \mathrm{nF}-50 \mathrm{~V}-0603$	
C7	Not mounted		
C8		$220 \mathrm{pF}-50 \mathrm{~V}-0603$	
C14, C15, C16	C3216X7R1H475K	$4.7 \mu \mathrm{~F}-1206-50 \mathrm{~V}-\mathrm{X7R}-10 \%$	TDK
C11, C13, C13A		Not mounted	
R1, R4		$0 \Omega-0603$	
R6		$1 \mathrm{M} \Omega-1 \%-0603$	
R7		$75 \mathrm{k} \Omega-1 \%-0603$	
R8			

Table 14. Bill of material (continued)

Reference	Part number	Description	Manufacturer
R9		$240 \mathrm{k} \Omega-1 \%-0603$	
R11	$10 \Omega-1 \%-0603$		
R2, R3, R5, R10	Not mounted		
L1	XAL5050-682MEC	$6.8 \mu \mathrm{H}$	Coilcraft
L2	XAL4030-472MEC	$4.7 \mu \mathrm{H}$	Coilcraft
L3	MPZ2012S221A	EMC bead	TDK
J1	Open		
J2	Closed	Switchover enabled	
J3	Open	To adjust the ISKIP current level in LCM operation. Leave open in LNM	
J4	L6986F		STM

Figure 46 and Figure 47 show the magnitude and phase margin Bode's plots related to Table 14.

The small signal dynamic performance in this configuration is:

Equation 55

$$
\begin{aligned}
& \mathrm{BW}=58 \mathrm{kHz} \\
& \text { phase margin }=67^{\circ}
\end{aligned}
$$

Figure 46. Magnitude Bode's plot

Figure 47. Phase margin Bode's plot

Figure 48. Top layer

Figure 49. Bottom layer

8 Efficiency curves

Figure 50. Efficiency: $\mathrm{V}_{\mathrm{IN}}=13.5 \mathrm{~V}-\mathrm{V}_{\mathrm{OUT}}=3.3 \mathrm{~V}$ - $\mathrm{fsw}=500 \mathrm{kHz}$

Figure 51. Efficiency curves: $\mathrm{V}_{\mathrm{IN}}=13.5 \mathrm{~V}-\mathrm{V}_{\mathrm{OUT}}=3.3 \mathrm{~V}-\mathrm{fsw}=500 \mathrm{kHz}$ (log scale)

Figure 52. Efficiency curves: $\mathrm{V}_{\mathrm{IN}}=13.5 \mathrm{~V}-\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}-\mathrm{fsw}=500 \mathrm{kHz}$

Figure 53. Efficiency curves: $\mathrm{V}_{\mathrm{IN}}=13.5 \mathrm{~V}-\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}-\mathrm{fsw}=500 \mathrm{kHz}$ (log scale)

Figure 54. Efficiency curves: $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}-\mathrm{V}_{\mathrm{OUT}}=3.3 \mathrm{~V}$ - fsw $=500 \mathrm{kHz}$

Figure 55. Efficiency curves: $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}-\mathrm{V}_{\mathrm{OUT}}=3.3 \mathrm{~V}-\mathrm{fsw}=500 \mathrm{kHz}$ (log scale)

Figure 56. Efficiency curves: $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}-\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}$ - $\mathrm{fsw}=500 \mathrm{kHz}$

Figure 57. Efficiency curves: $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}-\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}-\mathrm{fsw}=500 \mathrm{kHz}$ (log scale)

$9 \quad$ Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

9.1 HTSSOP16 package information

Figure 58. HTSSOP16 package outline

Table 15. HTSSOP16 package mechanical data

Symbol	Dimensions (mm)		
	Min.	Typ.	Max.
A			1.20
A1	0.80	1.00	0.15
A2	0.19		1.05
b	0.09		0.30
c	4.90	3.00	0.20
D	2.8	6.40	5.10
D1	6.20	4.40	3.2
E	4.30	3	6.60
E1	2.8	0.65	4.50
E2		0.60	3.2
e	0.45	1.00	0.75
L			
L1	0.00		8.00
k			0.10
aaa			

10 Order codes

Table 16. Order codes

Part numbers	Package	Packaging
L6986F	HTSSOP16	Tube
L6986FTR		Tape and reel

11 Revision history

Table 17. Document revision history

Date	Revision	Changes
06-May-2015	1	Initial release.
18-Feb-2016	2	Updated Table 3: Thermal data on page 7 (added $\mathrm{R}_{\text {th JC) }}$). Updated Table 6: f $f_{S W}$ selection on page 11 (added note 2. below table). Updated Section 6.5: Synchronization (LNM) on page 45 (replaced value of "range" "2 MHz" by "1.4 MHz", added text).

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

$$
\text { © } 2016 \text { STMicroelectronics - All rights reserved }
$$

Данный компонент на территории Российской Федерации

Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:
105318, г.Москва, ул.Щербаковская д.3, офис 1107, 1118, ДЦ «Щербаковский»
Телефон: +7 495 668-12-70 (многоканальный)
Факс: +7 495 668-12-70 (доб.304)
E-mail: info@moschip.ru
Skype отдела продаж:
moschip.ru
moschip.ru_6
moschip.ru_4
moschip.ru_9

