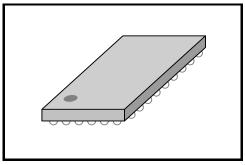
TOSHIBA TB6860WBG


TOSHIBA Bi-CMOS Integrated Circuit Silicon Monolithic

TB6860WBG

Qi compliant wireless power receiver and charger IC

1. Outline

The TB6860WBG is Qi compliant wireless power receiver (Rx) IC. The TB6860WBG includes a bridge rectifier circuit, a modulation circuit, and a step-down DCDC converter. The wireless power system is constructed easily by combining with the TB6865FG which is a wireless power transmitter (Tx) IC. Charge mode and feed mode can be selected because the step-down DCDC converter has two operating modes. It expands usage flexibility.

S-WFBGA39-0305-0.40A01

2. Applications

Mobile devices (Smartphone, tablet), Battery pack, Mobile accessory etc.

3. Features

• Input voltage : PVDD2 = 3.4V to 12V

• Maximum output current : Step-down DCDC converter ... 1.2A

3.3V-LDO output (VDD33) 60mA

Synchronous rectification step-down DCDC converter : Selectable modes (feed mode or charge mode)

Switching frequency 3MHz

• I²C communication (Slave/Fast mode)

• WPC v1.0.3 compliant modulation

• Under voltage lockout (UVLO)

Over voltage lockout(OVLO)

Over current limit protection (OCL)

• Thermal shutdown protection (TSD)

• Package : WCSP (4.25mm×2.65mm)

This product has a MOS structure and is sensitive to electrostatic discharge. When handling this product, ensure that the environment is protected against electrostatic discharge by using an earth strap, a conductive mat and an ionizer. Ensure also that the ambient temperature and relative humidity are maintained at reasonable levels.

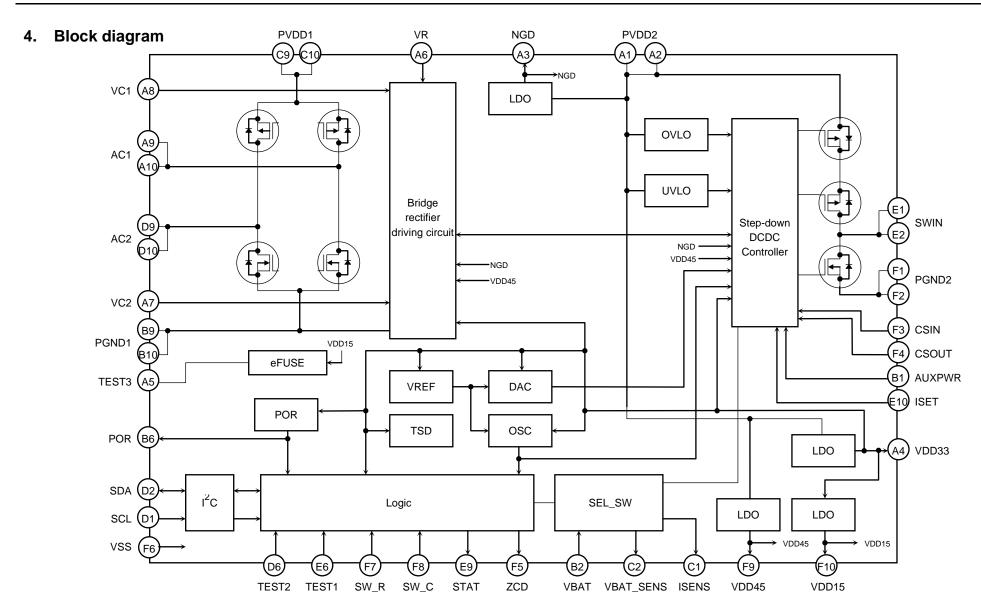


Figure 4.1 Block diagram

5. Pin Assignment

10
9
8
7
6
5
4
3
2
1

AC1	PGND1	PVDD1	AC2	ISET	VDD15
AC1	PGND1	PVDD1	AC2	STAT	VDD45
VC1					SW_C
VC2					SW_R
VR	POR		TEST2	TEST1	VSS
TEST3					ZCD
VDD33					CSOUT
NGD					CSIN
PVDD2	VBAT	VBAT_SENS	SDA	SWIN	PGND2
PVDD2	AUXPWR	ISENS	SCL	SWIN	PGND2
Δ	B	C	D	F	F

(Top View)

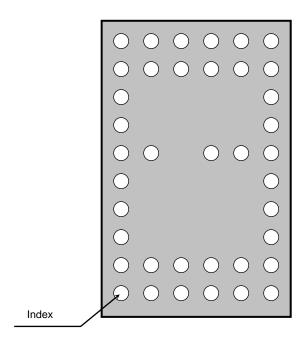


Figure 5.1 Pin Assignment

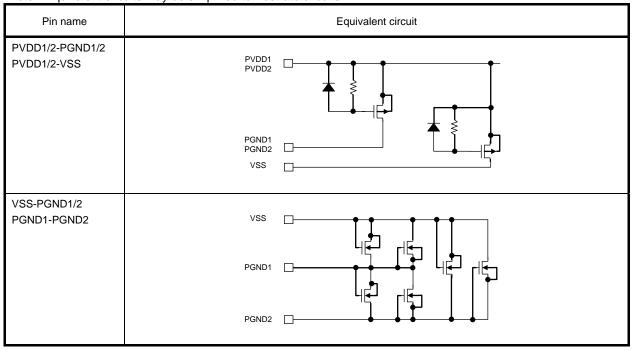
Note: The pin configuration figure is indicated that package ball side is located on the back and indicating pins from the surface view

6. Pin function

Table 6.1 Pin function

Pin Number	Pin symbol	I/O	Description
C9, C10	PVDD1	0	Bridge rectifier voltage output Connect smoothing ceramic capacitor between PVDD1 and GND. And connect PVDD1 with PVDD2.
A9, A10	AC1	I/O	Antenna terminals for receiver
D9, D10	AC2	I/O	Antenna terminais for receiver
B9, B10	PGND1	-	Power ground 1 Connect to common ground (GND).
F5	ZCD	0	Test terminal 4 Keep open condition.
В6	POR	0	Power On Reset
D2	SDA	I/O	DATA terminal for I ² C (Note) Connect to pull-up resistor because it is an open drain terminal.
D1	SCL	I	CLK input terminal for I ² C (Note)
F6	VSS	-	Analog ground terminal Connect to common ground (GND)
E6	TEST1	1	Test terminal 1 Connect to GND
D6	TEST2	I	Test terminal 2 Connect to GND
A5	TEST3	1	Test terminal 3 Connect to VDD33
F7	SW_R	ı	Input terminal for resistance load ASK modulation control This terminal is available by setting internal resister. When it's not in use, connect to GND.
F8	SW_C	I	Input terminal for capacitive load ASK modulation control This terminal is available by setting internal resister. When it's not in use, connect to GND.
E9	STAT	0	Status signal output terminal STAT="L" : Step-down DCDC converter is on. STAT="H" : Step-down DCDC converter is off.
C2	VBAT_SENS	0	Monitor terminal for battery voltage One third of VBAT input voltage is output.
C1	ISENS	0	Monitor terminal for output current It's possible to monitor following three kinds of voltages by setting internal resister. 1) Output current voltage 2) The voltage of VBAT×1/3 (VBAT_SENS output) 3) The voltage of PVDD2×1/8.
A8	VC1	0	Capacitor connection terminal 1 for capacitive load ASK modulation This terminal is open drain. When using this function, connect capacitor between VC1 and AC1. When it's not in use, connect to GNO or keep open condition.
A7	VC2	0	Capacitor connection terminal 2 for capacitive load ASK modulation This terminal is open drain. When using this function, connect capacitor between VC2 and AC2. When it's not in use, connect to GNO or keep open condition.

Note: The SDA and SCL pins have ESD protection diodes to VDD33. TB6862WBG cannot share the $\rm I^2C$ bus with other peripheral IC.


Table 6.2 Pin function

Pin Number	Pin symbol	I/O	Description
A1, A2	PVDD2	-	Power supply terminal This terminal supplies power to internal LDOs and step-down DCDC converter. Connect capacitor between PVDD2 and GND.
E1, E2	SWIN	0	Step-down DCDC converter output terminal Connect inductor between SWIN and CSIN.
F1, F2	PGND2	-	Power ground 2 Connect to common ground (GND).
F3	CSIN	I	Current sense input terminal (+) Connect resistor for current detection of $68m\Omega$ between CSIN and CSOUT.
F4	CSOUT	I	Current sense input terminal (-) Connect resistor for current detection of $68m\Omega$ between CSIN and CSOUT.
B1	AUXPWR	1	Voltage feedback input
F9	VDD45	0	4.5V-LDO output terminal for internal circuit It is impossible to supply power to external parts. Connect capacitor between VDD45 and GND.
A4	VDD33	0	3.3V-LDO output terminal Connect capacitor between VDD33 and GND.
F10	VDD15	0	1.5V-LDO output terminal for internal circuit. It is impossible to supply power to external parts. Connect capacitor between VDD15 and GND.
А3	NGD	0	PVDD2-4.5V output terminal for internal circuit. It is impossible to supply power to external parts. Connect capacitor between NGD and PVDD2.
B2	VBAT	I	Battery voltage input terminal In charge mode, input output voltage of external battery.
E10	ISET	I	Test terminal 5 Connect to GND
A6	VR	0	Resistor connect terminal for resistance load ASK modulation control This terminal is open drain terminal. When using this function, connect resistor between VR and PVDD1. When it's not in use, connect to GNO or keep open condition.

7. Equivalent circuits for input/output/power supply terminals

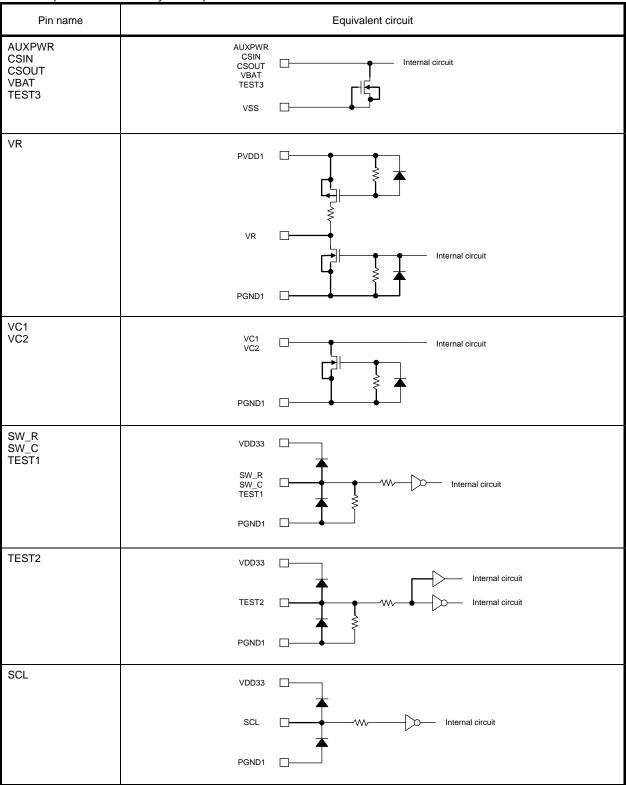

7.1 Power supply terminal

Table 7.1 Equivalent circuits for power supply terminals

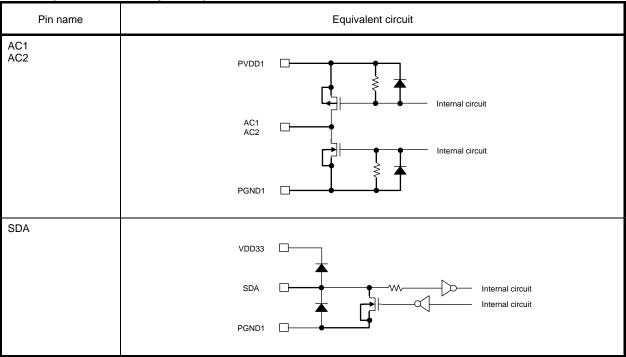

7.2 Input terminal

Table 7.2 Equivalent circuits for input terminals

7.3 Input/output terminal

Table 7.3 Equivalent circuits for Input/output terminals

7.4 Output terminal

Table 7.4 Equivalent circuits for output terminals

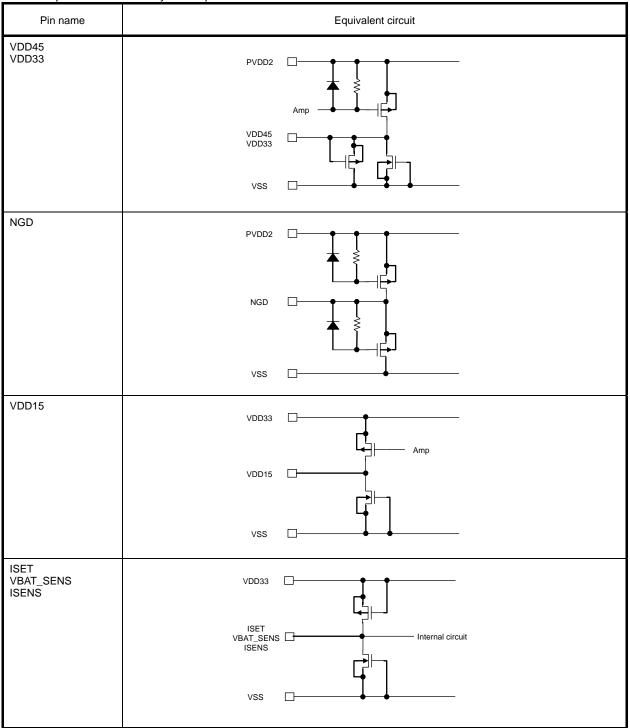
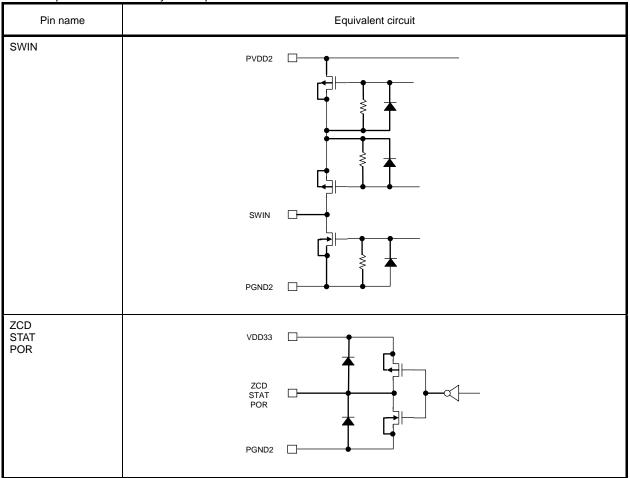



Table 7.5 Equivalent circuits for output terminals

8. Function

The TB6860WBG is Qi compliant wireless power receiver (Rx) IC. Qi compliant wireless power system transfers power by adjoining coils of transmitter (Tx) and receiver (Rx). The TB6860WBG includes a bridge rectifier circuit which rectifies AC power received by a coil (Rx), a modulation circuit for communicating from Rx to Tx side, and a step-down DCDC converter for supplying power to the load. The step-down DCDC converter makes possible to operate the driver in two modes of charge mode and feed mode. Select the operating mode depending on the method of power feed to the system. Construction of the circuit when the TB6860WBG charges battery directly (charge mode) is shown in Figure 8.1. And the Figure 8.2 indicates the construction of the circuit when the TB6860WBG feeds power to the battery charging circuit (feed mode). It is possible to feed power to the load with high efficiency by adopting step-down DCDC converter.

(1) Charging the battery directly

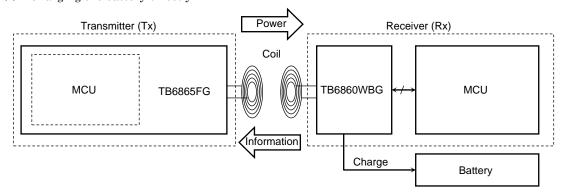


Figure 8.1 Charge mode

(2) Charging the battery through feeding power to the external PMIC

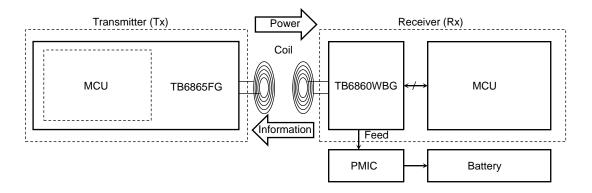


Figure 8.2 Feed mode

TOSHIBA TB6860WBG

Communication from Rx to Tx is necessary to construct wireless feed system. Rx should monitor receiving power and return communication signal according to Qi standard. The TB6860WBG includes a modulation circuit and a power circuit (VDD33) which drives MCU. The communication signal between Rx and Tx should be input from MCU to the TB6860WBG. And it should be controlled by I²C interface to enable each function which is fed power from the TB6860WBG. Construct the system by combining the MCU which includes AD converter, I²C interface, and GPIO. Connecting description is shown in the Figure 8.3.

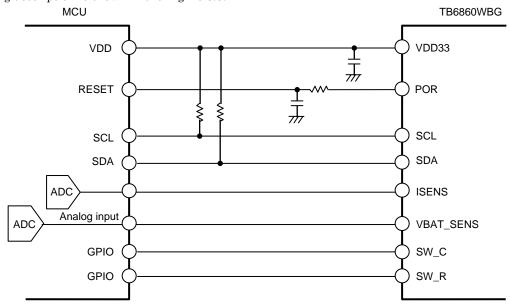


Figure 8.3 Example of connection with MCU

The TB6860WBG drives modulated operation, which is necessary to communicate between Rx and Tx by inputting data to SW_C terminal or SW_R terminal from MCU. The TB6860WBG supports two ASK modulations of capacitive load and resistance load. In case of ASK modulation by capacitive load, connect the capacitor to VC1 and VC2 terminals and input data to SW_C terminal. In case of ASK modulation by resistance load, connect the resistor between VR terminal and PVDD1 terminal and input data to SW_R terminal. It is possible to drive modulated operation without inputting data to SW_C terminal and SW_R terminal by using I²C interface. In this case, EN_CAP register and EN_RES register are re-written by I²C interface.

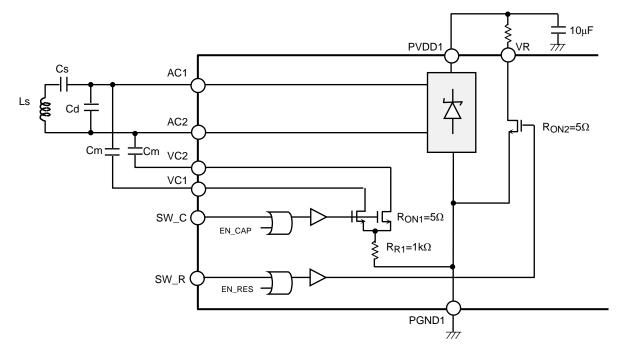


Figure 8.4 Example of modulation connection of capacitive load and resistance load

8.1 Step-down DCDC converter charge/feed mode

Step-down DCDC converter operates with switching frequency of 3MHz (typ.). Step-down DCDC converter has two operation modes of charge mode and feed mode. Operation mode is configured by CH_DC register. Step-down DCDC converter is turned on and off by EN_DCDC register. When step-down DCDC converter turns on, STAT outputs "L", and when it turns off, STAT outputs "H".

8.1.1 Waiting mode

When EN_DCDC is set "0", the step-down DCDC converter is turned off and the operation moves to waiting mode. When EN_DCDC is set "1", the step-down DCDC converter starts operation with charge mode or feed mode according to the CH_DC register set. Make sure to configure the related registers before turning on the step-down DCDC converter. EN_DCDC register is rewritten to "0" automatically and the operation moves to the waiting mode in following two cases; operation of the step-down DCDC converter stops by protection circuits and charging is completed in the charge mode.

8.1.2 Charge mode

It is possible to charge the battery directly by setting CH_DC "0" and operates the step-down DCDC converter—in charge mode. Charge mode has the constant current (CC) charge modes (trickle charge, pre-charge, and fast charge) and the constant voltage (CV) charge mode (taper charge). Control, switch, and charge completion of these modes are detected by monitoring battery voltage by AUXPWR terminal and monitoring charging current by the voltage between CSIN terminal and CSOUT terminal.

(1) Trickle charge mode

It detects charge of the over discharged battery and abnormal operation. The trickle charge can be turned on and off by the EN_TRKL register. When the step-down DCDC converter is set on (EN_DCDC="1") while the trickle charge is on (EN_TRKL="1"), the voltage of the battery is detected. When the voltage of the battery is detected 2.1 V or less, the trickle charge starts. The charge current of the trickle charge mode is 40mA (typ.). When the step-down DCDC converter is set on (EN_DCDC="1") while the trickle charge is off (EN_TRKL="0"), the operation moves to the pre charge mode regardless of the voltage of the battery. When the voltage of the battery reaches 2.1 V during the trickle charge mode, it moves to the pre charge mode.

(2) Pre charge mode

It charges the over discharged battery. When the voltage of the battery reaches 2.1 V while the trickle charge is on (EN_TRKL="1"), the pre charge starts. When the step-down DCDC converter is set on (EN_DCDC="1") while the trickle charge is off (EN_TRKL="0"), the pre charge also starts. The charge current in the pre charge mode can be set in the range of 0mA to 400mA by the PRCC2-0 register. When the voltage of the battery reaches the voltage configured by FSTV3-0 register during the pre charge mode, the operation moves to the fast charge mode.

(3) Fast charge mode

It is a rapid charge mode. When the voltage of the battery reaches the voltage configured by FSTV3-0 register during the pre charge mode, the operation moves to the fast charge mode. The charge current of the fast charge mode can be set in the range of 0mA to 1,200mA by CCLT4-0 register. When the voltage of the battery reaches the voltage set by CVF7-0 register during the fast charge mode, the operation moves to the taper charge mode.

(4) Taper charge mode

It is the charge mode of the constant voltage. When the voltage of the battery reaches the voltage set by CVF7-0 register during the fast charge mode, the taper charge starts. The charge voltage of the taper charge mode can be set by CVF7-0 register in the range of 3.0V to 5.55V. In the taper charge mode, the detection of charge completion can be set on or off by the EN_TERM register. When the charge completion detection is on (EN_TERM="1"), the charge is judged completed in the case the charge current decreases to the current value set by TERMC1-0 register. When charge completion is detected, the step-down DCDC converter is turned off (EN_DCDC="0") and the operation moves to the waiting mode. The current of termination can be set by TERMC1-0 register in the range of 50mA to 200mA. When the charge completion detection is turned off (EN_DCDC="0"), this detection is invalid and setting of EN_DCDC register should be set "0" to stop charging.

Table 8.1 Charge mode

Charge mode	Control	Charge current	Starting condition	Finishing condition	Remarks
Trickle charge	CC	40mA	EN_TRKL="1" & Battery voltage<2.1V	EN_TRKL="1" & Battery voltage≥2.1V	ON or OFF setting of the trickle charge is possible by EN_TRKL register
Pre charge	CC	50mA to 400mA	EN_TRKL="0" or Battery voltage≥2.1V	Battery voltage≥FSVT3-0 (2.1V to 3.6V)	
Fast charge	CC	1,200mA (max)	Battery voltage≥ FSVT3-0 (2.1V to 3.6V)	Battery voltage≥CVF7-0 (3.0V to 5.55V)	
Taper charge	CV	50mA to 200mA	Battery voltage≥CVF7-0 (3.0V to 5.55V)	Charge current ≤ TERMC1-0 (50mA to 200mA)	ON or OFF setting of the charge completion detection is possible by EN_TERM register

Note: Make sure to set CVF7-0 voltage > FSVT3-0 voltage.

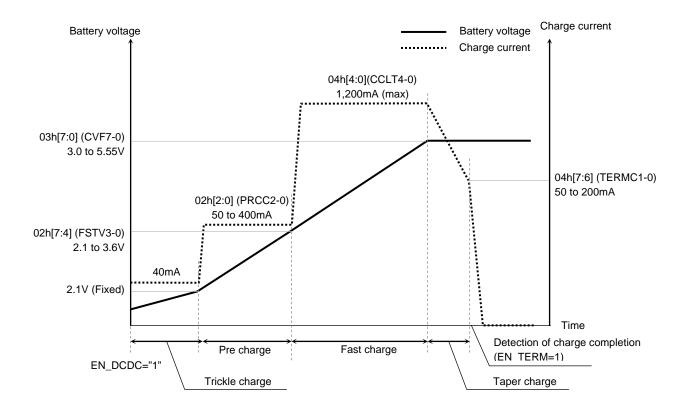


Figure 8.5 Output of charge mode

8.1.3 Feed mode

The step-down DCDC converter operates in feed mode by setting CH_DC="1". The constant voltage is supplied in this mode. Feed mode has soft start and CV mode. These modes are switched by internal counter automatically. The output voltage can be set in the range of 3.0V to 5.55V by CVF7-0 register. The over current limit value is different between the soft start mode and CV mode.

(1) Soft start

It avoids rush current which is generated just after startup. Soft start starts by setting the step-down DCDC converter on (EN_DCDC="1"). The over current limit value changes three steps as follows;

For 170µs just after soft start starting: 300mA

170μs to 340μs: 600mA 340μs to 510μs: 900mA

The operation moves to the feed mode after $510\mu s$ of starting soft start.

(2) CV mode

It supplies constant voltage. The over current limit value is 2.4A in this mode

Table 8.2 Feed mode

Feed	d mode	Allowable current (typ.) Over current limit (typ.)		Setting voltage (typ.)	Remarks
(CV	1.2A	2.4A	3.0V to 5.55V (CVF7-0)	CCLT4-0 setting is not valid.

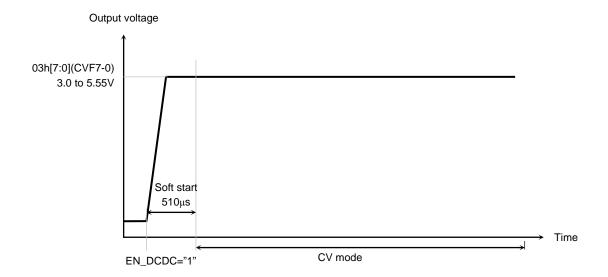


Figure 8.6 Output of feed mode

8.2 Circuit state in each operation mode

Table 8.3 Circuit in each mode

Mode		Rectifier circuit, Modulation circuit, LDO	Step-down DCDC converter	UVLO, OVLO(Note1), TSD	Safety timer (Note2)	OCL	ı²c	Writable register
Waiting mode		Enable	Disable	Enable	Disable	Disable	Access enable	All address
	Trickle charge	Enable	Enable	Enable	Enable	Enable	Access enable	00h (Note3)
Charge	Pre charge	Enable	Enable	Enable	Enable	Enable	Access enable	00h (Note3)
mode	Fast charge	Enable	Enable	Enable	Enable	Enable	Access enable	00h (Note3)
	Taper charge	Enable	Enable	Enable	Enable	Enable	Access enable	00h (Note3)
Feed	Soft start	Enable	Enable	Enable	Disable	Enable	Access enable	00h (Note3)
mode	CV	Enable	Enable	Enable	Disable	Enable	Access enable	00h (Note3)

Note 1: It is possible to turn OVLO function on or off by setting of 00h[7] resister, (EN_OVLO).

Note 2: It is possible to turn safety timer on or off by setting of 01h[3] resister, (BTMSD).

Note 3: No writing any resisters except 00h resister at Charge mode and Feed mode.

8.3 Interface

Each function of the TB6860WBG is configured by I²C interface. It supports the sleeve function (I²C standard) and the fast mode (400 kHz). Single writing, continuous writing, single reading, and continuous reading are possible. The sleeve address of the TB6860WBG is fixed 0b1001101.As for description of writing and reading; refer to below Figure 8.7 to Figure 8.10.

Symbol	Description
S	Start condition
Sr	Repeat start condition
Slave Address	Sleeve address (7bit)
R	Read mode (R/W=1)
W	Write mode (R/W=0)
А	Acknowledge signal (output L level)
NA	Non acknowledge signal (output HiZ)
Р	Stop condition

Table 8.4 Description of I²C interface

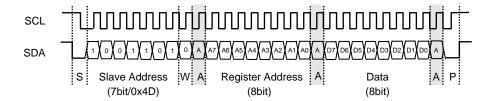


Figure 8.7 Single writing mode

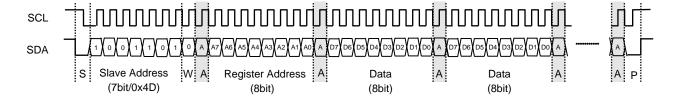


Figure 8.8 Continuous writing mode

Note 1: In continuous writing, return ACK without writing data to register 06h.

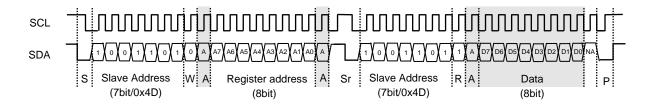


Figure 8.9 Single reading mode

17

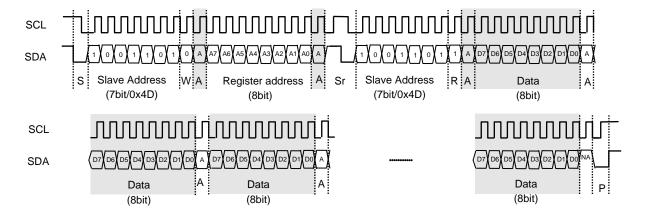


Figure 8.10 Continuous reading mode

- Note 1: When ACK="1", the command of stop condition should be input to MCU.
- Note 2: When stop condition is recognized, the TB6860WBG opens SDA to wait for the start condition. In case the data is under accessed, transferred data is not executed. Clock count is initialized.
- Note 3: When the command is interrupted on the way, the command before interrupted is reflected. And the interrupted command is not executed. Please set the command again to reflect the command.

9. Detail description of functions

9.1 Register

The TB6860WBG can change the operation mode arbitrarily by changing the register by I^2C interface. The content of register is described in below table.

Table 9.1 Description of register

Address	Command	Write/Read	Functions
00h	Operation set	W/R	Operation mode set
01h	Charge function set	W/R	Charge function set
02h	Charge voltage/current set	W/R	Threshold set between pre charge and fast charge voltage. Pre charge current set.
03h	Output voltage level set	W/R	Output voltage set
04h	Termination current set /Charge current set	W/R	Termination current set, Fast charge current set
05h	Input over current limit/ Current sense output mode set	W/R	Input over current limit set, output mode of ISENS terminal set
06h	Charge information read	R	Charge mode information read, status of error read
07h	Test mode 1	W/R	Toshiba test mode. Do not access.
10h	Test mode 2	R	Toshiba test mode. Do not access.

Connected host side (MCU) controls the register. Under managed by the host side, the TB6860WBG changes the operation mode.

Table 9.2 Operation set: 00h

Address		7	6	5	4	3	2	1	0
	Bit Symbol	EN_OVLO	EN_DCDC	-	-	-	EN_CAP	EN_RES	-
	Write/Read	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R
	Default	1	0	1	1	1	0	0	1
00h	Function	OVLO Enable	DCDC Enable	-	-	-	Capacitive Load Enable	Resistance Load Enable	-
			0:Disable 1:Enable	1	1		0:Terminal (SW_C) 1:FET enable	0:Terminal (SW_R) 1:FET enable	1

Table 9.3 Charge function set: 01h

Address		7	6	5	4	3	2	1	0
	Bit Symbol	EN_TRKL	EN_TERM	ı	WDTE	BTMSD	-	1	CH_DC
	Write/Read	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R
01h	Default	1	1	0	1	1	1	0	0
	Function	Trickle Charge Enable	End Charge Cycle Enable	-	Watch- Dog Timer Enable	Battery Missing Detector	-	-	Charge/ Feed Mode Set
		0:Disable 1:Enable	0:Disable 1:Enable	0	0:Disbale 1:Enable	0:Disbale 1:Enable	1	0	0:Charge Mode 1:Feed Mode

Table 9.4 Charge voltage/current set: 02h

Address		7	6	5	4	3	2	1	0
Address	Bit Symbol	FSTV3	FSTV2	FSTV1	FSTV0	-	PRCC2	PRCC1	PRCC0
	Write/Read	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R
	Default	0	0	0	0	0	0	0	0
02h		Threshold Set between Pre-charge and Fast-charge change voltage				-	Pre	-charge Curre	nt Set
52	Function	0h: 2.1V	4h: 2.5V	8h: 2.9V	Ch: 3.3V		000: 50m	A	100: 250mA
	Function	1h: 2.2V	5h: 2.6V	9h: 3.0V	Dh: 3.4V	0	001: 100m	Ą	101: 300mA
		2h: 2.3V	6h: 2.7V	Ah: 3.1V	Eh: 3.5V	U	010: 150m	A	110: 350mA
		3h: 2.4V	7h: 2.8V	Bh: 3.2V	Fh: 3.6V		011: 200mA	١	111: 400mA

Table 9.5 Output voltage level set: 03h

Address		7	6	5	4	3	2	1	0		
Address	Bit Symbol	CVF7	CVF6	CVF5	CVF4	CVF3	CVF2	CVF1	CVF0		
	Write/Read	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R		
	Default	0	0	0	0	0	0	0	0		
03h			CV Mode Output Voltage Set								
	Function	00h:3.000V FDh:5.530V									
		01h:3.010V 02h:3.020V		volta	ge Step = 10m	V/bit FEh:5.540V FFh:5.550V					

Table 9.6 Termination/charge current set: 04h

Address		7	6	5	4	3	2	1	0	
Address	Bit Symbol	TERMC1	TERMC0	-	CCLT4	CCLT3	CCLT2	CCLT1	CCLT0	
	Write/Read	W/R	W/R	-	W/R	W/R	W/R	W/R	W/R	
	Default	0	0	-	0	0	0	0	0	
		Termination Current Set			Charge Current Limit Set					
04h	Function	00: 50mA 01:100mA	10:150mA 11:200mA	Don't care	00h:0mA 01h:50mA 02h:100mA 03h:150mA	Curren	t step=50mA/b	18h:120	00mA 50mA	

Table 9.7 Input over current limit/current sense output mode set: 05h

Address		7	6	5 4		3	2	1	0	
Address	Bit Symbol	ISNOS1	ISNOS0	-	AICLT4	AICLT3	AICLT2	AICLT1	AICLT0	
	Write/Read	W/R	W/R	-	W/R	W/R	W/R	W/R	W/R	
	Default	0	0	-	0	0	0	0	0	
		ISENS Output Select			Input Current Limit Set					
05h	Function	00: DCDC converter output current 01: VBAT×1/3 10: PVDD2×1/8 11: Prohibit 00h:0mA 01h:100mA 02h:200mA 03h:300mA		Current :	step=100mA/bi	18h:240	00mA 00mA			

Table 9.8 Charge information read: 06h

A ddroop		7	6	5	4	3	2	1	0
Address	Bit Symbol	TRC	PRC	FST	TPC	UV_OVLO	TSD	NBAT	WDTD
	Write/Read	R	R	R	R	R	R	R	R
	Default	0	0	0	0	0	0	0	0
06h			Charge	e Status		Voltage Detect	TSD Detect	Battery Connection Error Detect	Watch-dog Timer Detect
	Function	1:Trickle	1:Pre		0:Nop* 1:Taper Charge	0:Nop* 1:UVLO/OVL O Detect	0:Nop* 1:TSD Detect	0:Nop* 1: Battery Connection Error Detect	0:Nop* 1:Watch-dog Timer Detect

^{*} Nop: Non-operation

Table 9.9 Test mode 1/2: 07h/10h

Address		7 6 5 4 3 2 1 0										
Address	Bit Symbol	TEST Mode										
07h, 10h	Function		Toshiba test mode (Do not access)									

9.2 Detail description of register

9.2.1 Operation set (00h)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
00h	EN_OVLO	EN_DCDC	1	1	0	EN_CAP	EN_RES	1
Initial value	1	0	1	1	1	0	0	1

This register sets operation mode. It sets the on and off modes of each circuit.

 EN_OVLO (bit7) : ON/OFF setting of the over voltage lockout (OVLO) mode.

Table 9.10 EN_OVLO set

EN_OVLO	Function
0	Disable
1	Enable

(Initial value)

 ${\rm EN_DCDC}$ (bit 6) ${\rm :ON/OFF}$ setting of the step-down DCDC converter.

Table 9.11 EN_DCDC set

EN_DCDC	Function
0	Disable
1	Enable

(Initial value)

EN_CAP (bit2) : Selecting input of capacitive load modulation operation.

Table 9.12 EN_CAP set

EN_CAP	Function
0	SW_C terminal
1	Internal FET ON

(Initial value)

EN_RES (bit1) : Selecting input of resistance load modulation operation.

Table 9.13 EN_RES set

EN_RES	Function
0	SW_R terminal
1	Internal FET ON

(Initial value)

Note 1: Bit5, bit4, and bit0 must be fixed "1".

9.2.2 Charge function set (01h)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
01h	EN_TRKL	EN_TERM	0	WDTE	BTMSD	1	0	CH_DC
Initial value	1	1	0	1	1	1	0	0

This register sets conditions and on/off of charge function.

EN_TRKL (bit7) : Setting ON/OFF of the trickle charge mode.

Table 9.14 EN_TRKL set

EN_TRKL	Function	
0	Disable	
1	Enable	(Initial value)

EN_TREM (bit6): Setting ON/OFF of the charge completion of the taper charge mode.

Table 9.15 EN_TREM set

EN_TREM	Function	
0	Disable	
1	Enable	(I

(Initial value)

WDTE (bit4) : Setting ON/OFF of the watch dog timer.

Table 9.16 WDTE set

WDTE	Function
0	Disable
1	Enable

(Initial value)

BTMSD (bit3) : Setting ON/OFF of the battery connection error detection

Table 9.17 BTMSD set

BTMSD	Function
0	Disable
1	Enable

(Initial value)

CH_DC (bit0) : Switching the charge and feed modes.

Table 9.18 CH_DC set

CH_DC	Function
0	Charge mode
1	Feed mode

(Initial value)

Note 1: Bit5 and bit1 must be fixed "0".

Note 2: Bit2 must be fixed "1".

9.2.3 Charge voltage/current set (02h)

_	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
02h	FSTV3	FSTV2	FSTV1	FSTV0	-	PRCC2	PRCC1	PRCC0
Initial value	0	0	0	0	0	0	0	0

This register sets the threshold voltage between the pre charge and the fast charge modes in charging and sets the current of the pre charge.

FSTV3-0(bit7-4) : Selecting the threshold voltage between the pre charge and the fast charge modes.

Table 9.19 FSTV3-0 set

FSTV3	FSTV2	FSTV1	FSTV0	Threshold voltage
0	0	0	0	2.1V
0	0	0	1	2.2V
0	0	1	0	2.3V
0	0	1	1	2.4V
0	1	0	0	2.5V
0	1	0	1	2.6V
0	1	1	0	2.7V
0	1	1	1	2.8V
1	0	0	0	2.9V
1	0	0	1	3.0V
1	0	1	0	3.1V
1	0	1	1	3.2V
1	1	0	0	3.3V
1	1	0	1	3.4V
1	1	1	0	3.5V
1	1	1	1	3.6V

(Initial value)

 $\label{eq:process} \mbox{PRCC2-0(bit2-0)} \ \ \mbox{: Selecting the current of the pre charge}.$

Table 9.20 PRCC2-0 set

PRCC2	PRCC1	PRCC0	Pre charge current
0	0	0	50mA
0	0	1	100mA
0	1	0	150mA
0	1	1	200mA
1	0	0	250mA
1	0	1	300mA
1	1	0	350mA
1	1	1	400mA

(Initial value)

Note 1: Bit3 must be fixed "0".

9.2.4 Output voltage level set (03h)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
03h	CVF7	CVF6	CVF5	CVF4	CVF3	CVF2	CVF1	CVF0	
Initial value	0	0	0	0	0	0	0	0	

This register sets output voltage of constant voltage (CV) mode. Output voltage can be changed with a step of 10mV.

CVF7-0(bit7-0): Selecting output voltage in the CV mode.

Table 9.21 CVF7-0 set

		_
CVF7-0(bin)	Output voltage of CV mode	
00000000	3.000V	(Initial value)
0000001	3.010V	
0000010	3.020V	=
00000011	3.030V	=
:	:	<u>-</u>
01111110	4.260V	
01111111	4.270V	
10000000	4.280V	
10000001	4.290V	
:	:	<u>-</u>
11111100	5.520V	
11111101	5.530V	
11111110	5.540V	
11111111	5.550V	

9.2.5 Termination current/charge current set (04h)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
04h	TERMC1	TERMC0	-	CCLT4	CCLT3	CCLT2	CCLT1	CCLT0	
Initial value	0	0	-	0	0	0	0	0	

This register sets the current of the termination and the fast charge.

TERMC1-0(bit7-6): Selecting the current of the termination.

Table 9.22 TERMC1-0 set

on	Current of termination	TERMC0	TERMC1
(Initial	50mA	0	0
	100mA	1	0
	150mA	0	1
	200mA	1	1

value)

CCLT4-0(bit4-0) : Selecting the current of the fast charge.

The current can be changed with a step of 50mA.

Table 9.23 CCLT4-0 set

CCLT4	CCLT3	CCLT2	CCLT1	CCLT0	Current of fast charge			
0	0	0	0	0	0mA	(Initial value)		
0	0	0	0	1	50mA			
0	0	0	1	0	100mA			
0	0	0	1	1	150mA			
:	:	:	:	:	:	<u> </u>		
1	0	1	1	0	1,100mA			
1	0	1	1	1	1,150mA			
1	1	0	0	0	1,200mA			
1	1	0	0	1	Forbidden to set			
1	1	0	1	0	Forbidden to set			
:	:	:	i	•	:	-		
1	1	1	1	0	Forbidden to set			
1	1	1	1	1	Forbidden to set			

Note 1: Do not set CCLT4-0 from 0b11001 to 0b11111.

26 2013-06-11

9.2.6 Input over current limit set/ISENS output mode set (05h)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
05h	ISNOS1	ISNOS0	-	AICLT4	AICLT3	AICLT2	AICLT1	AICLT0
Initial value	0	0	_	0	0	0	0	0

This register sets output mode of ISEN terminal and input over current limit.

ISNOS1-0(bit7-6): Selecting output mode of ISENS terminal.

Table 9.24 ISNOS1-0 set

ISNOS1	ISNOS0	Output mode	
0	0	Output Current voltage	(Initial value)
0	1	VBAT×1/3	
1	0	PVDD2x1/8	
1	1	Forbidden to set	

AICLT4-0(bit4-0): Selecting the input over current limit.

Limit value can be changed with a step of 100mA.

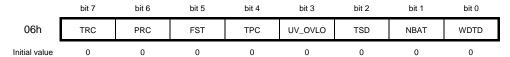

This configured value is valid in the CC mode. Set it including an operation margin for the charge current.

Table 9.25 AICLT4-0 set

AICLT4	AICLT3	AICLT2	AICLT1	AICLT0	Over current limit	
0	0	0	0	0	0mA	(Initial value)
0	0	0	0	1	100mA	
0	0	0	1	0	200mA	
0	0	0	1	1	300mA	
:	:	:	:	:	:	•
1	0	1	1	0	2,200mA	
1	0	1	1	1	2,300mA	
1	1	0	0	0	2,400mA	
1	1	0	0	1	Forbidden to set	
1	1	0	1	0	Forbidden to set	
:	:	į	į	:	:	•
1	1	1	1	0	Forbidden to set	
1	1	1	1	1	Forbidden to set	

Note 1: Do not set AICLT4-0 from 0b11001 to 0b11111.

9.2.7 Charge information read (06h)

This register confirms the state in the chip. When the register data which is read is "1", it indicates active. This register is only for reading. Make sure that when data is written to this register, transferred command is invalid. State information of each bit is shown below. The Bit3-0 automatically are initialized when DCDC converter start to works (EN_DCDC="1").

Table 9.26 Charge information read

Command name	bit	Description	Data=0	Data=1
TRC	bit7	Read whether the state is in the trickle charge or not.	Non active	Active
PRC	bit6	Read whether the state is in the pre charge or not.	Non active	Active
FST	Bit5	Read whether the state is in the fast charge or not.	Non active	Active
TPC	bit4	Read whether the state is in the taper charge or not.	Non active	Active
UV_OVLO	bit3	Read detection result of over voltage/under voltage circuits.	Non detection	Detection
TSD	bit2	Read detection result of thermal shutdown circuit.	Non detection	Detection
NBAT	bit1	Read detection result of battery connecting error.	Non detection	Detection
WDTD	bit0	Read detection of watch-dog timer error.	Non detection	Detection

9.2.8 Test mode (07h/10h)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
07h				Test mod	de 1(8bit)				00h
10h				Test mode	e 2(8bit)				00h

This register is for Toshiba test mode. Do not access to 07h and 10h registers.

9.3 Detection and protection function

The TB6860WBG has two voltage detections and two protection functions.

9.3.1 Under voltage lockout (UVLO) function

UVLO function avoids malfunction when the voltage of PVDD2 terminal is low. The detection condition is that the voltage of PVDD2 terminal drops below 3.2V (typ.). UVLO is deactivated when the voltage of PVDD2 terminal rises over 3.46V (typ.). UVLO turns off the step-down DCDC converter (EN_DCDC="0") and outputs high signal for STAT which corresponds to wait mode. The error flag which indicates abnormal input voltage is configured UV_OVLO="1". To re-start the step-down DCDC converter, the step-down DCDC converter should be set on (EN_DCDC="1") again. The error flag keeps the flag until the step-down DCDC converter is set on (EN_DCDC="1") or POR starts operation.

9.3.2 Over voltage lockout (OVLO) function

OVLO function avoids malfunction when the voltage of PVDD2 terminal is high. OVLO is activated when EN_OVLO="1". The detection condition is that the voltage of PVDD2 terminal rises over 17V (typ.).OVLO is deactivated when the voltage of PVDD2 terminal drops below 16V. OVLO turns off the step-down DCDC converter (EN_DCDC="0") and outputs high signal for STAT which corresponds to wait mode. The error flag which indicates abnormal input voltage is configured UV_OVLO="1". To re-start the step-down DCDC converter, the step-down DCDC converter should be set on (EN_DCDC="1") again. The error flag keeps the flag until the step-down DCDC converter is set on (EN_DCDC="1") or POR starts operation.

9.3.3 Thermal shutdown protection (TSD) function

TSD function protects the IC from internal temperature rise. The detection condition is that the internal temperature rises over 150°C (typ.). TSD is deactivated when the internal temperature drops below 130°C (typ.). TSD turns off the step-down DCDC converter (EN_DCDC="0") and outputs high signal for STAT which corresponds to wait mode. The error flag which indicates abnormal internal temperature is configured TSD="1". To re-start the step-down DCDC converter, the step-down DCDC converter should be set on (EN_DCDC="1") again. The error flag keeps the flag until the step-down DCDC converter is set on (EN_DCDC="1") or POR starts operation.

9.3.4 Over current limit protection (OCL) function

OCL function protects the IC from overcurrent of the step-down DCDC converter. The detection condition is that the value of current which flows in MOSFET (high side) of the step-down DCDC converter reaches the specified value. Setting method of the detection current depends on the operation mode of the step-down DCDC converter. When the step-down DCDC converter drives in charge mode, OCL detection current can be set in the range from 0 mA to 2.4 A by the register of AICLT4-0. When it drives in feed mode, OCL detection current is fixed depending on each mode. When OCL detects over current, MOSFET (high side) of the step-down DCDC converter is turned off and MOSFET (low side) is turned on. OCL function operates every switching cycle. So, OCL is deactivated in the next switching cycle automatically and the normal operation is returned.

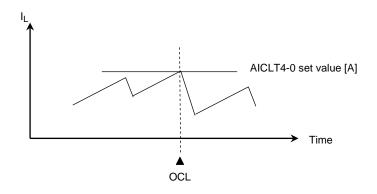


Figure 9.1 Description of OCL function

9.4 Battery missing detection

Battery missing detection avoids malfunction of charge caused by error of battery connection. It operates when the step-down DCDC converter drives in charge mode (CH_DC="0"). BTMSD register sets ON and OFF of this detection. Trickle charge function is valid. And the battery missing detection starts monitoring when the voltage of AUXPWR terminal is 2.1V or less in charge start. Battery missing detection has two error detections. First detection is activated in charge start. The safety timer starts counting when charge starts. And it continues counting during trickle charge mode and judges it battery missing after a lapse of 36 minutes. Second detection is activated in transition from trickle charge mode to pre charge mode. The safety timer re-starts counting when the mode moves from trickle charge mode to pre charge mode. The detection judges it battery missing when the voltage of AUXPWR terminal rises over 3.6V within 87ms after the operation moves to taper charge mode. When battery missing is detected, the step-down DCDC converter is set off (EN_DCDC="0") and outputs high level for STAT which corresponds to wait mode. The error flag which indicates battery missing is configured NBAT="1". Description of operation is shown in Figure 9.2. To re-start the step-down DCDC converter, the step-down DCDC converter should be set on (EN_DCDC="1") again. The error flag keeps the flag until the step-down DCDC converter is set on (EN_DCDC="1") or POR starts operating.

9.5 Watch-dog timer

The TB6860WBG includes watch-dog timer. It is configured on and off by WDTE register. It operates when the step-down DCDC converter is set on (EN_DCDC="1"). Its monitoring time is 42s. And it is reset by ACK signal of I²C interface. When watch-dog timer is time out, the step-down DCDC converter is set off (EN_DCDC="0") and outputs high signal for STAT which corresponds to wait mode. The error flag which indicates watch-dog time out is set WDTD="1". The step-down DCDC converter should be set on (EN_DCDC="1") again to re-start the operation of the step-down DCDC converter. The error flag keeps the flag until the step-down DCDC converter is set on (EN_DCDC="1") or POR start operating.

TOSHIBA TB6860WBG

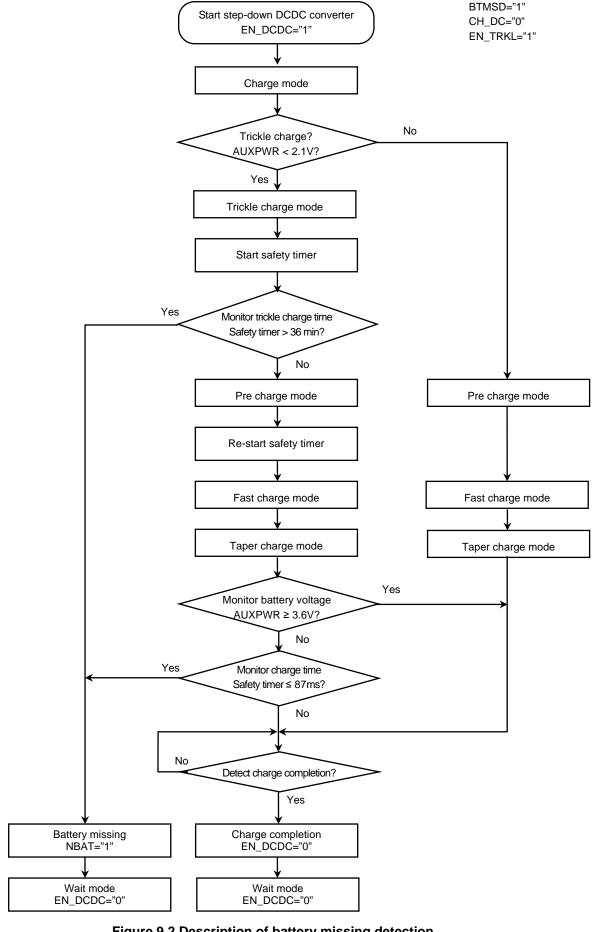


Figure 9.2 Description of battery missing detection

32 2013-06-11

9.6 Function of terminals

9.6.1 STAT terminal

STAT terminal outputs the operation state of the step-down DCDC converter. STAT output corresponds to CMOS output which refers VDD33 and VSS. It outputs low level when the step-down DCDC converter is operating (Charge mode or feed mode). When the step-down DCDC converter is turned off (wait mode), it outputs high level.

9.6.2 VBAT_SENS terminal and ISENS terminal

VBAT_SENS terminal and ISENS terminal are analog output terminals which monitor input and output voltage and output current of the step-down DCDC converter by MCU.

VBAT_SENS terminal outputs 1/3 of the voltage of VBAT terminal.

ISENS terminal outputs different signal depending on the setting of ISONS1-0 registers. Relation of setting of ISNOS1-0 registers and output of ISENS terminal is shown in Table 9.27. In case that ISENS terminal is used in output current monitor mode, offset voltage is added. Measure the voltage when the DCDC converter is no load, and use the terminal after offset correction.

Table 9.27 Output mode of ISENS terminal

ISNOS1	ISNOS0	ISENS terminal output mode	Output reduction formula of ISENS	Output reduction formula
0	0	Output current (I _{OUT})	(V _{CSIN} -V _{CSOUT}) × 24+Offset (Note)	(VISENS-Offset)/24/ RSENSE (Note)
0	1	Voltage of VBAT terminal	VBAT × 1/3	V _{ISENS} × 3
1	0	Voltage of PVDD2 terminal	PVDD2 × 1/8	V _{ISENS} × 8
1	1	Set forbidden	-	-

Offset : Output voltage of ISEN terminal when the step-down DCDC converter is no load during

output current monitor mode.

VISENS : Output voltage of ISENS terminal

VCSIN : Voltage of CSIN terminal VCSOUT : Voltage of CSOUT terminal

RSENSE : Resistance of current detection which is connected between CSIN and CSOUT terminals

(Recommended value: 0.068Ω)

VBAT : Voltage of VBAT terminal PVDD2 : Voltage of PVDD2 terminal

Note: In case ISENS terminal is used in the output current monitor mode, the voltage of ISENS terminal under the condition that the DCDC converter is no load (I_{OUT}=0V) must be measured to correct offset.

10. Start sequence

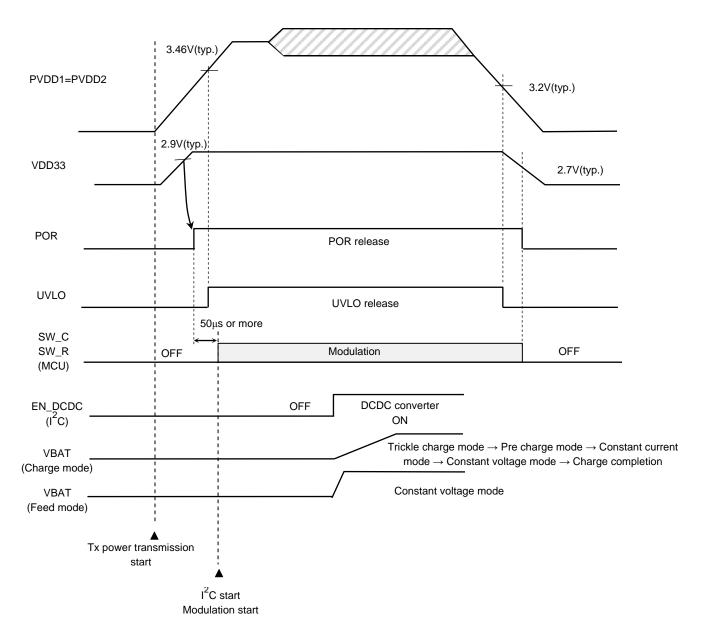


Figure 10.1 Start sequence

11. Absolute Maximum Ratings (Ta = 25°C)

Table 11.1 Absolute Maximum Ratings

Characteristics	Symbol	Rating	Unit	Remarks
Supply voltage	PVDD _{MAX}	- 0.3 to 20	V	(Note 1)
Input voltage 1	V _{I1}	- 0.3 to 20	V	(Note 2)
Input voltage 2	V _{I2}	- 0.3 to VOUT33 + 0.3	V	(Note 3)
Input voltage 3	V _{I3}	- 0.3 to min(5.6, PVDD + 0.3) (Note 5)	V	(Note 4)
Operating temperature	T _{opr}	- 40 to 85	°C	
Junction temperature	Tj	150	°C	
Storage temperature	T _{stg}	- 55 to 155	°C	

Note: The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings.

Exceeding the rating (s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.

Please use the IC within the specified operating ranges.

Note: PGND1=PGND2=VSS=0V

Note 1: Apply to PVDD1 and PVDD2 terminals.

Note 2: Apply to AC1, AC2, VC1, VC2, VR, and SWIN terminals.

Note 3: Apply to SW_R, SW_C, SCL, SDA, POR, VBAT_SENS, TEST1, TEST2, and TEST3 terminals.

Note 4: Apply to CSIN, CSOUT, AUXPWR, and VBAT terminals.

Note 5: min (a, b): Smaller value is reflected by comparing a with b.

12. Electrical Characteristics

12.1 DC characteristics 1

Table 12.1 DC characteristics 1

(Unless otherwise specified, PVDD1 = PVDD2 = 5.0V, PGND1=PGND2=VSS=0V, Ta = 25°C)

Characteri	stics	Symbol	Test condition	Min	Тур.	Max	Unit	Terminal	
Power supply volt	age	PVDD		3.4	_	12	V	PVDD2	
Input voltage	High level	V _{IH}		0.7× VOUT3 3	ı	VOUT3	V	SCL, SDA	
	Low level	V _{IL}		VSS	ı	0.3 × VOUT3 3	V	SW_R, SW_C	
Input current 1	High level	I _{IH1}	V _{IH1} =V _{OUT33}	40	66	110		SW_R,	
	Low level	I _{IL1}	V _{IL1} =GND	-10	0	10	μА	SW_C	
Input current 2	High level	I _{IH2}	V _{IH2} =V _{OUT33}	-10	0	10	^	SCL, SDA	
input current 2	Low level	I _{IL2}	V _{IL2} =GND	-10	0	10	μА	SCL, SDA	
Output voltage 1	Low level	V _{OL1}	I _{SINK} =3mA, N-ch open Drain	VSS	_	0.4	V	SDA	
Output voltage 2	High level	V _{OH2}	I _{OUT} =-1mA	0.8× VOUT3 3	ı	VOUT3	V	STAT,	
Odipul Voltage 2	Low level	V _{OL2}	I _{OUT} =4mA	VSS	ı	0.2× VOUT3 3	V	POR	
VDD33 output vol	tage	V _{OUT33}	I _{OUT33} =0 to 60mA	2.7	3.3	3.6	V	VDD33	
VDD33 maximum current	output	Гоитззмах		60	ı	_	mA	VDD33	
POR voltage		V _{POR}	Voltage of VDD33 rises from GND to "H".	2.6		2.8	V	VDD33	
POR hysteresis vo	oltage	V _{PORHYS}		_	0.2	_	V	VDD33	

12.2 DC characteristics 2

Table 12.2 DC characteristics 2

(Unless otherwise specified, PVDD1 = PVDD2 = 5.0V, PGND1=PGND2=VSS=0V, Ta = $25^{\circ}C$)

Characteristics		Symbol	Test condition	Min	Тур.	Max	Unit	Terminal
Maximum output voltage of rectified step		VOUTMAX		15	_	_	V	PVDD1
On resistance of rectified step 1	High side	R _{ONH_AC1}	I _{OUT} =100mA	_	150	300	mΩ	AC1
	Low side	R _{ONL_AC1}	I _{OUT} =-100mA	_	150	300	11122	ACT
On resistance of	High side	R _{ONH_AC2}	I _{OUT} =100mA	_	150	300	mΩ	AC2
rectified step 2	Low side	R _{ONL_AC2}	I _{OUT} =-100mA	_	150	300	11122	AGZ
Internal resistance for adjusting rectified step 1		R _{R1}	SW_C="H"	0.85	1	1.15	kΩ	VC1, VC2
Internal resistance for adjusting rectified step 2		R _{ON2}	SW_R="H"	_	_	10	Ω	VR

12.3 DC characteristics 3

Table 12.3 DC characteristics 3

(Unless otherwise specified, PVDD1 = PVDD2 = 5.0V, PGND1=PGND2=VSS=0V, Ta = 25°C)

Character	istics	Symbol	Test condition	Min	Тур.	Max	Unit	Terminal
Judging voltage of charge	of trickle	V_{TRC}		1.9	2.1	2.3	V	AUXPWR
Trickle charge cu	rrent	I _{TRC}	AUXPWR=2.0V	10	40	60	mA	
Accuracy of judgi of fast charge	ing voltage	AccV _{FST}		-3.5	_	3.5	%	AUXPWR
Accuracy of pre	charge current	Accl _{PRC}	FSTV3-0=Fh (Setting 3.6V)	-50	_	55	mA	
Accuracy of fast current	Accuracy of fast charge current		CVF7-0=78h (Setting 4.2V)	-105	-	80	mA	
Accuracy of term current	ination	AccI _{TERM}	CVF7-0=78h (Setting 4.2V)	-50	_	80	mA	
Accuracy of outp (in CV operation)		AccV _{OUT}		-1	_	1	%	
MOSFET	High side	R _{ONH_SW}	I _{OUT} =100mA	_	270	350	mΩ	SWIN
On resistance	Low side	R _{ONL_SW}	I _{OUT} =-100mA	_	180	250	mΩ	SWIN
Maximum output	current	IOUTMAX		1.2		_	А	
Switching freque	ncy	f _{PWM}		2.4	3	3.6	MHz	SWIN

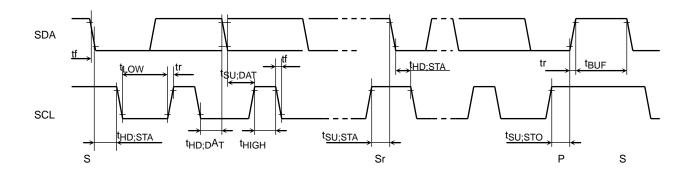

12.4 DC characteristics 4

Table 12.4 DC characteristics 4

(Unless otherwise specified, PVDD1 = PVDD2 = 5.0V, PGND1=PGND2=VSS=0V, Ta = $25^{\circ}C$)

Characteristics	Symbol	Test condition	Min	Тур.	Max	Unit	Terminal
UVLO operation voltage	V _{UVLO}		3.1	3.2	3.4	V	PVDD2
UVLO hysteresis voltage	V _{UVLOHYS}		_	0.26	_	V	PVDD2
OVLO voltage	V _{OVLO}		15	17	20	V	PVDD2
OVLO hysteresis voltage	Vovlohys		_	1	_	V	PVDD2
TSD operation temperature	T _{TSD}		120	150	_	°C	
TSD hysteresis temperature	T _{TSDHYS}		_	20	_	°C	
OCL current	locL	CH_DC=0h AICLT4-0=0Ch (Setting 1.2A)	1.08	1.2	1.32	Α	PVDD2

12.5 AC characteristics

Table 12.5 AC characteristics

(Unless otherwise specified, PVDD1 = PVDD2 = 5.0V, PGND1=PGND2=VSS=0V, Ta = 25°C)

	, ,					
Characteristics	Symbol	Test condition	Min	Тур.	Max	Unit
Operation clock frequency	f _{SCL}		_	_	400	kHz
Hold time of repeated start	tHD:STA		0.6	_	_	μS
Setup time of repeated start	tsu:sta		0.6	_	_	μS
Data hold time	t _{HD;DAT}		0	_	0.9	μS
Data setup time	t _{SU;DAT}		100	_	_	ns
Low term of SCL signal	tLOW		1.3	_	_	μS
High term of SCL signal	tHIGH		0.6	_	_	μS

13. Application Circuit

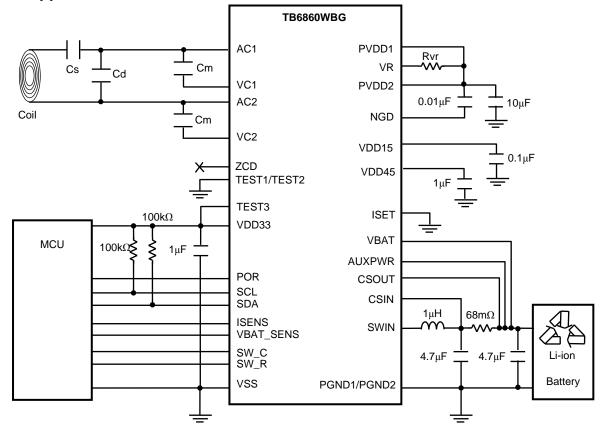


Figure 13.1 Charger mode

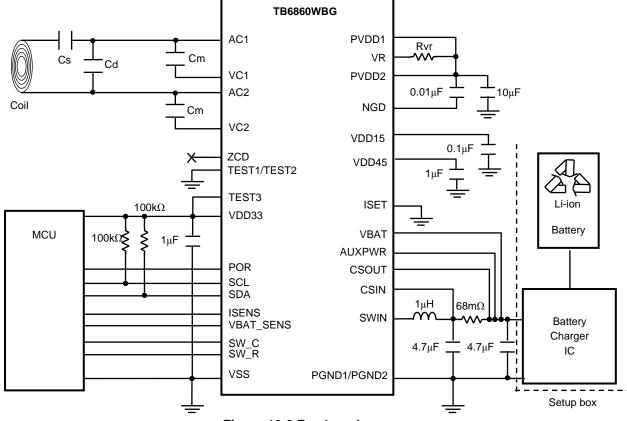
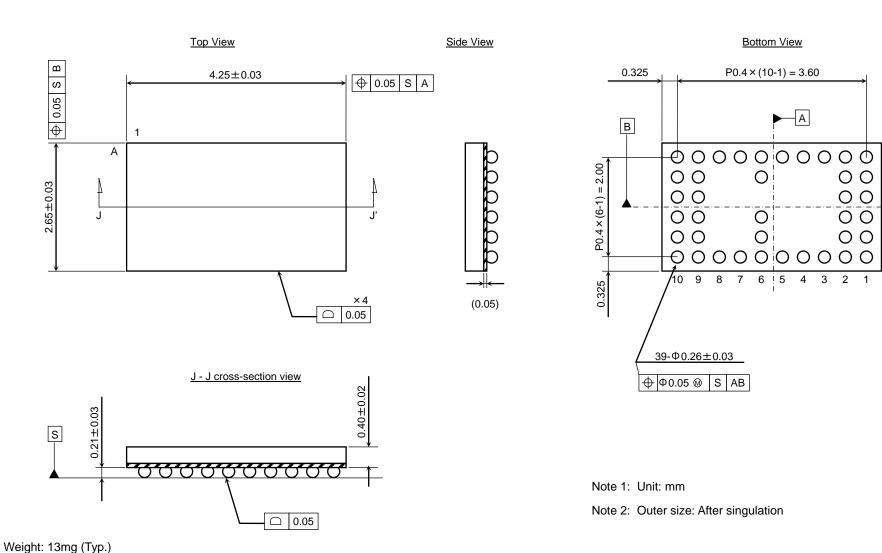



Figure 13.2 Feed mode

41

С

14. Package dimensions

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
 automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
 safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru_6 moschip.ru_4 moschip.ru_9