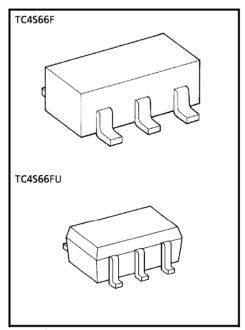
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC4S66F, TC4S66FU

BILATERAL SWITCH

TC4S66F/FU contains one circuit of bidirectional switches. When control input, CONT is set to "H" level, the impedance between input and output of the switch becomes low and when it is set to "L" level, the switch becomes high. This can be applied for switching of analog signals and digital signals.


FEATURES

ON-resistance (R_{ON})

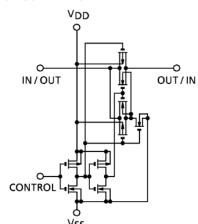
300 Ω (Typ.) $V_{DD} - V_{SS} = 5 V$ 110 Ω (Typ.) $V_{DD} - V_{SS} = 10 \text{ V}$ 70 Ω (Typ.) $V_{DD} - V_{SS} = 15 V$

OFF-resistance (ROFF)

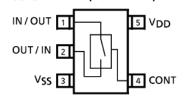
 R_{OFF} (Typ.) > $10^9 \Omega$

Weight SSOP5-P-0.95 : 0.016 g (Typ.) SSOP5-P-0.65A : 0.006 g (Typ.)

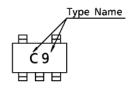
MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	V_{DD}	Vss - 0.5~Vss + 20	V
Control Input Voltage	V _C IN	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	٧
Switch I/O Voltage	V _{I/O}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	٧
Power Dissipation	PD	200	mW
Potential difference across I/O during ON	V _I -V _O	± 0.5	٧
Control Input Current	IC IN	± 10	mA
Operating Temperature Range	T _{opr}	- 40~85	°C
Storage Temperature	T _{stg}	-65~150	°C
Lead Temperature (10 s)	TL	260	°C

TRUTH TABLE


CONTROL	IMPEDANCE BETWEEN IN/OUT-OUT/IN *
Н	$0.5\sim5\times10^{2}\Omega$
L	> 10 ⁹ Ω

* : See static electrical characteristics.


CIRCUIT DIAGRAM

PIN ASSIGNMENT (TOP VIEW)

MARKING

RECOMMENDED OPERATING CONDITIONS ($V_{SS} = 0 V$)

CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V_{DD}	-	3		18	٧
Input/Output Voltage	V _{IN} /V _{OUT}	_	0		V_{DD}	V

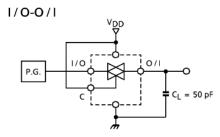
STATIC ELECTRICAL CHARACTERISTICS (In case not specifically appointed, $V_{SS} = 0 \text{ V}$)

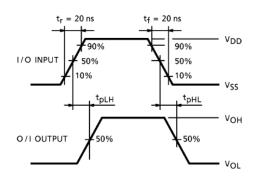
CHARACTERISTIC		SYM- TEST CONDITION		V_{DD}	– 40°C		25°C			85°C		UNIT
		BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONIT
Control In	nut Liah			5	3.5	_	3.5	2.75	_	3.5	_	
Control In Voltage	iput nign	V_{IH}	$ I_{IS} = 10 \mu A$	10	7.0	—	7.0	5.50		7.0	—	
voitage				15	11.0	_	11.0	8.25	_	11.0	_	v
Control In	nut Low			5	 	1.5	_	2.25	1.5	_	1.5	
Voltage	iput Lovv	V_{IL}	$ I_{IS} = 10 \mu A$	10	—	3.0	_	4.5		—	3.0	
Voltage				15	_	4.0	_	6.75	4.0	_	4.0	
		RON	$0 \le V_{IS} \le V_{DD}$ $R_L = 10 \text{ k}\Omega$	5	_	800	_	290	950	_	1200	
On-State	Resistance			10	—	210	_	120	250	-	300	Ω
				15	_	140	-	85	160	_	200	
Input / Ou	Input / Output		V _{IN} = 18 V V _{OUT} = 0 V	18	_	± 100	-	±0.1	± 100	_	± 1000	nA
Leakage Current		OFF	V _{IN} = 0 V V _{OUT} = 18 V	18	_	± 100	1	± 0.1	± 100	-	± 1000	
Quiescent Device Current		I _{DD} V _{IN} = V _{DD} , V _{SS}		5	_	0.25	_	0.001	0.25	_	7.5	
			10	—	0.5	_	0.001	0.5	—	15	μΑ	
				15	_	1.0	_	0.002	1.0	_	30	
Input	H Level	ΙΗ	V _{IH} = 18 V	18	_	0.1	١	10 - 5	0.1	_	1.0	
Current	L Level	lOL	V _{IL} = 0 V	18	_	- 0.1	_	- 10 ^{- 5}	- 0.1	_	- 1.0	μΑ

2

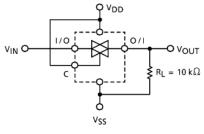
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{SS} (V)	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Propagation Delay Time (IN-OUT)	t _{pLH} t _{pHL}	C _L = 50 pF	0 0 0	5 10 15	_ _ _	15 8 5	40 20 15	
Propagation Delay Time (CONTROL-OUT)	t _{pZL} t _{pZH}	$R_{L} = 1 k\Omega$ $C_{L} = 50 pF$	0 0 0	5 10 15	_ _ _	55 25 20	120 40 30	ns
Propagation Delay Time (CONTROL-OUT)	t _{pLZ} t _{pHZ}	$R_L = 1 k\Omega$ $C_L = 50 pF$	0 0 0	5 10 15		45 30 25	80 70 60	
Max. Control Input Repetition Rate	fMAX (C)	$R_{L} = 1 k\Omega$ $C_{L} = 50 pF$	0 0 0	5 10 15	_ _ _	10 12 12	_ _ _	MHz
– 3dB Cut Off Frequency	fMAX (I-O)	$R_L = 1 k\Omega$ $C_L = 50 pF (*1)$	- 5	5	_	30	_	
Total Harmonic Distortion	_	$R_{L} = 10 \text{ k}\Omega$ $f = 1 \text{ kHz} \qquad (*2)$	- 5	5	_	0.03	_	%
– 50dB Feedthrough Frequency	_	$R_L = 1 k\Omega$ (*3)	- 5	5	_	600	_	kHz
Crosstalk (CONTROL-OUT)	_	$R_{IN} = 1 k\Omega$ $R_{OUT} = 10 k\Omega$ $C_L = 15 pF$	0 0 0	5 10 15	_ _ _	200 400 600	_ _ _	mV
Input Capacitance	CIN	Control Input Switch I/O			_	5 10	7.5 —	[
Feedthrough Capacitance	C _{IN-OUT}	_			_	0.5	_	рF

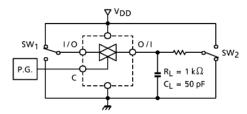

^{*1 :} The frequency at $20log_{10} \frac{V_{OS}}{V_{IS}} = -3 \, dB$ shall be $f_{MAX}(I/O)$ using sine wave of $\pm 2.5 \, V_{p-p}$ for V_{IS} .

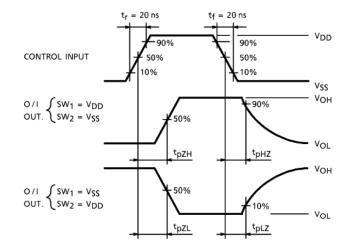

*2 : V_{IS} shall be sine wave of $\pm 2.5 \, V$.

2008-06-03 3


^{*3 :} The frequency at $20\ell og_{10} \frac{V_{OS}}{V_{IS}}$ = 50 dB shall be the feed through using of $\pm 2.5 \, V_{p-p}$.

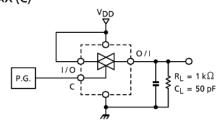
1. tpLH, tpHL

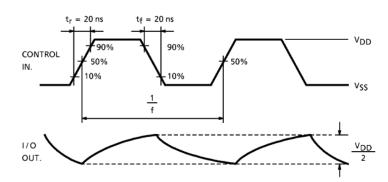



3. RON

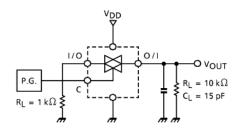
2. t_{pZL}, t_{pZH}, t_{pLZ}, t_{pHZ}

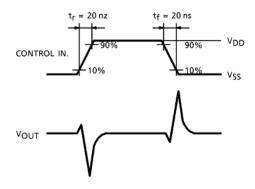
CONTROL-O/I

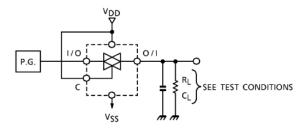


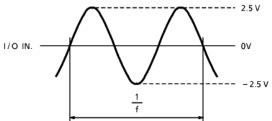


$$\mathsf{R}_{\mathsf{ON}} = \mathsf{10} \times \frac{\langle \mathsf{V}_{\mathsf{IN}} - \mathsf{V}_{\mathsf{OUT}} \rangle}{\mathsf{V}_{\mathsf{OUT}}} (\mathsf{k}\Omega)$$

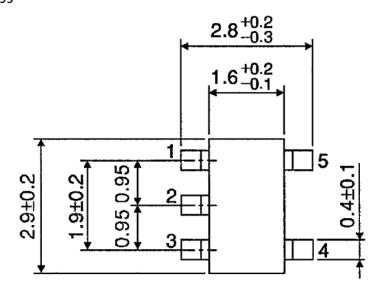

4

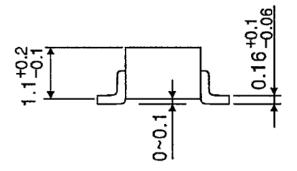

4. fMAX (C)




5. CROSSTALK (CONTROL INPUT)

6. TOTAL HARMONIC DISTORTION, $f_{\mbox{MAX}}$ (I/O-O/I), FEEDTHROUGH (SWITCH OFF)

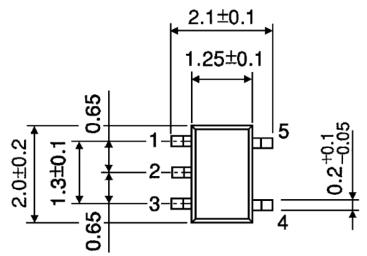




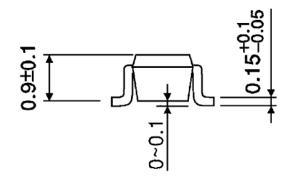
5

PACKAGE DIMENSIONS SSOP5-P-0.95

Unit: mm


6

Weight: 0.016 g (Typ.)


2008-06-03

PACKAGE DIMENSIONS

SSOP5-P-0.65A

Unit: mm

7

Weight: 0.006 g (Typ.)

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.

8

ПОСТАВКА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ

Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107

Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip.

Для оперативного оформления запроса Вам необходимо перейти по данной ссылке:

http://moschip.ru/get-element

Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора.

В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов.

Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair.

Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки.

На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров.

Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009

Офис по работе с юридическими лицами:

105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский»

Телефон: +7 495 668-12-70 (многоканальный)

Факс: +7 495 668-12-70 (доб.304)

E-mail: info@moschip.ru

Skype отдела продаж:

moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9