protection. accordance with IEC 60068-2-45. ## Vishay BCcomponents # High Ohmic/High Voltage Metal Glaze Leaded Resistors A metal glazed film is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned electrolytic copper wires are welded to the end-caps. The resistors are coated with a light blue lacquer which provides electrical, mechanical, and climatic The encapsulation is resistant to all cleaning solvents in #### **FEATURES** • These resistors meet the safety requirements of: UL1676 (510 k Ω to 11 M Ω); File No: E171160 IEC 60065, clause 14.1.a) DIN EN 60065, clause 14.1.a) VDE 0860, clause 14.1.a) CQC, China • High pulse loading capability (10 kV) - Small size (0309) - Pure tin plating provides compatibility with and lead containing soldering processes - Compliant to RoHS directive 2002/95/EC #### **APPLICATIONS** - Where high resistance, high stability and high reliability at high voltage are required - Safety component in combination with high voltage - · White goods - High humidity environment - · Power supplies | TECHNICAL SPECIFICATIONS | | | | |---|--|--|--| | DESCRIPTION | VALUE | | | | Resistance Range (1) | 100 kΩ to 33 MΩ | | | | Resistance Tolerance and Series | ± 1 %: E24/E96 series;
± 5 %: E24 series | | | | Rated Dissipation, P ₇₀ | 0.5 W | | | | Thermal Resistance, R _{th} | 120 K/W | | | | Temperature Coefficient | ≤ ± 200 ppm/K | | | | Maximum Permissible Voltage U _{max} .: | | | | | DC | 3500 V | | | | RMS | 2500 V | | | | Dielectric Withstanding Voltage of the Insulation for 1 Min | 700 V | | | | Basic Specifications | IEC 60115-1 | | | | Safety Requirements | UL1676 (510 kΩ to 11 MΩ); DIN EN 60065, IEC 60065, clause 14.1.a); VDE 0860, clause 14.1.a), CQC | | | | Climatic Category (IEC 60068-1) | 55/155/56 | | | | Stability After: | | | | | Load (1000 h, P ₇₀) | $\Delta R \text{ max.: } \pm (1.5 \% R + 0.1 \Omega)$ | | | | Long Term Damp Heat Test (56 Days) | $\Delta R \text{ max.: } \pm (1.5 \% R + 0.1 \Omega)$ | | | | Soldering (10 s, 260 °C) | $\Delta R \text{ max.: } \pm (1.5 \% R + 0.1 \Omega)$ | | | | Noise | max. 2.5 μV/V | | | #### Note (1) Ohmic values (other than resistance range) are available upon request ## High Ohmic/High Voltage Metal Glaze Leaded Resistors ## Vishay BCcomponents #### Notes (1) Please refer to table PACKAGING • The PART NUMBER is shown to facilitate the introduction of a unified part numbering system for ordering products | PACKAGING | | | | | | |-----------|--------------|-----------|------|--------|------| | MODEL | TAPING | AMMO PACK | | REEL | | | MODEL | | PIECES | CODE | PIECES | CODE | | VR37 | Axial, 52 mm | 1000 | A1 | 5000 | R5 | #### **DIMENSIONS** | DIMENSIONS - resistor type and relevant physical dimensions | | | | | | |--|-----|-----|------|------------|--| | TYPE Ø D _{max.} L _{1 max.} L _{2 max.} Ø d | | | | | | | VR37 | 4.0 | 9.0 | 10.0 | 0.7 ± 0.03 | | | MASS PER UNIT | | | |---------------|--------------|--| | ТҮРЕ | MASS
(mg) | | | VR37 | 457 | | #### **MARKING** The nominal resistance and tolerance are marked on the resistor using four or five colored bands in accordance with IEC 60062, marking codes for resistors and capacitors. Yellow and grey are used instead of gold and silver because Yellow and grey are used instead of gold and silver because metal particles in the lacquer could affect high-voltage properties. ## Vishay BCcomponents ## High Ohmic/High Voltage Metal Glaze Leaded Resistors #### **OUTLINES** The length of the body (L_1) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation (IEC 60294). # FUNCTIONAL PERFORMANCE PRODUCT CHARACTERIZATION Standard values of nominal resistance are taken from the E96/E24/E12 series for resistors with a tolerance of \pm 1 % or 5 %. The values of the E96/E24 series are in accordance with IEC 60063. | LIMITING VALUES | | | | | |-----------------|---|------|-------------------------------------|--| | ТҮРЕ | LIMITING VOLTAGE (1) U _{max.} | | LIMITING POWER, P ₇₀ (W) | | | | DC | RMS | (**) | | | VR37 | 3500 | 2500 | 0.5 | | #### **Notes** (1) The maximum voltage that may be continuously applied to the resistor element, see IEC 60115-1 • The maximum permissible hot-spot temperature is 155 °C The power that the resistor can dissipate depends on the operating temperature. Maximum dissipation ($P_{\rm max.}$) in percentage of rated power as a function of the ambient temperature ($T_{\rm amb}$) Maximum allowed peak pulse voltage in accordance with IEC 60065, 14.1.a); 50 discharges from a 1 nF capacitor charged to \hat{U}_{max} ; 12 discharges/minute (drift $\Delta R/R \leq 2$ %) ### Derating ### **Pulse Loading Capability** For technical questions, contact: <u>filmresistorsleaded@vishay.com</u> Document Number: 28733 Revision: 12-Oct-09 ## High Ohmic/High Voltage Metal Glaze Leaded Resistors ## Vishay BCcomponents Hot-spot temperature rise (ΔT) as a function of dissipated power Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting ## **Application Information** #### **TESTS AND REQUIREMENTS** Essentially all tests are carried out in accordance with IEC 60115-1 specification, category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The tests are carried out in accordance with IEC 60068-2-xx. Test method under standard atmospheric conditions according to IEC 60068-1, 5.3. In the Test Procedures and Requirements table the tests and requirements are listed with reference to the relevant clauses of IEC 60115-1 and IEC 60068-2-xx test methods. A short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying. All soldering tests are performed with mildly activated flux. | TEST PROCEDURES AND REQUIREMENTS | | | | | |----------------------------------|-----------------------------------|--------------------------------|---|---| | IEC
60115-1
CLAUSE | IEC
60068-2-
TEST
METHOD | TEST | PROCEDURE | REQUIREMENTS | | 4.16 | | Robustness of terminations: | | | | 4.16.2 | 21 (Ua1) | Tensile all samples | Ø 0.7 mm; load 10 N; 10 s | Number of failures < 10 x 10 ⁻⁶ | | 4.16.3 | 21 (Ub) | Bending half number of samples | Ø 0.7 mm; load 5 N; 4 x 90° | Number of failures < 10 x 10 ⁻⁶ | | 4.16.4 | 21 (Uc) | Torsion other half of samples | 3 x 360° in opposite directions | No damage ΔR max.: ± (0.5 % R + 0.05 Ω) | | 4.17 | 20 (Ta) | Solderability | 2 s; 235 °C: Solder bath method; SnPb40
3 s; 245 °C: Solder bath method;
SnAg3Cu0.5 | Good tinning (≥ 95 % covered); no damage | | | | Solderability
(after aging) | 8 h steam or 16 h 155 °C;
leads immersed 6 mm;
for 2 s at 235 °C; solder bath (SnPb40)
for 3 s at 245 °C; solder bath
(SnAg3Cu0.5) method | Good tinning (≥ 95 % covered); no damage | | 4.18 | 20 (Tb) | Resistance to soldering heat | Thermal shock: 10 s; 260 °C;
3 mm from body | $\Delta R \text{ max.: } \pm (0.5 \% R + 0.05 \Omega)$ | | 4.19 | 14 (Na) | Rapid change of temperature | 30 min at - 55 °C and
30 min at + 155 °C; 5 cycles | $\Delta R \text{ max.: } \pm (0.5 \% R + 0.05 \Omega)$ | Document Number: 28733 Revision: 12-Oct-09 ## Vishay BCcomponents ## High Ohmic/High Voltage Metal Glaze Leaded Resistors | TEST P | TEST PROCEDURES AND REQUIREMENTS | | | | | |--------------------------|-----------------------------------|--|--|--|--| | IEC
60115-1
CLAUSE | IEC
60068-2-
TEST
METHOD | TEST | PROCEDURE | REQUIREMENTS | | | 4.20 | 29 (Eb) | Bump | 3 x 1500 bumps in 3 directions; 40 g | No damage ΔR max.: \pm (0.5 % R + 0.05 Ω) | | | 4.22 | 6 (Fc) | Vibration | Frequency 10 Hz to 500 Hz; displacement 1.5 mm or acceleration 10 g; 3 directions; total 6 h (3 x 2 h) | No damage ΔR max.: \pm (0.5 % R + 0.05 Ω) | | | 4.23 | | Climatic sequence: | | | | | 4.23.2 | 2 (Ba) | Dry heat | 16 h; 155 °C | | | | 4.23.3 | 30 (Db) | Damp heat (accelerated)
1 st cycle | 24 h; 55 °C; 90 % to 100 % RH | | | | 4.23.4 | 1 (Aa) | Cold | 2 h; - 55 °C | | | | 4.23.5 | 13 (M) | Low air pressure | 2 h; 8.5 kPa; 15 °C to 35 °C | | | | 4.23.6 | 30 (Db) | Damp heat (accelerated) remaining cycles | 5 days; 55 °C; 95 % to 100 % RH | $R_{\rm ins}$ min.: 10^3 M Ω ΔR max.: \pm (1.5 % R + 0.1 Ω) | | | 4.24 | 78 (Cab) | Damp heat
(steady state) | 56 days; 40 °C; 90 % to 95 % RH;
dissipation 0.01 P ₇₀ ;
limiting voltage <i>U</i> = 100 V _{DC} | $\Delta R \text{ max.: } \pm (1.5 \% R + 0.1 \Omega)$ | | | 4.25.1 | | Endurance | 1000 h at 70 °C; P ₇₀ or U _{max.} | $\Delta R \text{ max.: } \pm (1.5 \% R + 0.1 \Omega)$ | | | 4.8 | | Temperature coefficient | Between - 55 °C and + 155 °C | ≤ ± 200 ppm/K | | | 4.7 | | Voltage proof on insulation | U _{RMS} = 700 V during 1 min;
V-block method | No breakdown | | | 4.12 | | Noise | IEC 60195 | Max. 2.5 μV/V | | | 4.6.1.1 | | Insulation resistance | U = 500 V _{DC} during 1 min;
V-block method | R_{ins} min.: 10 ⁴ M Ω | | | 4.13 | | Short time overload | Room temperature;
dissipation 6.25 x P ₇₀ (voltage not more
than 2 x limiting voltage); 10 cycles;
5 s ON and 45 s OFF | ΔR max.: ± (2.0 % R + 0.05 Ω) | | #### 12NC INFORMATION FOR HISTORICAL CODING REFERENCE - The resistors have a 12-digit numeric code starting with 2322 242. - The subsequent: first digit for 1 % tolerance products (E24 and E96 series) or 2 digits for 5 % (E24 series) indicate the resistor type and packaging - The remaining digits indicate the resistance value: - The first 3 digits for 1 % or 2 digits for 5 % tolerance products indicate the resistance value - The last digit indicates the resistance decade #### Last Digit of 12NC Indicating Resistance Decade | RESISTANCE DECADE | LAST DIGIT | |----------------------------------|------------| | 100 k Ω to 976 k Ω | 4 | | 1 M Ω to 9.76 M Ω | 5 | | ≥ 10 MΩ | 6 | ## 12NC Example The 12NC for a VR37, resistor value 7.5 M Ω , 5 % tolerance, supplied on a bandolier of 1000 units in ammopack, is: 2322 242 13755. | 12NC - Resistor type and packaging | | | | | | |------------------------------------|---------------|------|-----------------------|-------------------|---| | | | | 2322 242 | | | | TYPE | TAPE
WIDTH | TOL. | BANDOLIER IN AMMOPACK | BANDOLIER ON REEL | | | (mm) | | (%) | 1000
units | 5000
units | | | VD27 | 52 | | ± 1 | 8 | 6 | | VR37 | | ± 5 | 13 | 23 | | z.com For technical questions, contact: <u>filmresistorsleaded@vishay.com</u> Document Number: 28733 Revision: 12-Oct-09 Vishay ## **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Revision: 11-Mar-11 ## **ПОСТАВКА** ЭЛЕКТРОННЫХ КОМПОНЕНТОВ многоканальный Общество с ограниченной ответственностью «МосЧип» ИНН 7719860671 / КПП 771901001 Адрес: 105318, г.Москва, ул.Щербаковская д.3, офис 1107 ## Данный компонент на территории Российской Федерации Вы можете приобрести в компании MosChip. Для оперативного оформления запроса Вам необходимо перейти по данной ссылке: ## http://moschip.ru/get-element Вы можете разместить у нас заказ для любого Вашего проекта, будь то серийное производство или разработка единичного прибора. В нашем ассортименте представлены ведущие мировые производители активных и пассивных электронных компонентов. Нашей специализацией является поставка электронной компонентной базы двойного назначения, продукции таких производителей как XILINX, Intel (ex.ALTERA), Vicor, Microchip, Texas Instruments, Analog Devices, Mini-Circuits, Amphenol, Glenair. Сотрудничество с глобальными дистрибьюторами электронных компонентов, предоставляет возможность заказывать и получать с международных складов практически любой перечень компонентов в оптимальные для Вас сроки. На всех этапах разработки и производства наши партнеры могут получить квалифицированную поддержку опытных инженеров. Система менеджмента качества компании отвечает требованиям в соответствии с ГОСТ Р ИСО 9001, ГОСТ РВ 0015-002 и ЭС РД 009 ## Офис по работе с юридическими лицами: 105318, г. Москва, ул. Щербаковская д. 3, офис 1107, 1118, ДЦ «Щербаковский» Телефон: +7 495 668-12-70 (многоканальный) Факс: +7 495 668-12-70 (доб.304) E-mail: info@moschip.ru Skype отдела продаж: moschip.ru moschip.ru_6 moschip.ru 4 moschip.ru 9